As a Registered E-Materials Service User of the EBMT Annual Meeting in Marseille March 26-29Th 2017, You Have Been Granted Permi

Total Page:16

File Type:pdf, Size:1020Kb

As a Registered E-Materials Service User of the EBMT Annual Meeting in Marseille March 26-29Th 2017, You Have Been Granted Permi Copyright Statement As a registered E-materials Service user of the EBMT Annual Meeting in Marseille March 26-29th 2017, you have been granted permission to access a copy of the presentation in the following pages for the purpose of scientific education. This presentation is copyrighted material and must not be copied, reproduced, transferred, distributed, leased, licensed, placed in a storage retrieval system, publicly performed or used in any way, except as specifically permitted in writing by the presenter or, as allowed under the terms and conditions under which it was received or as permitted by applicable copyright law or rules of proper citation. Any unauthorised distribution or use of this presentation, a subset of it or graphics taken from the presentation may be a direct infringement of the presenter’s rights. RACE DM training session: Immunusuppressive treatment for aplastic anemia Antonio M. Risitano, M.D., Ph.D. Head of Bone Marrow Transplantation Unit Federico II University of Naples Aplastic anemia Neutrophils for Incidence, age for SCT . Opha disease. Iidee ates peset geogaphi aiatios. to ‐fold highe ates i Asia tha Euope ad the Uited States . Gloal iidee ates age .‐. ases pe illio ihaitats. Aplasti aeia: AA • AA: hat does it ea? • Ho e do the diagosis? • Whe should e teat? • Ho e teat? Aplasti aeia: AA • AA: hat does it ea? • Ho e do the diagosis? • Whe should e teat? • Ho e teat? Aplastic anemia Normal Aplastic anemia CML AA Normal Marrow aplasia Takaku et al, Blood 2010 Takaku et al, Blood 2010 Contraction of stem cell pool Cytopenia AA: hat does it ea? (Oligo) clonal CD8+ T cells Auto-immunity = immune disorder = idiopathic AA AA: hat does it ea? Constitutionnal = inherited disorder (FA, dyskeratosis congenita) Hematopoietic stem cells in AA Hematopoietic progenitor cultures T-cell clonality in aplastic anemia A surrogate marker for Ag-driven immune response Experimental Hematology 23 (1995): 433 Establishment of a CD4+ T cell clone recognizing autologous hematopoietic progenitor cells from a patient with immune-mediated aplastic anemia. Nakao S, Takamatsu H, Yachie A, Itoh T, Yamaguchi M, Ueda M, Shiobara S, Matsuda T. Pathophysiology of aplastic anemia The immune system Hematopoietic stem cell Aplasti aeia: AA • AA: hat does it ea? • Ho e do the diagosis? • Whe should e teat? • Ho e teat? Ho e do the diagosis To eliminate something else (leukemia, lymphoma etc) Aplastic anemia Diagnosis Full lood outs: ‐ Patopeia ‐ At least ellula lies ae deeased Ho e do the diagosis: peipheal lood Ho e do the diagosis: ao saplig Ho e do the diagosis: ao iops Aplastic anemia Summary Patopeia Pesistet, ueplaied ao aplasia ‐ Heatopoiesis eplaed fat ells No speifi ake ‐ Diagosis elusio Seeit eed to e defied Aplastic anemia Cytogenetics and flow cytometry Due to hpoellula oe ao feuetl isuffiiet etaphases FISH fo hoosoes ad should e osideed isolated del faoale log‐te outoe A aoal togeeti loe does ot ipl the diagosis of MDS o AML Ctogeeti aoalities a e peset i up to % of tpial AA patiets Detetio of sall PNH loes has ipliatios fo defiig the disease. ‐ Aout % ae aplasti ith sall loes ad o heolsis. PNH loe size easueets: at pesetatio seial oitoig should e pefoed at least eal Aplastic anemia Differential diagnosis Chaateistis AA hpoplasti MDS dsethopoiesis soeties es aoal eutophil o es dsplasti egakaotes o es fiosis o oasioal ieased lasts o Soeties ALIPS CD+ ells i BM < .