“Feasible Computational Methods in the Propositional Calculus”, the Seminal Report by M

Total Page:16

File Type:pdf, Size:1020Kb

“Feasible Computational Methods in the Propositional Calculus”, the Seminal Report by M Appendix A “Feasible Computational Methods in the Propositional Calculus”, the Seminal Report by M. Davis and H. Putnam “Our report for the NSA, entitled Feasible Computational Methods in the Propositional Calculus is dated October 1958. It emphasizes the use of conjunctive normal form for satisfiability testing (or, equivalently, the dual disjunctive normal form for tautology testing). The specific reduction methods whose use together have been linked to the names Davis- Putnam are all present in this report.” (M. Davis, this volume p. 15) “The DPLL procedure, even half a century after its introduction, remains a foundational component of modern day SAT solvers. Through SAT solvers ···, as well as through sat- isfiability modulo theory ··· and answer set programming ··· solvers that build upon SAT techniques, the DPLL procedure has had a tremendous practical impact on the field with applications in a variety of areas such as formal verification, AI planning, and mathematical discovery.” (D. Loveland et al., this volume p. 316) A research report which Martin Davis and Hilary Putnam jointly wrote in 1958 is faithfully reproduced in this appendix, where it gets published for the first time; three papers which promoted its wide influence on later research in the field of automated deduction are: [1] A Computing procedure for Quantification Theory by Davis and Putnam, 1960 (a typescript of which appears inside a research report of 1959); [2] A Machine Program for Theorem-Proving by Davis, George Logemann, and Donald W. Loveland, 1962 (preprinted as a research report in 1961); [3] Eliminating the Irrelevant from Mechanical Proofs by Davis alone, 1963 (trans- lated into Russian in 1970). The 1958 report tackles propositional calculus from a broader angle than the subsequent papers just cited. Its first part discusses the advantage of putting formulas into some normal form (such as the Gégalkine polynomial form); it notes that not all normal forms have the same properties and argues that conjunctive normal form is usually preferable to the disjunctive one for treatment by satisfiability testing methods; moreover, it adds, it is convenient to have ‘more than one such method available ···, since in case one method fails one can then always attempt the others’. © Springer International Publishing Switzerland 2016 371 E.G. Omodeo and A. Policriti (eds.), Martin Davis on Computability, Computational Logic, and Mathematical Foundations, Outstanding Contributions to Logic 10, DOI 10.1007/978-3-319-41842-1 372 Appendix A: “Feasible Computational Methods in the Propositional Calculus” … In [1], Davis and Putnam will propose a satisfiability decision algorithm for propo- sitional formulas in conjunctive normal form. This will consist of three rules drawn or adapted from the kit of rules described in the 1958 report. Two of these, named elimination of one-literal clauses and affirmative-negative rule, will be retained also in [2, 3]. The third, named rule for eliminating atomic formulas, will be replaced in [2, 3] by another one called, ever since, the splitting rule. The new rule is theo- retically equivalent to the superseded one but preferable, for practical reasons duly explained in [2]. The revised procedure has today acquired great renown under the name DPLL (from the initials of its inventors). The two interchanged rules were specified in [1, 2], respectively, in the following terms: Rule for Eliminating Atomic Formulas. Let the formula F [given in conjunctive normal form] be put into the form (A ∨ p) & (B ∨¯p) & R, where A, B, and R are free of p. (This can be done simply by grouping together the clauses containing p and “factoring out” occurrences of p to obtain A, grouping the clauses containing p¯ and “factoring out” p¯ to obtain B, and grouping the remaining clauses to obtain R.) Then F is inconsistent if and only if (A ∨ B) & R is inconsistent. Splitting Rule. Let the given formula F be put in the form (A ∨ p) & (B ∨¯p) & R, where A, B, and R arefreeofp. Then F is inconsistent if and only if A & R and B & R are both inconsistent. In the 1958 report as reproduced below, these rules are specified in dual form (that is, they refer to tautology testing of an F which is given in disjunctive normal form) and they bear the respective names ‘rule for eliminating variables’ and ‘rule of case analysis’; the latter, in particular, reads: Let F and F be obtained from F by substituting 0 and 1 respectively for all occurrences of p in F and making the obvious simplifications. Then F is a tautology if and only if F and F both are. ———— The second part of the 1958 Davis-Putnam report presents a Gentzen-type sys- tem for a version of propositional calculus embodying the exclusive disjunction connective. It shows that such a system is complete and that it remains such if the cut inference rule is withdrawn; through this system, another decision procedure alternative to truth-table methods is obtained. ———— Davis and Putnam were showing so much interest