Study of Improving Mechanical Efficiency and Power for SI (Gasoline) Engine Using Turbo- Charger
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effect of Turbocharging on Volumetric Efficiency in Low Heat Rejection C.I. Engine Fueled with Jatrophafor Improved Performance
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 03, March-2015 The Effect of Turbocharging on Volumetric Efficiency in Low Heat Rejection C.I. Engine fueled with Jatrophafor Improved Performance R. Ganapathi *, Dr. B. Durga Prasad** Lecturer, Professor, Mechanical Engineering department, Mechanical Engineering department, JNTUA College of Engineering, JNTUA College of Engineering, Ananthapuramu, A.P, India. Ananthapuramu, A.P, India. burned. This can be achieved with an LHR engine dueto Abstract:- The world’s rapidly dwindling petroleum the availability of higher temperature at the time of fuel supplies, their raising cost and the growing danger of injection. The heat available due to insulation can be environmental pollution from these fuel, have some effectively used for vaporizing alternative fuel. Some substitute of conventional fuels, vegetable oils has been important advantages of the LHR engines are improved fuel considered as one of the feasible substitute to economy, reduced HC and CO emission, reduced noise due conventional fuel. Among all the fuels, tested Jatropha to lower rate of pressure rise and higher energy in the oil properties are almost closer to diesel, particularly exhaust gases [2 & 3]. However, one of the main problems cetane rating and heat value. In present work in the LHR engines is the drop in volumetric experiments are conducted with Brass Crown efficiency. This further decrease the density of air Aluminium piston with air gap, an air gap liner and entering the cylinder because of high wall temperatures of PSZ coated head and valve have been used in the the LHR engine. The degree of degradation of volumetric present study, which generates higher temperature in efficiency depends on the degree of insulation. -
General Rules and Specifications
2018 Big Block Modifieds 358 Modifieds Sportsman Modifieds Pro Stock Super DIRTcar Series General Rules and Specifications 7575 West Winds Blvd. Concord, NC 28027 704-795-7223 www.dirtcar.com Primary DIRTcar Northeast Contacts DIRTcar Northeast Director Jeff Hachmann [email protected] 315-283-3367 DIRTcar Northeast Director of Series and Sanctioning Mike Perrotte [email protected] 704-796-4566 DIRTcar Northeast Technical Director Mark Hitchcock [email protected] DIRTcar Northeast Points & Handicapping Gary Spaid [email protected] 585-734-5959 DIRTcar Northeast Series & Race Director John Nelson, [email protected] 716-907-1905 DIRTcar Northeast Series & Race Director Doug Leonard, [email protected] DIRTcar Northeast Series & Race Director Denis Moquin, [email protected] 613-978-3475 DIRTcar Northeast Series & Race Director Dave Farney, [email protected] 315-708-4422 DIRTcar Northeast Series Manager Cory Reed, [email protected] 315-374-1168 DIRTcar Northeast Marketing John Baumes, [email protected] 518-844-2678 World Racing Group Contacts: DIRTcar Events Director Jeff Hachmann [email protected] 315-283-3367 Tracey McDaniel, Membership Coordinator [email protected] 704-795-7223 Corrie Goss, Marketing Services [email protected] 704-795-7223 Christina Cordova, Director of Communications [email protected] 704-795-7223 2018 DIRTcar Northeast General Rules and Specifications 2 Table of Contents 15.6 Weight 1.0 Definition of Terms 15.7 Body 1.1 World Racing Group Rules 15.8 Suspension 2.0 Membership -
Supercharger
