Functional Organisation of Saccades and Antisaccades in the Frontal Lobe in Humans: a Study with Echo Planar Functional Magnetic Resonance Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Functional Organisation of Saccades and Antisaccades in the Frontal Lobe in Humans: a Study with Echo Planar Functional Magnetic Resonance Imaging J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.65.3.374 on 1 September 1998. Downloaded from 374 J Neurol Neurosurg Psychiatry 1998;65:374–377 SHORT REPORT Functional organisation of saccades and antisaccades in the frontal lobe in humans: a study with echo planar functional magnetic resonance imaging R M Müri, O Heid, A C Nirkko, C Ozdoba, J Felblinger, G Schroth, C W Hess Abstract responsible for the correct performance of the The cortical activation pattern of saccades antisaccade task. If correct antisaccade per- and antisaccades (versus rest) in the fron- formance needs a relevant contribution from tal lobe was analysed using an echo planar the dorsolateral prefrontal cortex (for sup- imaging (EPI) technique in 10 healthy pressing the unwanted reflexive saccade to- subjects. Statistical analysis of activity in wards the visual target) we would expect an the dorsolateral prefrontal cortex dis- increased activity in the dorsolateral prefrontal closed a significantly greater activation cortex during the antisaccade versus rest during antisaccades in this region than condition, but not during the saccade (a during saccades. On the other hand, saccade towards the visual target) versus rest activity in the frontal eye fields was not condition. In this case, the activity in the fron- statistically diVerent in both tasks. These tal eye fields is expected to be the same during results confirm the important role of the both conditions. The aim of this study was, dorsolateral prefrontal cortex for the cor- therefore, to evaluate the role of these regions rect performance of antisaccades ob- in the control of the antisaccade task using tained by studies in humans with isolated functional magnetic resonance imaging lesions of the dorsolateral prefrontal cor- (fMRI). Preliminary results were presented in a tex. poster.7 (J Neurol Neurosurg Psychiatry 1998;65:374–377) Keywords: eye movements; frontal eye field; dorsolateral Methods prefrontal cortex; functional magnetic resonance imag- Ten healthy subjects (three women, seven men ing with a mean age of 31 years and a range of 24 Department of to 40 years, all right handed) who gave their http://jnnp.bmj.com/ Neurology R M Müri informed consent were examined. The study A C Nirkko Recent studies concerning the function of the was approved by the local ethics committee. C W Hess prefrontal cortex disclosed its important role Saccades and antisaccades were elicited by for many aspects of human behaviour.12 For projecting the visual targets by a video projec- Department of ocular motor control at least three important tion system on to a screen in the magnet bore. Neuroradiology regions are located in the frontal lobe: the fron- Firstly, a central fixation point was given for a O Heid tal eye fields, the supplementary eye fields, and pseudorandomised duration between 1 to 2 C Ozdoba on October 1, 2021 by guest. Protected copyright. G Schroth the dorsolateral prefrontal cortex. seconds. Then, simultaneously with the extin- Patients with lesions of the prefrontal cortex guishing of the central fixation point a lateral Department of fail to suppress unwanted responses and are visual target with a constant amplitude of 15 MR-Methodology and impaired on cognitive tests such as the degrees but randomised direction was lit for Spectroscopy, Wisconsin card sort test or the Stroop test. 700 ms; finally, the central fixation point was University of Bern, Antisaccades,3 a paradigm in which the subject shown again for the next visual stimulation. Inselspital, CH-3010 Bern, Switzerland has to make a saccade away from the presented Instruction for the saccade task was to look as J Felblinger visual target, reliably test prefrontal function in quickly and precisely as possible at the lateral ocular motor research: the task requires two visual target. For the antisaccade task, the Correspondence to: steps of cortical processing: (1) inhibition of an instruction was to look directly opposite to the Dr René M Müri, Department of Neurology, unwanted reflexive saccade in the direction of appearing visual target, and to avoid looking University of Bern, the visual target, and (2) intentional saccade to first on the visual target. If this was the case it Inselspital, CH-3010 Bern, the opposite side. It is still not clear how the was counted as an error. To reduce head move- Switzerland. Telephone 0041 632 21 11; fax 0041 632 96 frontal eye fields and the dorsolateral prefrontal ment artefacts, head restraints were used, 79; email [email protected] cortex are involved in the control of the which allowed immobilisation of the volun- antisaccade paradigm. Some authors34 argue teer’s head with lateral foam pads and a velcro Received 22 August 1997 that the frontal eye fields