% soeties ieased loalit possile soeties spleoegal aset oasioal Beett et al. Se Heato ;:‐ Beett & Orazi. Haeatologia Fe; :‐‐ Haa A et al. Risho Ketsueki Aug ; :‐ Aplastic anemia Differential diagnosis Faoi aeia: ‐ Positie hoosoal eakage test MMC o DEB that still epesets the diagosti gold stadad. Seeig: teloee legth Dyskeatosis ogeita ‐ Asptoati: ‐ Feuet assoiatio ith TE‘C, TE‘T utatio ‐ % all idiopathi fos ‐ ‘ael, ith TINF gee utatio ‐ ‘eogizale pheotpe of DC: ‐ TINF, NHP, NOP, DKC utatio Aplastic anemia Severity Based o peipheal alues ad oe ao fidigs Seee AA SAA At least to of the folloig thee iteia hae to e fulfilled: ‐ ‘etiulotes </L usig a autoated aalze o < /l aual out* ‐ Platelets < /L ‐ Neutophil out <. /L Vey seee AA SAA Sae iteia of SAA hae to e fulfilled; ut the eutophil out has to e < . /l No‐ seee AA Patiets ot fulfillig the iteia fo SAA ad SAA. * The diffeet alues ae eause autoated out a oe‐estiate the outig at lo leel of etiulote outs, i.e. it eads /L ut i ealit the ae less Aplasti aeia: AA • AA: hat does it ea? • Ho e do the diagosis? • Whe should e teat? • Ho e teat? Whe should e teat? SAA Moderate Hypocellularity (<30%) and at Not all criteria for SAA 9 least 2/3 criteria: PNN >0.5x10 /L PNN <0.5x109/L Platelets <20x109/L Reticulocytes <20x109/L Transfusions? VSAA 9 PNN <0.2x10 /L Yes No Treatment Follow-up Camitta BM et al. Blood 1976;48:63–70 SAA, severe AA; VSAA, very severe AA Aplasti aeia: AA • AA: hat does it ea? • Ho e do the diagosis? • Whe should e teat? • Ho e teat? Treatment options for aplastic anemia Locasciulli et al, Haematologica 2007 Idiopathi AA: ho e teat? 1. Immunosuppressive treatment (Oligo) clonal CD8+ T cells Auto-immunity = immune disorder = idiopathic AA Idiopathi AA: ho e teat? Idiopathi AA: ho e teat? 2. Bone marrow transplantation (Oligo) clonal CD8+ T cells Auto-immunity = immune disorder = idiopathic AA Idiopathi AA: ho e teat? 2. Bone marrow as Greffon source of stem cells -8 -7 -6 -5-4 -3 -2 -1 0 +14 +40 +100 +180 3. No need for GvHD Conditionnement infections 1. Reduced intensity 4. conditioning regimen Idiopathi AA: ho e teat? Age < yeas > yeas HLA‐idetial No siligs siligs Iuosuppessie teatet BMT Iheited AA: ho e teat? Bone marrow transplantation Constitutionnal = inherited disorder (FA, dyskeratosis congenita) Colusio: AA • AA: ao epty, othig else • Diagosis is ey ipotat • Teatet if SAA o tasfusios • Iuosuppessie theapy auied o BMT auied ad iheited AA and… … supportive care Supportive care The improvement in anti-infectious management CID 2011 n=420 (174 non-responders) Group 1: 12/1989-10/1986 Infection-related mortality from 37% to 11% Group 2: 11/1986-10/2002 Incidence of IFIs from 49% to 8% Group 3: 11/2002-04/2008 The most relevant breakthrough in AA treatment was the anti-infectious supportive care: keeping AA patients alive until they recover (IST or SCT) Supportive care The role of steroids Steroids are broadly used as ancillary therapy of SAA Based on old data on potential therapeutic efficacy (Bacigalupo et al NEJM 1982) Drawn from empirical use (and