Science and Exploration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
Geophysical Research Abstracts Vol. 13, EGU2011-5107-2, 2011 EGU General Assembly 2011 © Author(s) 2011 NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Richard Elphic (1), Gregory Delory (1,2), Anthony Colaprete (1), Mihaly Horanyi (3), Paul Mahaffy (4), Butler Hine (1), Steven McClard (5), Joan Salute (6), Edwin Grayzeck (6), and Don Boroson (7) (1) NASA Ames Research Center, Moffett Field, CA USA ([email protected]), (2) Space Sciences Laboratory, University of California, Berkeley, CA USA, (3) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO USA, (4) NASA Goddard Space Flight Center, Greenbelt, MD USA, (5) LunarQuest Program Office, NASA Marshall Space Flight Center, Huntsville, AL USA, (6) Planetary Science Division, Science Mission Directorate, NASA, Washington, DC USA, (7) Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA USA Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent “Scientific Context for Exploration of the Moon” (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. -
Exploration of the Moon
Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms. -
Global Exploration Roadmap
The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System. -
Exploration Timeline A
HOW DID OUR MOON FORM? MEET A LUNAR GEOLOGIST — Dr. Jeff Taylor, University of Hawaii What do you do? —— How did you get interested in this field? What is the most interesting question about the Moon that scientists are trying to solve? Do you want to go to the Moon? If someone wants to become a scientist, what should they do? EVOLUTION OF OUR MOON TRY THIS — What’s Needed Early Stages: A Magma Ocean — Make an Impact! Students model impact events and develop an understanding of the processes that cause cratering on the lunar surface. Getting Started Big Impacts, Big Basins — What features do they observe? Do they see the large round areas that have smooth dark interiors? Do they see smaller circular features? How might these have formed? What to Do Basin Filling — What do they observe? Can they identify different features of the crater? How do craters help geologists “see into” the inside of a planet? How did impactors traveling at different “velocities” influence the crater size or distribution of ejecta? Do the crater sizes or depths change? Wrapping Up Recent History — Can they identify impact basins, craters, and rays? EXPLORATIONXPLORATION TIMELINEIMELINE HINA MOVES TO THE MOON: Humans have been asking questions about our Moon since we first looked up at it in the sky. A HAWAIIAN STORY ABOUT OUR MOON WhatWhat isis oourur MMoonoon mmadeade oof?f? WWhathat aarere tthehe llightight aandnd ddarkark mmarkings?arkings? DDoesoes tthehe MMoonoon hhaveave ooceansceans aandnd aann aatmosphere?tmosphere? As telescopes became ever more powerful, the Moon’s rugged surface was revealed in increasing detail, but observations from Earth could not answer many scientific questions. -
Mini-RF: Imaging Radars for Exploring the Lunar Poles
Mini-RF: Imaging Radars for Exploring the Lunar Poles Ben Bussey, Paul Spudis, Keith Raney, Helene Winters JHU/APL Stu Nozette, Chris Lichtenberg, Bill Marinelli NAWC 1 Mini-RF Organization, Science and Resource Evaluation Objectives • Mini-RF is a suite of radar instruments funded by NASA (SOMD & ESMD) and DoD. • Search for areas near the lunar poles that have the anomalous radar reflectivity signatures (high radar albedo and Circular Polarization Ratios) that differentiate volumetric water-ice deposits from more typical lunar surfaces • Map the morphology of permanently dark regions near the poles 2 Search for Ice • The case for water-ice can be resolved only if robust and repeatable data of the lunar polar regions support that conclusion. This rigorous standard can be met only by a dedicated polar-orbiting radar. • Mini-RF will use a unique hybrid polarity architecture to look for ice deposits • Transmit circular polarization (e.g. right-circular polarization RCP) • Receive coherent orthogonal polarizations • Derive Stokes parameters of the received signal • Use Stokes parameters to reconstruct and investigate the nature of the backscatter field. Distinguish between surface (roughness) and volume (ice) scattering 3 Top-level Radar Overview Parameter Chandrayaan-1 LRO • Frequency S-band S-band and X-band • Polarization Tx RCP Rx H & V • Scatterometry S-band (none) • Imager Regional maps Site-specific selections • Resolution (m/pixel) 75 75, 7.5 azimuth x 15 range • Looks 16 16 or 8 • Swath (km) 8 6 or 4 • Altitude (km) 100 50 • Incidence -
Next-Generation Laser Retroreflectors for the Science and Exploration of the Moon, Mars and Beyond