in feasible computational meth- ods for propositional calculus ten years before the notion of NP-completeness began to emerge and Stephen Cook brought the propositional satisfiability problem under the spotlight of the very challenging question as to whether P = NP. Appendix A: “Feasible Computational Methods in the Propositional Calculus” … 373 374 Appendix A: “Feasible Computational Methods in the Propositional Calculus” … Feasible Computational Methods in the Propositional Calculus Submitted by Martin Davis Associated Professor of Mathematics Rensselaer Polytechnic Institute Hartford Graduate Division and Hilary Putnam Assistant Professor of Philosophy Princeton University October 1958 It is a consequence of a well-known result of Church and Turing that there is no effective calculating procedure for determining whether or not a given schema of elementary quantification theory is or is not valid. But if we restrict ourselves to schemata of the propositional calculus, then, as has long been known (since Post’s thesis of 1921, cf. Post [1]), an effective calculating procedure does exist, namely the method of truth-tables. Unfortunately, this solution of the decision problem for the propositional calculus is mainly of theoretical interest. Since the truth-table for a formula containing n variables must contain 2n lines, truth-table methods are quite unfeasible for use in practical computation once the number of variables becomes at all large. The present report summarizes our investigations of alternative computational methods which could be employed where truth table methods are inapplicable. Part I of this report presents several techniques, none of which is superior to truth-table methods in all cases, but which are nonetheless vastly better than truth-tables in the sorts of cases which can be expected to arise in practice. In Part II, a modified version of the Gentzen-type system of Kleene [1] for propositional calculus (modified to allow exclusive disjunction as a primitive connective) is discussed. Its completeness and a version of the Gentzen Hauptsatz are derived. This is shown to lead to a decision Appendix A: “Feasible Computational Methods in the Propositional Calculus” … 375 procedure for the propositional calculus, which, however, is not particularly superior to truth-table methods. Nevertheless, we feel that this represents a promising line of investigation. For, if a complete system could be constructed which has all of the present desirable properties and which enjoys one additional property to be described below, such a system could be used to provide a decision procedure which would probably be quite useful. Part I: Case Methods, Boolean Methods, and a Combinatorial Method for Propositional Calculus 1. Validity and Disjunctive Normal Form (i) An important special case of the decision problem for propositional calculus. No known method of testing formulas of the propositional calculus for consistency exists which is uniformly superior to the truth-table method. The search for feasible methods of computation in the propositional calculus when truth-table developments are unfeasible naturally concentrates, therefore, on important special cases. The most important of these special cases will now be described, since the methods to be explained below are all presented with this case in mind. We shall use ∼ for negative, · for conjunction, ∨ for inclusive disjunction, + for exclusive disjunction, ⊃ for material implication, and ≡ for material equivalence. Parentheses will be omitted wherever possible without confusion (in Part I), and where possible because of associative operations. Also, for single letters we write e.g. p¯ for ∼ p. Also we often omit the dot of conjunction, writing e.g. pqr¯ for p·q·∼r. The principal case we consider is that of a formula or system of formulas to be tested for consistency. Let us suppose that the formulas in the system have been actu- ally written down as a formalization of some practical problem. What specialization does this introduce? In the first place, we can not assume that the number of variables is small. One formula can easily contain over 20 variables without being very long, e.g.1 (pqrs ∨ tu) · (uv¯ ∨ w) · (pabc ∨ de ∨ gh) · (ijkl ∨ mno). Thus, a system of, say, 10 formulas could easily contain over a hundred distinct propositional variables. But we can assume that the formulas are relatively short. Indeed, this is already assumed when we suppose that the system is capable of being written down by a human being. A formula or system of formulas with 100 distinct propositional variables could be as long as, say, 250 symbols without having, so far as is known, any shorter normal equivalent. However, any system of formulas actually written down by human beings will presumably have far fewer than 250 symbols. We shall, therefore, concentrate on the following case: The case of a system of formulas each one of which is short enough to be “manageable” (i.e., short enough for a clerk to perform algebraic manipulations on the formula, such as putting the formula in normal form), although the number of formulas in the system may be 1In the present part formulas may be thought of as names of themselves.