mainly control band across the forehead. The task perform- and in revised form 18 56 December 1997 antisaccades, whereas others have arguments ance during fMRI was controlled by an Accepted 5 February 1998 for the dorsolateral prefrontal cortex being adapted electro-oculography (EOG) system.8 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.65.3.374 on 1 September 1998. Downloaded from Functional organisation of saccades and antisaccades 375 Figure 1 Functional activation of frontal eye fields, supplementary eye fields, and dorsolateral prefrontal cortex during saccade versus rest and during antisaccade versus rest task. Three representative original EPI slices with overlaid clustered activated pixels are shown. This system allows on line registration of EOG 2.6×1.9 mm and a slice thickness of 5 mm, field during fMRI without reducing the image qual- of view 210×240 mm, matrix 90×128, TE=62 ity. The number of misdirected saccades or ms, flip angle 90 degrees, one series acquired in antisaccades was counted and calculated as the 3.56 seconds) on a 1.5 Tesla MR system percentage of errors of all performed saccades (Magnetom VISION, Siemens). Images were during the task. acquired during four cycles of alternating rest (eyes closed) or activation periods (saccades or IMAGE ACQUISITION AND ANALYSIS antisaccades), with a duration of 32 seconds Firstly, in each subject T2 weighted spin echo each, resulting in 160 images during each images of the brain were acquired for exact period. During each activation period, a mean individual anatomical localisation of the re- of 25 centrifugal and centripetal eye move- gions of interest (ROIs). Functional MRI was ments (saccades or antisaccades) were per- performed using a single shot 2D multislice formed by the subject. http://jnnp.bmj.com/ gradient echo planar imaging (EPI) technique z Score maps with the activation—rest time (axial slices in AC-PC orientation, 20 slices function shifted by one period (3.56 s) and z covering the whole brain, with a pixel size of score values >4.0—were generated and laid over the anatomical echo planar images. This Antisaccades avoids image mismatch due to diVerent distor- 100 Saccades tion eVects. Head movement artefacts were detected by screening the images in cinema on October 1, 2021 by guest. Protected copyright. 80 p < 0.0071 mode and by analysing the time course signal to detect abrupt changes of activity between 60 two consecutive images. Quantitative group analysis of activity was performed for three 40 ROIs defined in each subject using the T2 Voxels (n) Voxels weighted anatomical images: (1) The ROI of the frontal eye fields, which lies at the posterior 20 end of the middle frontal gyrus and in the pre- central sulcus or in the depth of the caudalmost 0 9 DLPC FEF part of the superior frontal sulcus ; (2) the ROI of the dorsolateral prefrontal cortex, which lies p < 0.03 anteriorly on the middle frontal gyrus10 11 Figure 2 Tukey box graph of activated clustered pixels in including cortical grey matter and fundi of the 10 subjects during saccade versus rest and antisaccade adjacent sulci. The posterior limit of the ROI versus rest task, showing median 10th, 25th, 75th, and 90th percentiles. There is a significant diVerence (1) for saccades excluded the posterior end of the middle fron- between the frontal eye fields (FEF) and the dorsolateral tal gyrus; (3) the ROI of the supplementary eye prefrontal cortex (DLPC) (p<0.03), and (2) between 12 13 antisaccades and saccades for the dorsolateral prefrontal fields (SEF), which lies on the medial side cortex (p<0.0071). of the superior frontal gyrus. J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.65.3.374 on 1 September 1998. Downloaded from 376 Müri, Heid, Nirkko, et al Figure 3 Online EOG during fMRI showing a period of the antisaccade task. Three errors—a saccade towards the visual target, during one block of antisaccades—occurred (marked by arrows). To reduce the influence of isolated, ran- teral prefrontal cortex during the saccade task domly activated pixels, only clusters of more versus the antisaccade task (fig 2) resulted in a than four neighbouring activated pixels with z significant diVerence (p<0.0071, Mann- score values >4 were used for further analysis. Whitney U test; median: 0 voxels for saccades Statistical analysis of clustered activated pixels versus median: 16 voxels for antisaccades). The during diVerent conditions was performed by activity in the supplementary eye fields was Mann-Whitney U test. significantly increased during the antisaccade (median during antisaccades 28 voxels, range Results 0–85 voxels; median during saccades 6.5 Figure1 shows an example of an individual voxels, range 0–29 voxels; p<0.03) activation during saccades or antisaccades Analysis of EOG in six of the subjects during (versus rest) for three original echo planar the saccade task disclosed no direction error. In slices with overlaid clustered activated pixels. the antisaccade task (fig 3) a mean percentage In this subject, activity in the frontal eye fields of errors of 11% (range 4–18%) was found.