possible efficacy) of steroids in other immune- mediated cytopenias (Ab-mediated) BUT No clinical evidence of efficacy Increased risk of severe infectious complications (mostly IFI) May mask ongoing/overt infections (including sepsis) Short-term toxicity (cumulative with CsA): hypertension, diabetes, fluid retention Long-term toxicity: avascular necrosis, cataracts, etc In the context of SAA, steroids should be used only as prophylaxis of serum sickness during ATG treatment, using the lowest effective dose and the faster tapering Start with 1 mg/kg/day, eventually doubled in case of serum sickness or other allergic manifestations*; then taper by 25% every 2-4 days *ATG-related allergic infusion reactions should rather considered manifestations of Complement Activation Related Pseudo-Allergy (CARPA), which eventually derive from massive activation of the classical pathway due to the exogenous antibodies and their immune-complexes AA and… … immunosuppressive treatment OUTCOME OF IMMUNOSUPPRESSION FOR SAA Improvement over the years EBMT Database N=3202 ‐ ‐ ‐ ‐ Survival improved with years, mostly due to: Better supportive therapy Better salvage treatment (SCT) Courtesy of Jakob Passweg 2003 n=112 hATG x 4 (40mg/kg) + CsA x 6 m OS 55% @7y; OR 60% @ 3m, 61% @ 6m, 58% @ 1y 3m survivors 3m survivors Hematological response is the main predictor for outcome IMPROVING ATG-BASED IMMUNOSUPPRESSION The benefit of combining ATG and cyclosporine A Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German Aplastic Anemia Study Group NEJM 1991 Blood 2003 N Frickhofen, JP Kaltwasser, H Schrezenmeier, A Raghavachar, HG Vogt, F Herrmann, M Freund, P Meusers, A Salama, and H Heimpel CyA speed hematological response CyA reduces early treatment failure but without affecting survival not long-term relapse rate RELAPSES AFTER IST The role of maintenance CyA therapy Maintenance CyA is required to sustain blood counts after initial response to IST Frickhofen N. Blood. 2003 (101). 1236-1242 REASONS FOR TREATMENT FAILURE •Pathophysiology other than immune-mediated •Irreversible stem cell deficit •Insufficient immunosuppression Improve front line immunosuppressive therapies Improving IST for AA: chronicle of a failure STRATEGIES OF IMMUNOSUPPRESSION (Risitano, BJH 2010) Autoantigen IL-2 HLA TCR release IL-2 signaling APC Naive T-cell Cell-cell contact Cytokine release (IL-1, IL-6) Activated APC (HLA+Ag) triggering T-cell activation T-cell Second signals Anergy CNIs IL-2 R blockers MToR inhibitors (IL-2, IL-12, IL-23, inductors •CyA •Daclizumab •Sirolimus IL-4, IL-6, IL-17) •CTLA4-Ig •FK506 •Basiliximab •Everolimus T-cell •Anti-CD154 differentiation Anti-cytokines Anti-lymphocyte agents Effector Biologicals Cytostatics T-cell TNF-α •Etanercept Selective Broad •CTX •Infliximab •Rituximab •ATGs •MMF •Adalimumab •Visilizumab •Alemtuzumab •MTX •Zanolimumab •AZA IFN-γ Proliferation •Fontolizumab •Apolizumab Steroids •Alefacept T-cell •Efalizumab expansion Haematopoietic niche ? Haematopoietic stem cells TNF-α IFN-γ Inflammation Perforine/ Fas-L granzyme Expanded effector T-cell Inhibitory cytokines Cell-cell contact pool Marrow damage Effector mechanisms IMPROVING IMMUNOSUPPRSSIVE TREATMENT FOR AA The history of a failure 1. No benefit from the addition of a third drug over the hATG-CsA platform Mycophenolate mofetil (randomized NIH trial) Rapamicine (open-label NIH trial) 2.