Supercharger 1 4/13/2019 Supercharger Air Flow Requirements • Naturally aspirated engines with throttle bodies rely on atmospheric pressure to push an air–fuel mixture into the combustion chamber vacuum created by the down stroke of a piston. • The mixture is then compressed before ignition to increase the force of the burning, expanding gases. • The greater the mixture compression, the greater the power resulting from combustion. Engineers calculate engine airflow requirements using these three factors: – Engine displacement – Engine revolutions per minute (RPM) – Volumetric efficiency Volumetric efficiency – is a comparison of the actual volume of air–fuel mixture drawn into an engine to the theoretical maximum volume that could be drawn in. – Volumetric efficiency decreases as engine speed increases. 2 4/13/2019 Supercharger Principles of Power Increase: The power output of the engine depend up on the amount of air induced per unit time and thermal efficiency. The amount of air induced per unit time can be increased by: Increasing the engine speed. the increase in engine speed calls for rigid and robust engine as the inertia load increase also the engine fraction and bearing load increase and also the volumetric efficiency decrease. Increasing the density of air at inlet. The increase of inlet air density calls supercharging which usually used to increase the power output from engine due to increase the air pressure at the inlet of engine. 3 4/13/2019 Supercharger The Objects of Supercharging: To increase the power output for a given weight and bulk of the engine. This is important for aircraft, marine and automotive engines where weight and space are important. -
Air Filter Sizing
SSeeccoonndd SSttrriikkee The Newsletter for the Superformance Owners Group January 17, 2008 / September 5, 2011 Volume 8, Number 1 SECOND STRIKE CARBURETOR CALCULATOR The Carburetor Controlling the airflow introduces the throttle plate assembly. Metering the fuel requires measuring the airflow and measuring the airflow introduces the venturi. Metering the fuel flow introduces boosters. The high flow velocity requirement constrains the size of the air passages. These obstructions cause a pressure drop, a necessary consequence of proper carburetor function. Carburetors are sized by airflow, airflow at 5% pressure drop for four-barrels, 10% for two-barrels. This means that the price for a properly sized four-barrel is a 5% pressure loss and a corresponding 5% horsepower loss. The important thing to remember is that carburetors are sized to provide balanced performance across the entire driving range, not just peak horsepower. When designing low and mid range metering, the carburetor engineers assume airflow conditions for a properly As with everything in the engine, airflow is power. sized carburetor - one sized for 5% loss at the power peak. Carburetors are a key to airflow. As with any component, the key to best all around performance is to pick parts that match Selecting a larger carburetor than recommended will reduce your performance goal and each other – carburetor, intake, pressure losses at high rpm and may help top end horsepower, heads, exhaust, cam, displacement, rpm range, and bottom but will have lower flow velocity at low rpm and poor end. metering and mixing with a loss in low and mid range power and drivability. -
Super Dirtcar Series / Dirtcar Big Block Modified
17.0 – Super DIRTcar Series / DIRTcar Big Block Modified v Under the guideline of the 2020 DIRTcar rules any and/or rules and as stated in the 2020 DIRTcar Rule Book, all DIRTcar rules apply to all divisions. Local track rules pertaining to the racing procedures and/or overall rules that are administered By the local track officials and management may apply at local tracks in DIRTcar sanctioned events. Instances, where applicaBle, local track may Be applied. v All amendments supersede any previous rules regarding any technical article and/or aspect. v Under the guideline of the 2020 rules any and/or rules and as stated in the 2020 DIRTcar Rule Book, all DIRTcar rules apply to all sanctioned divisions. v The specifications puBlished shall Be considered a section of the “Official Rules and Specifications” for all events, series and sanctions By World Racing Group. All sections should Be considered when determining specifications and governance. v ANY CAR, TEAM AND/OR DRIVER THAT DOES NOT MEET THESE SPECIFICATIONS AND/OR EQUIPMENT REQUIREMENTS WILL BE SUBJECT TO PENALTIES AS DETERMINED BY THE Super DIRTcar and/or DIRTcar and/or World Racing Group OFFICIALS. v Any new components, including engine components, Body designs, frame designs and/or components of any type utilized in competition must Be approved By World Racing Group, Super DIRTcar and DIRTcar Officials prior to Being introduced into competition. 17.1 – Engines General and Location A. Conventional stock type V-8 engines (OEM American long Block – GM, Ford and Chrysler) with the cam in the Block will Be permitted. -