Recommended publications
  • Hilbert's Tenth Problem
    Hilbert's Tenth Problem Abhibhav Garg 150010 November 11, 2018 Introduction This report is a summary of the negative solution of Hilbert's Tenth Problem, by Julia Robinson, Yuri Matiyasevich, Martin Davis and Hilary Putnam. I relied heavily on the excellent book by Matiyasevich, Matiyasevich (1993) for both understanding the solution, and writing this summary. Hilbert's Tenth Problem asks whether or not it is decidable by algorithm if an integer polynomial equation has positive valued roots. The roots of integer valued polynomials are subsets definable in the language of the integers equipped with only addition and multiplication, with constants 0 and 1, and without quantifiers. Further, every definable set of this language is either the roots of a set of polynomials, or its negation. Thus, from a model theoretic perspective, this result shows that the definable sets of even very simple models can be very complicated, atleast from a computational point of view. This summary is divided into five parts. The first part involves basic defintions. The second part sketches a proof of the fact that exponentiation is diophantine. This in turn allows us to construct universal diophantine equations, which will be the subjects of parts three and four. The fifth part will use this to equation to prove the unsolvability of the problem at hand. The final part has some remarks about the entire proof. 1 Defining the problem A multivariate(finite) polynomial equation with integer valued coefficients is called a diophantine equation. Hilbert's question was as follows: Given an arbitrary Diophantine equation, can you decide by algorithm whether or not the polynomial has integer valued roots.
    [Show full text]
  • Hilbert's 10Th Problem Extended to Q
    Hilbert's 10th Problem Extended to Q Peter Gylys-Colwell April 2016 Contents 1 Introduction 1 2 Background Theory 2 3 Diophantine Equations 3 4 Hilbert's Tenth Problem over Q 4 5 Big and Small Ring Approach 6 6 Conclusion 7 1 Introduction During the summer of 1900 at the International Congress of Mathematicians Conference, the famous mathematician David Hilbert gave one of the most memorable speeches in the history of mathematics. Within the speech, Hilbert outlined several unsolved problems he thought should be studied in the coming century. Later that year he published these problems along with thirteen more he found of particular importance. This set of problems became known as Hilbert's Problems. The interest of this paper is one of these problems in particular: Hilbert's Tenth problem. This was posed originally from Hilbert as follows: Given a diophantine equation with any number of unknown quan- tities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers [3]. The problem was unsolved until 1970, at which time a proof which took 20 years to produce was completed. The proof had many collaborators. Most notable were the Mathematicians Julia Robinson, Martin Davis, Hilary Putman, 1 and Yuri Matiyasevich. The proof showed that Hilbert's Tenth Problem is not possible; there is no algorithm to show whether a diophantine equation is solvable in integers. This result is known as the MDRP Theorem (an acronym of the mathematicians last names that contributed to the paper).
    [Show full text]
  • Diophantine Definability of Infinite Discrete Nonarchimedean Sets and Diophantine Models Over Large Subrings of Number Fields 1
    DIOPHANTINE DEFINABILITY OF INFINITE DISCRETE NONARCHIMEDEAN SETS AND DIOPHANTINE MODELS OVER LARGE SUBRINGS OF NUMBER FIELDS BJORN POONEN AND ALEXANDRA SHLAPENTOKH Abstract. We prove that some infinite p-adically discrete sets have Diophantine definitions in large subrings of number fields. First, if K is a totally real number field or a totally complex degree-2 extension of a totally real number field, then for every prime p of K there exists a set of K-primes S of density arbitrarily close to 1 such that there is an infinite p-adically discrete set that is Diophantine over the ring OK;S of S-integers in K. Second, if K is a number field over which there exists an elliptic curve of rank 1, then there exists a set of K-primes S of density 1 and an infinite Diophantine subset of OK;S that is v-adically discrete for every place v of K. Third, if K is a number field over which there exists an elliptic curve of rank 1, then there exists a set of K-primes S of density 1 such that there exists a Diophantine model of Z over OK;S . This line of research is motivated by a question of Mazur concerning the distribution of rational points on varieties in a nonarchimedean topology and questions concerning extensions of Hilbert's Tenth Problem to subrings of number fields. 1. Introduction Matijaseviˇc(following work of Davis, Putnam, and Robinson) proved that Hilbert's Tenth Problem could not be solved: that is, there does not exist an algorithm, that given an arbitrary multivariable polynomial equation f(x1; : : : ; xn) = 0 with coefficients in Z, decides whether or not a solution in Zn exists.