Recommended publications
  • Malignant B Lymphocyte Survival in Vivo CD22 Ligand Binding Regulates Normal
    The Journal of Immunology CD22 Ligand Binding Regulates Normal and Malignant B Lymphocyte Survival In Vivo1 Karen M. Haas, Suman Sen, Isaac G. Sanford, Ann S. Miller, Jonathan C. Poe, and Thomas F. Tedder2 The CD22 extracellular domain regulates B lymphocyte function by interacting with ␣2,6-linked sialic acid-bearing ligands. To understand how CD22 ligand interactions affect B cell function in vivo, mouse anti-mouse CD22 mAbs were generated that inhibit CD22 ligand binding to varying degrees. Remarkably, mAbs which blocked CD22 ligand binding accelerated mature B cell turnover by 2- to 4-fold in blood, spleen, and lymph nodes. CD22 ligand-blocking mAbs also inhibited the survival of adoptively transferred normal (73–88%) and malignant (90%) B cells in vivo. Moreover, mAbs that bound CD22 ligand binding domains induced significant CD22 internalization, depleted marginal zone B cells (82–99%), and reduced mature recirculating B cell numbers by 75–85%. The CD22 mAb effects were independent of complement and FcRs, and the CD22 mAbs had minimal effects in CD22AA mice that express mutated CD22 that is not capable of ligand binding. These data demonstrate that inhibition of CD22 ligand binding can disrupt normal and malignant B cell survival in vivo and suggest a novel mechanism of action for therapeutics targeting CD22 ligand binding domains. The Journal of Immunology, 2006, 177: 3063–3073. D22 is a B cell-specific glycoprotein of the Ig superfam- cell surface CD22, IgM, and MHC class II expression on mature B ily expressed on the surface of maturing B cells coinci- cells, whereas normal BCR signaling and Ca2ϩ mobilization are dent with IgD expression (1, 2).
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Immunfarmakológia Immunfarmakológia
    Gergely: Immunfarmakológia Immunfarmakológia Prof Gergely Péter Az immunpatológiai betegségek döntő többsége gyulladásos, és ennek következtében általában szövetpusztulással járó betegség, melyben – jelenleg – a terápia alapvetően a gyulladás csökkentésére és/vagy megszűntetésére irányul. Vannak kizárólag gyulladásgátló gyógyszereink és vannak olyanok, amelyek az immunreakció(k) bénításával (=immunszuppresszió révén) vagy emellett vezetnek a gyulladás mérsékléséhez. Mind szerkezetileg, mind hatástanilag igen sokféle csoportba oszthatók, az alábbi felosztás elsősorban didaktikus célokat szolgál. 1. Nem-szteroid gyulladásgátlók (‘nonsteroidal antiinflammatory drugs’ NSAID) 2. Kortikoszteroidok 3. Allergia-elleni szerek (antiallergikumok) 4. Sejtoszlás-gátlók (citosztatikumok) 5. Nem citosztatikus hatású immunszuppresszív szerek 6. Egyéb gyulladásgátlók és immunmoduláns szerek 7. Biológiai terápia 1. Nem-szteroid gyulladásgátlók (NSAID) Ezeket a vegyületeket, melyek őse a szalicilsav (jelenleg, mint acetilszalicilsav ‘aszpirin’ használatos), igen kiterjedten alkalmazzák a reumatológiában, az onkológiában és az orvostudomány szinte minden ágában, ahol fájdalom- és lázcsillapításra van szükség. Egyes felmérések szerint a betegek egy ötöde szed valamilyen NSAID készítményt. Szerkezetük alapján a készítményeket több csoportba sorolhatjuk: szalicilátok (pl. acetilszalicilsav) pyrazolidinek (pl. fenilbutazon) ecetsav származékok (pl. indometacin) fenoxiecetsav származékok (pl. diclofenac, aceclofenac)) oxicamok (pl. piroxicam, meloxicam) propionsav
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0250896 A1 Zhao (43) Pub