RECIPROCATING COMPRESSOR PERFORMANCE IMPROVEMENT with RADIAL POPPET VALVES 2009 GMRC Gas Machinery Conference – Atlanta, GA – October 5‐7, 2009
RECIPROCATING COMPRESSOR PERFORMANCE IMPROVEMENT WITH RADIAL POPPET VALVES 2009 GMRC Gas Machinery Conference – Atlanta, GA – October 5‐7, 2009 Lauren D. Sperry, PE & W. Norman Shade, PE ACI Services Inc. ABSTRACT Over the past decade, radial compressor valves and unloaders have been successfully introduced into reciprocating compressors for the gas transmission industry. The unique radial valve system seats multiple rows of poppets over ports in a cylindrical sleeve that replaces the traditional cage and single‐deck valve used in a reciprocating compressor. The radial valve concept has been applied for both suction and discharge valves in a broad range of compressor models and pipeline cylinder classes. Use of these valves has resulted in significant increases in efficiency and reductions in HP/MMSCFD. For cylinder end deactivation, the cylindrical valve guard is moved to slide the poppets off their seats and away from the ports, providing a relatively unobstructed flow path for the gas. The resulting parasitic losses of the deactivated cylinder end approach the losses achieved by complete removal of a traditional valve. Use of radial valves has also been found to significantly increase unit capacity. Some of this increase stems from being able to operate the more efficient radial valved compressor with less unloading, so that there is more effective displacement utilized for the same power input. Moreover, in practice the significant added fixed volumetric clearance inherent in the radial poppet valves has not reduced the measured volumetric efficiency or the capacity as much as traditional theory would predict. This paper will present four case studies that show the actual field operating performance improvements obtained with radial poppet valves on both low speed and high speed compressors, along with laboratory test comparisons, and an explanation of why the capacity can increase even though the fixed clearance increases. -
THERMAL EFFICIENCY", of the Engine
PowerPower FlowFlow andand EfficiencyEfficiency Engine Testing and Instrumentation 1 Efficiencies When the engine converts fuel into power, the process is rather inefficient and only about a quarter of the potential energy in the fuel is released as power at the flywheel. The rest is wasted as heat going down the exhaust and into the air or water. This ratio of actual to potential power is called the "THERMAL EFFICIENCY", of the engine. How much energy reaches the flywheel ( or dynamometer) compared to how much could theoretically be released is a function of three efficiencies, namely: 1. Thermal 2 Mechanical 3. Volumetric Engine Testing and Instrumentation 2 Thermal Efficiency Thermal efficiency can be quoted as either brake or indicated. Indicated efficiency is derived from measurements taken at the flywheel. The thermal efficiency is sometimes called the fuel conversion efficiency, defined as the ratio of the work produced per cycle to the amount of fuel energy supplied per cycle that can be released in the combustion process. Engine Testing and Instrumentation 3 B.S. = Brake Specific Brake Specific Fuel Consumption = mass flow rate of fuel ÷ power output bsHC = Brake Specific Hydrocarbons = mass of hydrocarbons/power output. e.g. 0.21 kg /kW hour Engine Testing and Instrumentation 4 Thermal Efficiency Wc Ps ηt = = m f QHV µ f QHV Wc − work _ per _ cycle Ps − power _ output m f − mass _ of _ fuel _ per _ cycle QHV − heating _ value _ of _ fuel µ f − fuel _ mass _ flow _ rate Specific fuel consumption µ Sfc = f Ps Therefore 1 3600 82.76 ηt = = = Sfc ⋅QHV Sfc(g / kW ⋅hr)QHV (MJ / kg) Sfc Since, QHV for petrol = 43.5 MJ/kg Therefore, the brake thermal efficiency = 82.76/ sfc The indicated thermal efficiency = 82.76 / isfc Engine Testing and Instrumentation 5 Mechanical Efficiency The mechanical efficiency compares the amount of energy imparted to the pistons as mechanical work in the expansion stroke to that which actually reaches the flywheel or dynamometer. -