    [Show full text]
  • Hilbert's Tenth Problem Over Rings of Number-Theoretic
    HILBERT’S TENTH PROBLEM OVER RINGS OF NUMBER-THEORETIC INTEREST BJORN POONEN Contents 1. Introduction 1 2. The original problem 1 3. Turing machines and decision problems 2 4. Recursive and listable sets 3 5. The Halting Problem 3 6. Diophantine sets 4 7. Outline of proof of the DPRM Theorem 5 8. First order formulas 6 9. Generalizing Hilbert’s Tenth Problem to other rings 8 10. Hilbert’s Tenth Problem over particular rings: summary 8 11. Decidable fields 10 12. Hilbert’s Tenth Problem over Q 10 12.1. Existence of rational points on varieties 10 12.2. Inheriting a negative answer from Z? 11 12.3. Mazur’s Conjecture 12 13. Global function fields 14 14. Rings of integers of number fields 15 15. Subrings of Q 15 References 17 1. Introduction This article is a survey about analogues of Hilbert’s Tenth Problem over various rings, es- pecially rings of interest to number theorists and algebraic geometers. For more details about most of the topics considered here, the conference proceedings [DLPVG00] is recommended. 2. The original problem Hilbert’s Tenth Problem (from his list of 23 problems published in 1900) asked for an algorithm to decide whether a diophantine equation has a solution. More precisely, the input and output of such an algorithm were to be as follows: input: a polynomial f(x1, . , xn) having coefficients in Z Date: February 28, 2003. These notes form the basis for a series of four lectures at the Arizona Winter School on “Number theory and logic” held March 15–19, 2003 in Tucson, Arizona.
    [Show full text]
  • Hilbert's Tenth Problem
    Hilbert's Tenth Problem Peter Mayr Computability Theory, March 3, 2021 Diophantine sets The following is based on I M. Davis. Hilbert's Tenth Problem is unsolvable. The American Mathematical Monthly, Vol. 80, No. 3 (Mar., 1973), pp. 233-269. Departing from our usual convention let N = f1; 2;::: g here. Definition k A ⊆ N is Diophantine if there exists a polynomial f (x1;:::; xk ; y1;:::; y`) 2 Z[¯x; y¯] such that | {z } | {z } x¯ y¯ ` x¯ 2 A iff 9y¯ 2 N f (¯x; y¯) = 0: Examples of Diophantine sets I composite numbers: fx 2 N : 9y1; y2 x = (y1 + 1)(y2 + 1)g I order relation: x1 ≤ x2 iff 9y x1 + y − 1 = x2 Diophantine functions Definition k A partial function f : N !p N is Diophantine if its graph f(¯x; f (¯x)) :x ¯ 2 domain f g is Diophantine. Example Polynomial functions f(¯x; y): y = p(¯x)g are Diophantine. Encoding tuples Other Diophantine functions are harder to construct. E.g. there is an encoding of k-tuples into natural numbers with Diophantine inverse: Lemma (Sequence Number Theorem) There is a Diophantine function S(i; u) such that I S(i; u) ≤ u and k I 8k 2 N 8(a1;:::; ak ) 2 N 9u 2 N 8i ≤ k : S(i; u) = ai Proof. Omitted. The crucial lemma Lemma The exponential function h(n; k) := nk is Diophantine. Proof. Analysis of Diophantine equations starting from the Pell equation x2 − dy 2 = 1 d = a2 − 1 (a > 1) Details omitted. Corollary The following are Diophantine: z n Y ; n!; (x + yi) k i=1 Closure of Diophantine predicates Lemma The class of Diophantine predicates is closed under ^; _, existential quantifiers and bounded universal quantifiers.