    US 20150250896A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0250896 A1 Zhao (43) Pub. Date: Sep. 10, 2015 (54) HYDROPHILIC LINKERS AND THEIR USES Publication Classification FOR CONUGATION OF DRUGS TO A CELL (51) Int. Cl BNDING MOLECULES A647/48 (2006.01) (71) Applicant: Yongxin R. ZHAO, Henan (CN) Ek E. 30.8 C07D 207/216 (2006.01) (72) Inventor: R. Yongxin Zhao, Lexington, MA (US) C07D 40/12 (2006.01) C07F 9/30 (2006.01) C07F 9/572 (2006.01) (73) Assignee: Hangzhou DAC Biotech Co., Ltd., (52) U.S. Cl. Hangzhou City, ZJ (CN) CPC ........... A61K47/48715 (2013.01); C07F 9/301 (2013.01); C07F 9/65583 (2013.01); C07F (21) Appl. No.: 14/432,073 9/5721 (2013.01); C07D 207/46 (2013.01); C07D 401/12 (2013.01); A61 K3I/454 (22) PCT Filed: Nov. 24, 2012 (2013.01) (86). PCT No.: PCT/B2O12/0567OO Cell(57) binding- agent-drugABSTRACT conjugates comprising hydrophilic- S371 (c)(1), linkers, and methods of using Such linkers and conjugates are (2) Date: Mar. 27, 2015 provided. Patent Application Publication Sep. 10, 2015 Sheet 1 of 23 US 2015/0250896 A1 O HMDS OSiMe 2n O Br H-B-H HPC 3 2 COOEt essiop-\5. E B to NH 120 °C, 2h OsiMe3 J 50 °C, 2h eSiO OEt 120 oC, sh 1 2 3. 42% from 1 Bra-11a1'oet - Brn 11-1 or a 1-1 or ÓH 140 °C ÓEt ÓEt 4 5 6 - --Messio. 8 B1a-Br aus 20 cc, hP-1}^-'ot Br1-Y.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]
  • 2012 Harmonized Tariff Schedule Pharmaceuticals Appendix
    Harmonized Tariff Schedule of the United States (2014) (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2014) (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACEVALTRATE 25161-41-5 ABAFUNGIN 129639-79-8 ACEXAMIC ACID 57-08-9 ABAGOVOMAB 792921-10-9 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABAPERIDONE 183849-43-6 ACITAZANOLAST 114607-46-4 ABARELIX 183552-38-7 ACITEMATE 101197-99-3 ABATACEPT 332348-12-6 ACITRETIN 55079-83-9 ABCIXIMAB 143653-53-6 ACIVICIN 42228-92-2 ABECARNIL 111841-85-1 ACLANTATE 39633-62-0 ABETIMUS 167362-48-3 ACLARUBICIN 57576-44-0 ABIRATERONE 154229-19-3 ACLATONIUM NAPADISILATE 55077-30-0 ABITESARTAN 137882-98-5 ACLIDINIUM BROMIDE 320345-99-1 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURIN 178535-93-8 ACOLBIFENE 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDE 185106-16-5
    [Show full text]
  • Newer Monoclonal Antibodies for Hematological Malignancies
    Experimental Hematology 2008;36:755–768 Newer monoclonal antibodies for hematological malignancies Jorge Castillo, Eric Winer, and Peter Quesenberry Division of Hematology and Oncology, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA (Received 28 March 2008; revised 28 April 2008; accepted 28 April 2008) Since the approval of rituximab in 1997, monoclonal antibodies have come to play an impor- tant role in the therapy of hematological malignancies. Rituximab, gemtuzumab ozogamicin, and alemtuzumab are US Food and Drug Administration–approved for treatment of B-cell lymphomas, acute myeloid leukemia, and chronic lymphocytic leukemia, respectively. Multi- ple monoclonal antibodies directed against new and not-so-new cellular antigens are undergo- ing development and investigation all over the world. Most of these new compounds have undergone primatization or humanization, improving their specificity and decreasing their antigenicity when compared to earlier murine or chimeric products. This review will focus on three major aspects of monoclonal antibody therapy: 1) new therapeutic approaches with currently approved agents; 2) preclinical and clinical experience accumulated on new agents in the last few years; discussion will include available phase I, II, and III data on ofa- tumumab, epratuzumab, CMC-544, HeFi-1, SGN-30, MDX-060, HuM195 (lintuzumab), galix- imab, lumiliximab, zanolimumab, and apolizumab; and 3) the role of naked and radiolabeled monoclonal antibodies in the hematopoietic stem cell transplantation setting. Ó 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. Since the discovery of hybridoma technology in 1975 [1], or chemotherapy (Table 2). Different strategies of action the production and variety of monoclonal antibodies have have been developed using monoclonal antibodies; these been exponentially increasing.