Recommended publications
  • Eye Fields in Ocular Decision Making Contrasting the Roles of The
    Contrasting the roles of the supplementary and frontal eye fields in ocular decision making Shun-nan Yang and Stephen Heinen J Neurophysiol 111:2644-2655, 2014. First published 26 March 2014; doi:10.1152/jn.00543.2013 You might find this additional info useful... This article cites 42 articles, 19 of which can be accessed free at: /content/111/12/2644.full.html#ref-list-1 Updated information and services including high resolution figures, can be found at: /content/111/12/2644.full.html Additional material and information about Journal of Neurophysiology can be found at: http://www.the-aps.org/publications/jn This information is current as of July 30, 2014. Downloaded from on July 30, 2014 Journal of Neurophysiology publishes original articles on the function of the nervous system. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2014 by the American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/. J Neurophysiol 111: 2644–2655, 2014. First published March 26, 2014; doi:10.1152/jn.00543.2013. Contrasting the roles of the supplementary and frontal eye fields in ocular decision making Shun-nan Yang1,2 and Stephen Heinen2 1Vision Performance Institute, College of Optometry, Pacific University, Forest Grove, Oregon; and 2Smith-Kettlewell Eye Research Institute, San Francisco, California Submitted 29 July 2013; accepted in final form 25 March 2014 Yang SN, Heinen S. Contrasting the roles of the supplementary and specified by the motion stimulus (Britten et al.
    [Show full text]
  • Eye Fields in the Frontal Lobes of Primates
    Brain Research Reviews 32Ž. 2000 413±448 www.elsevier.comrlocaterbres Full-length review Eye fields in the frontal lobes of primates Edward J. Tehovnik ), Marc A. Sommer, I-Han Chou, Warren M. Slocum, Peter H. Schiller Department of Brain and CognitiÕe Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA Accepted 19 October 1999 Abstract Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortexŽ. DMFC ; the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye fieldŽ. FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only.
    [Show full text]
  • Abnormal Eye Movements in Three Types of Chorea
    DOI: 10.1590/0004-282X20160109 VIEW AND REVIEW Abnormal eye movements in three types of chorea Anormalidades dos movimentos oculares em três tipos de coreia Tiago Attoni1, Rogério Beato2, Serge Pinto3, Francisco Cardoso2 ABSTRACT Chorea is an abnormal movement characterized by a continuous flow of random muscle contractions. This phenomenon has several causes, such as infectious and degenerative processes. Chorea results from basal ganglia dysfunction. As the control of the eye movements is related to the basal ganglia, it is expected, therefore, that is altered in diseases related to chorea. Sydenham’s chorea, Huntington’s disease and neuroacanthocytosis are described in this review as basal ganglia illnesses that can present with abnormal eye movements. Ocular changes resulting from dysfunction of the basal ganglia are apparent in saccade tasks, slow pursuit, setting a target and anti-saccade tasks. The purpose of this article is to review the main characteristics of eye motion in these three forms of chorea. Keywords: chorea; eye movements; Huntington disease; neuroacanthocytosis. RESUMO Coreia é um movimento anormal caracterizado pelo fluxo contínuo de contrações musculares ao acaso. Este fenômeno possui variadas causas, como processos infecciosos e degenerativos. A coreia resulta de disfunção dos núcleos da base, os quais estão envolvidos no controle da motricidade ocular. É esperado, então, que esta esteja alterada em doenças com coreia. A coreia de Sydenham, a doença de Huntington e a neuroacantocitose são apresentadas como modelos que têm por característica este distúrbio do movimento, por ocorrência de processos que acometem os núcleos da base. As alterações oculares decorrentes de disfunção dos núcleos da base se manifestam em tarefas de sacadas, perseguição lenta, fixação de um alvo e em tarefas de antissacadas.