3rd International Workshop on Instrumentation for Planetary Missions (2016) 4074.pdf Next-Generation Laser Retroreflectors for the Science and Exploration of the Moon, Mars and Beyond. S. Dell’Agnello1 for the SCF_Lab Team, D. Currie2, R. Richards3, J. Chandler4 1Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati (INFN-LNF), via E. Fermi, Frascati (Rome), Italy, email [email protected] 2University of Maryland (UMD) at College Park, MD, USA 3Moon Express Inc (MEI), 19-2060 N Akron Rd, Moffett Field, CA 94035 4Harvard-Smithsonian Center for Astrophysics (CfA), MA, USA Introduction. We developed next-generation laser retroreflectors for solar system science and exploration in the framework of the Affiliation membership of INFN to NASA/SSERVI (Solar System Exploration Virtual Institute), INFN National Science Committees n. 5 (devoted to R&D) and n. 2 (devoted to science) [1] and in collaboration with ASI, the Italian Space Agen- cy. Applications cover landing and roving missions to the Moon, Mars (ExoMars 2016 lander, ExoMars 2020 Figure 1: MoonLIGHT (4”), Apollo (1.5”) reflectors Rover and Mars 2020 Rover) to future or proposed missions to Phobos/Deimos (sample return), icy/rocky INFN, UMD and MEI signed a private-public partner- moons of Jupiter/Saturn and asteroids/comets (ESA’s ship, multi-mission agreement to deploy MoonLIGHT AIM). These retroreflectors have been or will be fully on the Moon (1st mission: end 2017/early 2018). The characterized at the SCF_Lab (Satellite/lunar/gnss la- results of an optical performace characterization of ser ranging/altimetry Cube/microsat Characterization MoonLIGHT carried out at the SCF_Lab is in Fig. -
Celebrate Apollo
National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world. -
Apollo Anniversary: Moon Landing “Inspired World” by John Roach
Lexia® PowerUp Literacy® Comprehension Passages Apollo Anniversary: Moon Landing “Inspired World” By John Roach [1] On July 20, 1969, at 10:56 p.m. ET, Apollo 11 astronaut Neil Armstrong stepped off the “Eagle” onto the surface of the moon and said, “That’s one small step for man, one giant leap for mankind.” Thirty-five years later, Steven Dick, NASA’s chief historian at the space agency’s headquarters in Washington, D.C., said that a thousand years from now, that step may be considered the crowning achievement of the 20th century. “Putting a man on the moon not only inspired the nation, but also the world,” Dick said. “The 1960s were a tumultuous time in the U.S., and the moon landing showed what could be accomplished at a time when much else was going wrong.” [2] Armstrong’s step was the culmination of a goal set forth by President John F. Kennedy on May 25, 1961. In a speech before a joint session of Congress, the President had announced his objective of “landing a man on the moon and returning him safely to Earth” before the end of the decade. The goal set in motion Project Apollo. Armstrong—together with astronauts Michael Collins and Edwin “Buzz” Aldrin, Jr.—lifted off on the Apollo 11 mission on July 16, 1969, from Kennedy Space Center in Florida at 9:32 a.m. ET. [3] About 76 hours later, the spacecraft entered lunar orbit. Armstrong and Aldrin boarded the lunar module, known as the Eagle, for descent to the lunar surface. -
Lunar Sourcebook : a User's Guide to the Moon
4 LUNAR SURFACE PROCESSES Friedrich Hörz, Richard Grieve, Grant Heiken, Paul Spudis, and Alan Binder The Moon’s surface is not affected by atmosphere, encounters with each other and with larger planets water, or life, the three major agents for altering throughout the lifetime of the solar system. These terrestrial surfaces. In addition, the lunar surface has orbital alterations are generally minor, but they not been shaped by recent geological activity, because ensure that, over geological periods, collisions with the lunar crust and mantle have been relatively cold other bodies will occur. and rigid throughout most of geological time. When such a collision happens, two outcomes are Convective internal mass transport, which dominates possible. If “target” and “projectile” are of comparable the dynamic Earth, is therefore largely absent on the size, collisional fragmentation and annihilation Moon, and so are the geological effects of such occurs, producing a large number of much smaller internal motions—volcanism, uplift, faulting, and fragments. If the target object is very large compared subduction—that both create and destroy surfaces on to the projectile, it behaves as an “infinite halfspace,” Earth. The great contrast between the ancient, stable and the result is an impact crater in the target body. Moon and the active, dynamic Earth is most clearly For collisions in the asteroid belt, many of the shown by the ages of their surfaces. Nearly 80% of the resulting collisional fragments or crater ejecta escape entire solid surface of Earth is <200 m.y. old. In the gravitational field of the impacted object; many of contrast, >99% of the lunar surface formed more than these fragments are then further perturbed into 3 b.y. -
Surveyor 1 Space- Craft on June 2, 1966 As Seen by the Narrow Angle Camera of the Lunar Re- Connaissance Orbiter Taken on July 17, 2009 (Also See Fig