    [Show full text]
  • I Regulations
    23.2.2007 EN Official Journal of the European Union L 56/1 I (Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory) REGULATIONS COUNCIL REGULATION (EC) No 129/2007 of 12 February 2007 providing for duty-free treatment for specified pharmaceutical active ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceuticals and amending Annex I to Regulation (EEC) No 2658/87 THE COUNCIL OF THE EUROPEAN UNION, (4) In the course of three such reviews it was concluded that a certain number of additional INNs and intermediates used for production and manufacture of finished pharmaceu- ticals should be granted duty-free treatment, that certain of Having regard to the Treaty establishing the European Commu- these intermediates should be transferred to the list of INNs, nity, and in particular Article 133 thereof, and that the list of specified prefixes and suffixes for salts, esters or hydrates of INNs should be expanded. Having regard to the proposal from the Commission, (5) Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (1) established the Combined Nomenclature Whereas: (CN) and set out the conventional duty rates of the Common Customs Tariff. (1) In the course of the Uruguay Round negotiations, the Community and a number of countries agreed that duty- (6) Regulation (EEC) No 2658/87 should therefore be amended free treatment should be granted to pharmaceutical accordingly, products falling within the Harmonised System (HS) Chapter 30 and HS headings 2936, 2937, 2939 and 2941 as well as to designated pharmaceutical active HAS ADOPTED THIS REGULATION: ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation, specified salts, esters or hydrates of such INNs, and designated inter- Article 1 mediates used for the production and manufacture of finished products.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    INN Working Document 05.179 Update 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2013 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int ) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected] ). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html ). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • INN Working Document 05.179 Update 2011
    INN Working Document 05.179 Update 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Essential Medicines and Pharmaceutical Policies (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Therapeutic Antibody
    www.creativebiolabs.net THERAPEUTIC ANTIBODY Tel: 1-631-871-5806 Fax: 1-631-207-8356 45-1 Ramsey Road, Shirley, NY 11967, USA DBA Italia s.r.l. Via Umbria, 10, 20090 Segrate (Milan) Tel: +39 02 26922300 Fax:+39 02 26923535 DBA Italia s.r.l. email: [email protected] Via Umbria, 10, 20090 Segrate (Milan) Tel: +39 02 26922300 Fax:+39 02 26923535 email: [email protected] Products List Creative Biolabs is a pioneer and undisputed global leader in the rapidly emerging market for therapeutic antibodies. We offer a full range of therapeutic antibodies currently available for research of a wide variety of diseases. We guarantee generated endotoxin free antibodies are fully functional and ready to use in animal- based assays and clinical trials. I Autoimmune and Inflammatory Diseases Antibody Cat. No Product Name Related Disease Name/Clone Anti-Human ITGA4+ITGB7 TAB-H02 Abrilumab Ulcerative colitis Therapeutic Antibody Anti-Human TNF Therapeutic Adalimumab Juvenile Idiopathic Arthritis TAB-010 Antibody TAB-717 Anti-APP Therapeutic Antibody Aducanumab Alzheimer's disease Anti-Human SOST Therapeutic Postmenopausal women TAB-115 Antibody Blosozumab osteoporosis Anti-Human IL12+IL23 Briakinumab Crohn's disease TAB-103 Therapeutic Antibody Anti-Human IL17RA Therapeutic Brodalumab Psoriatic arthritis TAB-134 Antibody Anti-Human MCP-1 Therapeutic Carlumab Immune disease TAB-117 Antibody Anti-Human CD4 Therapeutic Cedelizumab Allograft rejection TAB-107 Antibody Anti-Human IL6 Therapeutic TAB-094 Clazakizumab Crohn's disease Antibody Anti-Human CD4 Therapeutic TAB-260 Tregalizumab Psoriasis Antibody Anti-Human ITGA4 Therapeutic TAB-022 Natalizumab Multiple sclerosis Antibody Anti-Human CD11a Therapeutic TAB-108 Odulimomab Allograft rejection Antibody TAB-772 Anti-CD20 Therapeutic Antibody Ocrelizumab Multiple sclerosis Anti-Human IGHE Therapeutic TAB-007 Omalizumab Allergic asthma Antibody Anti-Human IL4 Therapeutic TAB-221 Pascolizumab Allergy Antibody www.creativebiolabs.net 4 / 30 Products List II Cancers Antibody Cat.
    [Show full text]