ORANGE COUNTY FAIR SPEEDWAY Big Block Modified 2015 RULES
ANY CAR, TEAM AND/OR DRIVER THAT DOES NOT MEET THESE SPECIFICATIONS AND/OR EQUIPMENT REQUIREMENTS WILL BE SUBJECT TO PENALTIES AS DETERMINED BY THE OFFICIALS. Any new components, including engine components, body designs, frame designs and/or components of any type utilized in competition must be approved by OCFS prior to being introduced into competition. General Safety: A: 2010 Snell helmet or newer mandatory. B: Seatbelts no older than 36 months. 1. Engines General and Location A.) Conventional stock type V-8 engines (OEM American long block – GM, Ford and Chrysler) with the cam in the block will be permitted. Aftermarket DART and Merlin cast iron engine blocks will be permitted. B.) A maximum displacement of 467 cubic inches will be permitted with a minimum displacement of 396 cubic inches. An overall maximum tolerance of 10 cubic inches for wear will be permitted = 477 cubic inch maximum. C.) Aluminum engine blocks will not be permitted. D.) Reverse rotation engines will not be permitted. E.) The engine must be centered in the front of the chassis and placed in an upright position. F.) Engine set back will be as follows; Minimum is 56”-inches and a Maximum of 66”-inches with a tolerance of ½”- inch (+/-). The setback will be measured from the centerline of the front axle to the rear machined surface of the engine mounting plate. G.) In the event that there are new engine components and/or a new engine configuration, they must be submitted to OCFS Officials and approved prior to being introduced into competition. Only OCFS Officials will be able to approve new engine and previously unapproved engine components. -
Aircraft Piston Engine Operation Principles and Theory
Lect-25 Aircraft Piston Engine Operation Principles and Theory 1 Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect-25 How an IC engine operates-1 • Each piston is inside a cylinder, into which a gas is created -- heated inside the cylinder by ignition of a fuel air mixture at high pressure (internal combustion engine). • The hot, high pressure gases expand, pushing the piston to the bottom of the cylinder (BDC) creating Power stroke. 2 Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect-25 How an IC engine operates-2 •The piston is returned to the cylinder top (Top Dead Centre) either by a flywheel or the power from other pistons connected to the same shaft. • In most types the "exhausted" gases are removed from the cylinder by this stroke. • This completes the four strokes of a 4-stroke engine also representing 4 legs of a cycle 3 Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect-25 How an IC engine operates-3 • The linear motion of the piston is converted to a rotational motion via a connecting rod and a crankshaft. • A flywheel is used to ensure continued smooth rotation (i.e. when there is no power stroke). Multiple cylinder power strokes act as a flywheel. 4 Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect-25 How an IC engine operates-4 •The more cylinders a reciprocating engine has, generally, the more vibration-free (smoothly) it can operate. •The aggregate power of a reciprocating engine is proportional to the volume of the combined pistons' displacement. -
Singer Vehicle Design Brings a Special Porsche to Idaho for a Top Speed Run at Hemingway’S Final Resting Place
SINGER VEHICLE DESIGN BRINGS A SPECIAL PORSCHE TO IDAHO FOR A TOP SPEED RUN AT HEMINGWAY’S FINAL RESTING PLACE. STORY AND PHOTOS BY RANDY WELLS 58 PANORAMA FEBRUARY 2017 FEBRUARY 2017 PANORAMA 59 During the Sun Valley Road Rally, a 3.2-mile section of zine in 2015. They quoted a top-speed estimate of 176 With its alpine meadows and spruce forests nestled under State Highway 75 is temporarily closed off by the local mph. That turned out to be on the money: Florida’s own- sheriff, making it the longest no-speed-limit public road er achieved a maximum speed of 176.2 mph in sixth gear 9,000-foot peaks and perpetually azure skies, Sun Valley, Idaho in North America with spectator viewing. At the start line, while on the rev limiter at