i “Project Surveyor, in particular, removed any doubt that it was possible for Americans to land on the Moon and explore its surface.” — Harrison H. Schmitt, Apollo 17 Scientist-Astronaut ii Frontispiece: Landing site of the Surveyor 1 space- craft on June 2, 1966 as seen by the narrow angle camera of the Lunar Re- connaissance Orbiter taken on July 17, 2009 (also see Fig. 13). The white square in the upper photo outlines the area of the enlarged view below. The spacecraft is ca. 3.3 m tall and is casting a 15 m shadow to the East. (NASA/LROC/ ASU/GSFC photos) iii iv Surveyor I: America’s First Moon Landing by William F. Mellberg v © 2014, 2015 William F. Mellberg vi About the author: William Mellberg was a marketing and public relations representative with Fokker Aircraft. He is also an aerospace historian, having published many articles on both the development of airplanes and space vehicles in various magazines. He is the author of Famous Airliners and Moon Missions. He also serves as co-Editor of Harrison H. Schmitt’s website: http://americasuncommonsense.com Acknowledgments: The support and recollections of Frank Mellberg, Harrison Schmitt, Justin Rennilson, Alexander Gurshstein, Paul Spudis, Ronald Wells, Colin Mackellar and Dwight Steven- Boniecki is gratefully acknowledged. vii Surveyor I: America’s First Moon Landing by William F. Mellberg A Journey of 250,000 Miles . December 14, 2013. China’s Chang’e 3 spacecraft successfully touched down on the Moon at 1311 GMT (2111 Beijing Time). The landing site was in Mare Imbrium, the Sea of Rains, about 25 miles (40 km) south of the small crater, Laplace F, and roughly 100 miles (160 km) east of its original target in Sinus Iridum, the Bay of Rainbows. -
Expert Perspectives on Nasa's Human Exploration
CHARTING A COURSE: EXPERT PERSPECTIVES ON NASA’S HUMAN EXPLORATION PROPOSALS HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FOURTEENTH CONGRESS FIRST SESSION February 3, 2016 Serial No. 114–58 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 20–828PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER, JR., ZOE LOFGREN, California Wisconsin DANIEL LIPINSKI, Illinois DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas SUZANNE BONAMICI, Oregon MICHAEL T. MCCAUL, Texas ERIC SWALWELL, California MO BROOKS, Alabama ALAN GRAYSON, Florida RANDY HULTGREN, Illinois AMI BERA, California BILL POSEY, Florida ELIZABETH H. ESTY, Connecticut THOMAS MASSIE, Kentucky MARC A. VEASEY, Texas JIM BRIDENSTINE, Oklahoma KATHERINE M. CLARK, Massachusetts RANDY K. WEBER, Texas DONALD S. BEYER, JR., Virginia BILL JOHNSON, Ohio ED PERLMUTTER, Colorado JOHN R. MOOLENAAR, Michigan PAUL TONKO, New York STEPHEN KNIGHT, California MARK TAKANO, California BRIAN BABIN, Texas BILL FOSTER, Illinois BRUCE WESTERMAN, Arkansas BARBARA COMSTOCK, Virginia GARY PALMER, Alabama BARRY LOUDERMILK, Georgia RALPH LEE ABRAHAM, Louisiana DRAIN LAHOOD, Illinois SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland FRANK D. -
Lunar Science with ARTEMIS: a Journey from the Moon’S Exosphere to Its Core
Lunar Science with ARTEMIS: A Journey from the Moon’s Exosphere to its Core A white paper submitted to the 2011 Planetary Science Decadal Survey Primary author: K.K. Khurana Institute for Geophysics and Planetary Physics (IGPP), University of California Los Angeles (310-825-8240, [email protected]) Co-authors: Affiliation Angelopoulos, V. ESS/IGPP, University of California Los Angeles Carlson, Charles W. SSL/University of California Berkeley, CA Delory, Gregory T. SSL/University of California Berkeley/NASA Ames Research Center Farrell, William M. NASA/GSFC, Greenbelt, MD Grimm, Robert E. Southwest Research Institute, Boulder, CO Garrick-Bethell, Ian Dept. of Earth, Atmospheric & Planetary Sciences, MIT, Cambridge, MA Halekas, Jasper S. SSL/University of California Berkeley, CA Hood, L. L. Lunar and Planetary Laboratory, U. of Arizona, Tucson, AZ Horanyi, M. LASP and Dept. of Physics, Univ. of Colorado, Boulder, CO Lillis, Robert J. SSL/University of California Berkeley, CA Lin, Robert P. SSL/University of California Berkeley, CA Neal, Clive R. Dept. of Civil Engineering & Geological Sciences, U. of Notre Dame, IN Purucker, M. E. Raytheon at Planetary Geodynamics Lab., GSFC, Greenbelt, MD Russell, Chris T. ESS/IGPP, University of California Los Angeles, CA Schubert, Gerry ESS/IGPP, University of California Los Angeles, CA Sibeck, D. G. NASA/GSFC, Greenbelt, MD Travnicek, Pavel IGPP, University of California Los Angeles, CA This white paper describes the planetary science objectives to be achieved by ARTEMIS, a two-spacecraft constellation en route to the Moon, and presents recommendations pertaining to future lunar science. 1 Motivation and Recommendations The inner planets hold critical information regarding the origin of the solar system and habitable environments within it.