    [Show full text]
  • A Common Network of Functional Areas for Attention and Eye Movements
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron, Vol. 21, 761±773, October, 1998, Copyright 1998 by Cell Press A Common Network of Functional Areas for Attention and Eye Movements Maurizio Corbetta,*²³§ Erbil Akbudak,² Stelmach, 1997, for a different view). One theory has Thomas E. Conturo,² Abraham Z. Snyder,² proposed that attentional shifts involve covert oculomo- John M. Ollinger,² Heather A. Drury,³ tor preparation (Rizzolatti et al., 1987). Overall, the psy- Martin R. Linenweber,* Steven E. Petersen,*²³ chological evidence indicates that attention and eye Marcus E. Raichle,²³ David C. Van Essen,³ movements are functionally related, but it remains un- and Gordon L. Shulman* clear to what extent these two sets of processes share *Department of Neurology neural systems and underlying computations. ² Department of Radiology At the neural level, single unit studies in awake behav- ³ Department of Anatomy and Neurobiology ing monkeys have demonstrated that attentional and and the McDonnell Center for Higher Brain Functions oculomotor signals coexist. In many cortical and sub- Washington University School of Medicine cortical regions in which oculomotor (e.g., presaccadic/ St. Louis, Missouri 63110 saccadic) activity has been recorded during visually guided saccadic eye movements, i.e., frontal eye field (FEF, e.g., Bizzi, 1968; Bruce and Goldberg, 1985), sup- Summary plementary eye field (SEF, e.g., Schlag and Schlag-Rey, 1987), dorsolateral prefrontal cortex
    [Show full text]
  • Evidence from an Antisaccade Task
    Altered Error Processing following Vascular Thalamic Damage: Evidence from an Antisaccade Task Jutta Peterburs1*, Giulio Pergola1, Benno Koch3, Michael Schwarz3, Klaus-Peter Hoffmann2, Irene Daum1, Christian Bellebaum1 1 Institute of Cognitive Neuroscience, Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany, 2 Department of Neuroscience and Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany, 3 Department of Neurology, Klinikum Dortmund, Dortmund, Germany Abstract Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response – the error-related negativity (ERN) - as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring.
    [Show full text]
  • An Eye-Tracking Study of Cognitive Impairment, Ethnicity and Age
    brain sciences Article The Disengagement of Visual Attention: An Eye-Tracking Study of Cognitive Impairment, Ethnicity and Age Megan Polden 1,*, Thomas D. W. Wilcockson 2 and Trevor J. Crawford 1 1 Psychology Department, Lancaster University, Bailrigg, Lancaster LA1 4YF, UK; [email protected] 2 School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK; [email protected] * Correspondence: [email protected] Received: 25 June 2020; Accepted: 14 July 2020; Published: 18 July 2020 Abstract: Various studies have shown that Alzheimer’s disease (AD) is associated with an impairment of inhibitory control, although we do not have a comprehensive understanding of the associated cognitive processes. The ability to engage and disengage attention is a crucial cognitive operation of inhibitory control and can be readily investigated using the “gap effect” in a saccadic eye movement paradigm. In previous work, various demographic factors were confounded; therefore, here, we examine separately the effects of cognitive impairment in Alzheimer’s disease, ethnicity/culture and age. This study included young (N = 44) and old (N = 96) European participants, AD (N = 32), mildly cognitively impaired participants (MCI: N = 47) and South Asian older adults (N = 94). A clear reduction in the mean reaction times was detected in all the participant groups in the gap condition compared to the overlap condition, confirming the effect. Importantly, this effect was also preserved in participants with MCI and AD. A strong effect of age was also evident, revealing a slowing in the disengagement of attention during the natural process of ageing.