    [Show full text]
  • Diagonalization Exhibited in the Liar Paradox, Russell's
    JP Journal of Algebra, Number Theory and Applications © 2020 Pushpa Publishing House, Prayagraj, India http://www.pphmj.com http://dx.doi.org/10.17654/ Volume …, Number …, 2020, Pages … ISSN: 0972-5555 DIAGONALIZATION EXHIBITED IN THE LIAR PARADOX, RUSSELL’S PARADOX AND GÖDEL’S INCOMPLETENESS THEOREM Tarek Sayed Ahmed and Omar Ossman Department of Mathematics Faculty of Science Cairo University Giza, Egypt Abstract By formulating a property on a class of relations on the set of natural numbers, we make an attempt to provide alternative proof to the insolvability of Hilbert’s tenth problem, Gödel’s incompleteness theorem, Tarski’s definability theorem and Turing’s halting problem. 1. Introduction In this paper we give a new unified proof of four important theorems, solved during the period 1930 - 1970. These problems in historical order are Gödel’s incompleteness theorem, Tarski’s definability theorem, Turing’s halting problem [5] and Hilbert’s tenth problem [8], [2]. The latter was solved 70 years after it was posed by Hilbert in 1900. Martin Davis, under the supervision of Emil Post, was the first to consider the possibility of a negative solution to this problem which “begs for insolvability” as stated by Post. Later, Julia Robinson, Martin Davis, Hilary Putnam worked on the Received: June 7, 2020; Revised: June 22, 2020; Accepted: June 24, 2020 2010 Mathematics Subject Classification: Kindly provide. Keywords and phrases: Kindly provide. 2 Tarek Sayed Ahmed and Omar Ossman problem for almost twenty years, and the problem was reduced to showing that the exponential function is Diophantine. This latter result was proved by Matiyasevich in 1970.
    [Show full text]
  • Hilbert's Tenth Problem Is Unsolvable Author(S): Martin Davis Source: the American Mathematical Monthly, Vol
    Hilbert's Tenth Problem is Unsolvable Author(s): Martin Davis Source: The American Mathematical Monthly, Vol. 80, No. 3 (Mar., 1973), pp. 233-269 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2318447 . Accessed: 22/03/2013 11:53 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions HILBERT'S TENTH PROBLEM IS UNSOLVABLE MARTIN DAVIS, CourantInstitute of MathematicalScience Whena longoutstanding problem is finallysolved, every mathematician would like to sharein the pleasureof discoveryby followingfor himself what has been done.But too oftenhe is stymiedby the abstruiseness of so muchof contemporary mathematics.The recentnegative solution to Hilbert'stenth problem given by Matiyasevic(cf. [23], [24]) is a happycounterexample. In thisarticle, a complete accountof thissolution is given;the only knowledge a readerneeds to followthe argumentis a littlenumber theory: specifically basic information about divisibility of positiveintegers and linearcongruences. (The materialin Chapter1 and the firstthree sections of Chapter2 of [25] morethan suffices.) Hilbert'stenth problem is to givea computingalgorithm which will tell of a givenpolynomial Diophantine equation with integer coefficients whether or notit hasa solutioninintegers.Matiyasevic proved that there is nosuch algorithm.