the finish line in Idaho. there’s a subtle, uphill left-hand curve. Then it’s straight The day before the rally, the Sun Valley Auto Club and holds an irresistible allure for those of adventurous spirit. Ernest on and slightly downhill to the fastest speed achievable the town of Ketchum hosted a free-to-the-public Cruise & past the grandstands, one car at a time. Car Show. More than 200 vehicles, including exotics, hot Hemingway first came here in 1939. He instantly fell in love with One of the cars participating in 2016 was a highly rods, muscle cars, and vintage classics, came from miles modified 1990 air-cooled Porsche 911 “reimagined” by around. Also on hand for its debut was another of Singer’s the area and returned to make it his home 20 years later. -
A Design Strategy for Volumetric Efficiency Improvement in a Multi-Cylinder Stationary Diesel Engine and Its Validity Under Transient Engine Operation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals SCI-PUBLICATIONS American Journal of Applied Sciences 5 (3): 189-196, 2008 ISSN 1546-9239 © 2008 Science Publications A Design Strategy for Volumetric Efficiency Improvement in a Multi-cylinder Stationary Diesel Engine and its Validity under Transient Engine Operation 1P. Seenikannan, 2V.M.Periasamy and 3P.Nagaraj 1 Author Manuscrip Deptartment of Mech., Sethu Institute of Tech., Kariapatti, T.N, India, 626106 2 Crescent Engineering College, Chennai, T.N, India 3Deptartmentof Mech, Mepco Schlenk Engg College, T.N., India Abstract: This paper proposes an approach to improve engine performance of volumetric efficiency of a multi cylinder diesel engine. A computer simulation model is used to compare volumetric efficiency with instantaneous values. A baseline engine model is first correlated with measured volumetric efficiency data to establish confidence in the engine model’s predictions. A derivative of the baseline model with exhaust manifold, is then subjected to a transient expedition simulating typical, in-service, t maximum rates of engine speed change. Instantaneous volumetric efficiency, calculated over discrete engine cycles forming the sequence, is then compared with its steady speed equivalent at the corresponding speed. It is shown that the engine volumetric efficiency responds almost quasi-steadily under transient operation thus justifying the assumption of correlation between steady speed and transient data. The computer model is used to demonstrate the basic gas dynamic phenomena graphically. The paper provides a good example of the application of computer simulation techniques in providing answers to real engineering questions. -
Signature Redacted
FLOW TEST OF A BRISTOL SLEEVE-VALVE ENGINE CYLINDER 0% Mark Riley Thomson Submitted in Partial Fulfillment of the Requirements for the Bachelor of Science Degree in Mechanical Engineering from the Massachusetts Institute of Technology 1951 Signature redacted . Mi ov Instructor in Charge of Thesis olgnature redacted May 18, 1951 Professor Joseph 8, Newell Secretary of the Faculty Massachusetts Institute of Technology Dear Professor Newell: In partial fulfillment of the requirements for the degree of Bachelor of Science from the Massachusetts Institute of Technology, I herewith submit a thesis entitled "Flow Test of a Bristol Sleeve-Valve Engine Cylinder, Sincerely yours, Signature redacted Mark R., Thomson TABLE OF CONTENTS: Letter of Transmittal Table of Contents Acknowledgements Abstract Introduction Description of Test 10 Diagram of Apparatus 12 Description of Apparatus 13 Photograph of Cylinder Parts, aL Valve Port Profiles ib Curve "C Ay" vs. C.A!, "Hercules" 16 Curve "CyAy" vs. C.A.", "Cyclone" 17 Summary of Results 18 Engine Specifications 19 Conclusions 20 Curve "e, vs. @" 21 Application of # 22 Calculations 23 Curve "Cy vs. L/D", "Cyclone" 27 Curve "L vs. C.A.", "Cyclone" cd Curve ih + vs, A", "Hercules" «J Errors J Suggestions for Further Study LY: Bibliography Data: Sleeve Position vs, C.A. Data: Flow Test Data: Calculated Air Flow The author wishes to express his appreclation for the assistance and supervision given to him by Professor C, Fayette Taylor Professor P, M, Ku Professor William A, Leary Mr, James C, Livengood and