    [Show full text]
  • FEF Inactivation with Improved Optogenetic Methods PNAS PLUS
    FEF inactivation with improved optogenetic methods PNAS PLUS Leah Ackera,b,c,1, Erica N. Pinoa,d,e, Edward S. Boydena,f,g,h, and Robert Desimonea,f,1 aMcGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; bHarvard–MIT Heath Sciences and Technology Program, Harvard University–Massachusetts Institute of Technology, Cambridge, MA 02139; cSchool of Medicine, Duke University, Durham, NC 27710; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; eDepartment of Biological and Biomedical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; fDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; gMedia Lab, Massachusetts Institute of Technology, Cambridge, MA 02139; and hDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Robert Desimone, September 13, 2016 (sent for review March 9, 2016; reviewed by John H. Reynolds, Charles E. Schroeder, and Robert H. Wurtz) Optogenetic methods have been highly effective for suppressing FEF pharmacological inactivation studies, namely, >80% reduction neural activity and modulating behavior in rodents, but effects have in firing rate relative to baseline reported in >80% of neurons (1–3). been much smaller in primates, which have much larger brains. Here, Although many physiological studies have measured the corre- we present a suite of technologies to use optogenetics effectively in lation between various neural firing measures and behavior in dif- primates and apply these tools to a classic question in oculomotor ferent brain structures, physiological studies alone cannot establish control. First, we measured light absorption and heat propagation in which neural circuits are critical for which behaviors at any given vivo, optimized the conditions for using the red-light–shifted halor- point in time.
    [Show full text]
  • Visual Field Map Clusters in Human Frontoparietal Cortex Wayne E Mackey1, Jonathan Winawer1,2, Clayton E Curtis1,2*
    RESEARCH ARTICLE Visual field map clusters in human frontoparietal cortex Wayne E Mackey1, Jonathan Winawer1,2, Clayton E Curtis1,2* 1Center for Neural Science, New York University, New York, United States; 2Department of Psychology, New York University, New York, United States Abstract The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher- order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field modeling, we map and characterize the topographic organization of several regions in human frontoparietal cortex. We discover representations of both polar angle and eccentricity that are organized into clusters, similar to visual cortex, where multiple gradients of polar angle of the contralateral visual field share a confluent fovea. This is striking because neural activity in frontoparietal cortex is believed to reflect higher-order cognitive functions rather than external sensory processing. Perhaps the spatial topography in frontoparietal cortex parallels the retinotopic organization of sensory cortex to enable an efficient interface between perception and higher-order cognitive processes. Critically, these visual maps constitute well-defined anatomical units that future studies of frontoparietal cortex can reliably target. DOI: 10.7554/eLife.22974.001 Introduction A fundamental organizing principle of sensory cortex is the topographic mapping of stimulus dimen- *For correspondence: clayton. sions (Mountcastle, 1957; Kaas, 1997). For instance, visual areas contain maps of the visual field, [email protected] wherein the spatial arrangement of an image is preserved such that nearby neurons represent adja- Competing interests: The cent points in the visual field (Inouye, 1909; Holmes, 1918).
    [Show full text]
  • Eye-Movement Intervention Enhances Extinction Via Amygdala Deactivation
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Behavioral/Cognitive Eye-movement intervention enhances extinction via amygdala deactivation Lycia D. de Voogd1, Jonathan W. Kanen1,3, David A. Neville1, Karin Roelofs1,2, Guillén Fernández1 and Erno J. Hermans1 1Donders Institute for Brain, Cognition and Behaviour, Radboud University and Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands 2Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands 3Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom DOI: 10.1523/JNEUROSCI.0703-18.2018 Received: 14 March 2018 Revised: 10 August 2018 Accepted: 16 August 2018 Published: 4 September 2018 Author contributions: L.D.d.V., K.R., G.F., and E.J.H. designed research; L.D.d.V. and J.K. performed research; L.D.d.V. and E.J.H. contributed unpublished reagents/analytic tools; L.D.d.V. analyzed data; L.D.d.V. wrote the first draft of the paper; L.D.d.V., J.K., D.A.N., K.R., G.F., and E.J.H. edited the paper; L.D.d.V. and E.J.H. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. Correspondence to: Lycia D. de Voogd, Donders Institute for Brain, Cognition and Behaviour (Radboudumc), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Ph: +31 (0)24 36 10878, Fx: +31 (0)24 36 10989, E-mail: [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.0703-18.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • A Probe Into the Dorsolateral Prefrontal Cortex in Alzheimer's
    Journal of Alzheimer’s Disease 19 (2010) 781–793 781 DOI 10.3233/JAD-2010-1275 IOS Press Review Article Antisaccades: A Probe into the Dorsolateral Prefrontal Cortex in Alzheimer’s Disease. A Critical Review Liam D. Kaufmana,b,∗, Jay Prattc, Brian Levinec,d and Sandra E. Blacka,b,d aLC Campbell Cognitive Research Unit, Division of Neurology, Deparatment of Medicine, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada bInstitute of Medical Science, University of Toronto, Toronto, Ontario, Canada cDepartment of Psychology University of Toronto, Toronto, Ontario, Canada dThe Rotman Research Institute, Toronto, Ontario, Canada Accepted 17 September 2009 Abstract. The number of people living with Alzheimer’s disease (AD), the major cause of dementia, is projected to increase dramatically over the next few decades, making the search for treatments and tools to measure the progression of AD increasingly urgent. The antisaccade task, a hands- and language-free measure of inhibitory control, has been utilized in AD as a potential diagnostic test. While antisaccades do not appear to differentiate AD from healthy aging better than measures of episodic memory, they may still be beneficial. Specifically, antisaccades may provide not only a functional index of the Dorsolateral Prefrontal Cortex (DLPFC), which is damaged in the later stages of AD, but also a tool for monitoring the progression of AD. Further work is required to: 1) strengthen the link between antisaccade errors, in AD, with the DLPFC; 2) insure that antisaccade errors do not result from memory, visuospatial, or other deficits associated with AD; and 3) further validate the clinical analogue of the antisaccade task.
    [Show full text]
  • Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates
    Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates Antoni Valero-Cabre1,2,3*, Nicolas Wattiez1, Morgane Monfort1, Chantal Franc¸ois1, Sophie Rivaud- Pe´choux1, Bertrand Gaymard1, Pierre Pouget1* 1 Universite´ Pierre et Marie Curie, CNRS UMR 7225, INSERM UMRS 975, Institut du Cerveau et la Mo¨elle (ICM), Paris, France, 2 Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, Massachusetts, United States of America, 3 Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain Abstract A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non- invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes.
    [Show full text]
  • Topography of Supplementary Eye Field Afferents to Frontal Eye Field in Macaque: Implications for Mapping Between Saccade Coordinate Systems
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1993 Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems Schall, Jeffrey D ; Morel, Anne ; Kaas, JonH Abstract: Two discrete areas in frontal cortex are involved in generating saccadic eye movements—the frontal eye field (FEF) and the supplementary eye field (SEF). Whereas FEF represents saccades ina topographic retinotopic map, recent evidence indicates that saccades may be represented craniotopically in SEF. To further investigate the relationship between these areas, the topographic organization of affer- ents to FEF from SEF in<jats:italic>Macaco mulatto</jats:italic>was examined by placing injections of distinct retrograde tracers into different parts of FEF that represented saccades of different amplitudes. Central FEF (lateral area 8A), which represents saccades of intermediate amplitudes, received afferents from a larger portion of SEF than did lateral FEF (area 45), which represents shorter saccades, or medial FEF (medial area 8A), which represents the longest saccades in addition to pinna movements. Moreover, in every case the zone in SEF that innervated lateral FEF (area 45) also projected to medial FEF (area 8A). In one case, a zone in rostral SEF projected to both lateral area 8A from which eye movements were evoked by microstimulation as well as medial area 8A from which pinna movements were elicited by microstimulation. This pattern of afferent convergence and divergence from SEF onto the retinotopic saccade map in FEF is indicative of some sort of map transformation between SEF and FEF.
    [Show full text]