    [Show full text]
  • Progress in the Formalization of Matiyasevich's Theorem in the Mizar System Karol Pąk August 13, 2018
    Progress in the formalization of Matiyasevich’s theorem in the Mizar system Karol Pąk [email protected] University of Bialystok, Institute of Informatics August 13, 2018 Karol Pąk Formalization of Matiyasevich’s theorem 1 / 19 Hilbert’s Tenth Problem Hilbert’s Question Is there an algorithm which can determine whether or not an arbitrary polynomial equation in several variables has solutions in integers? Modern formulation There exists a program taking coefficients of a polynomial equation as input and producing yes or no answer to the question: Are there integer solutions? Karol Pąk Formalization of Matiyasevich’s theorem 2 / 19 The Answer Martin Davis, Julia Robinson, Yuri Matiyasevich(b. 1947), Hilary Putnam Negative solution of Hilbert’s tenth problem (≈1949–1970) All recursively enumerable sets are Diophantine. Karol Pąk Formalization of Matiyasevich’s theorem 3 / 19 Historical overview Davis approach (≈1949) Hilbert’s tenth problem has a negative solution, if there is no general algorithm to determine whether a Diophantine equation has solutions in the integers, if there exists a Diophantine set that is not recursive, if Davis’s conjecture is true. Karol Pąk Formalization of Matiyasevich’s theorem 4 / 19 Historical overview Matiyasevich (1970) x = y z is Diophantine exponential J.R. hypothesis x = y z Diophantine is Diophantine DPR (1961) recursively Robinson (1960) Diophantine enumerable set Davis’s conjecture (1948) Normal form for recursively enumerable sets (Martin Davis, 1949) {a | ∃y∀k 6 y∃x1,..., xn : p (a, k, y, x1,..., xn) = 0} Karol Pąk Formalization of Matiyasevich’s theorem 5 / 19 Matiyasevich‘s theorem Exponentiation is Diophantine i.e.
    [Show full text]
  • Undecidability in Number Theory
    Undecidability in Number Theory Andrew Gilroy June 23, 2008 In the study of number theory the question often arises: does an equation have a solution? This question can address any given equation, but in the true spirit of mathematics, it can address a general situation. In 1900 David Hilbert posed this question in a list of 23 problems raised after a lecture. It is refered to as Hilbert’s tenth problem (H10 for short). The question is whether there exists an algoritm which can denote a simple “Yes” or “No” answer as to whether a given multivariable polynomial with integer coefficients has an integer solution to f(x1, x2, ..., xn) = 0. Some 70 years later H10 was answered by Yu Matiyasevich with a definitive “no”. The answer lies in the fact that there are more polynomials than there are computable sets. 1 Turing Machines In order to understand what we are discussing when referring to ’computable’ sets we must discuss the concept of the Turing machine. A Turing machine is essentially a finite computer program, however the computer is alloted infinite memory and time. Stated simply, a Turing machine is any algorithm which could in theory be run as a computer program, it is not effected by any physical limitations experienced by real computers. 2 Diophantine, Listable, and Computable Sets Working beyond the concept of a Turing machine we must first bring up several definitions. 1 Definition: An set of integers A is diophantine if there exists a polyno- mail p(t, x) ∈ Z[t, x1, ..., xn] such that: A = {a ∈ Z :(∃x ∈ Zn)p(a, x) = 0} This can be rephrased by saying that a set is diophantine if there is a polynomial with the set as coefficients which has a solution when set to equal zero.
    [Show full text]
  • Hilbert's Tenth Problem
    HILBERT'S TENTH PROBLEM: What can we do with Diophantine equations? Yuri Matiyasevich Steklov Institute of Mathematics at Saint-Petersburg 27 Fontanka, Saint-Petersburg, 191011, Russia URL: http://logic.pdmi.ras.ru/ ~yumat Abstract This is an English version of a talk given by the author in 1996 at a seminar of Institut de Recherche sur l'Enseignement des Math ematique in Paris. More information ab out Hilb ert's tenth problem can b e found on WWW site [31]. Ihave given talks ab out Hilb ert's tenth problem many times but it always gives me a sp ecial pleasure to sp eak ab out it here, in Paris, in the city where David Hilb ert has p osed his famous problems [13 ]. It happ ened during the Second International Congress of Mathematicians whichwas held in 1900, that is, in the last year of 19th century, and Hilb ert wanted to p oint out the most imp ortant unsolved mathematical problems which the 20th century was to inherit from the 19th century. Usually one sp eaks ab out 23 Hilb ert's problems and names them the 1st, the 2nd, ... , the 23rd as they were numb ered in [13]. In fact, most of these 23 problems are collections of related problems. For example, the 8th problem includes, in particular Goldbach's Conjecture, the Riemann Hyp othesis, the in nitude of twin-primes. 1 The formulation of the 10th problem is so short that can b e repro duced here entirely. 10. Entscheidung der Losbarkeit einer diophantischen Gleichung. Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlko ecienten sei vorgelegt: man sol l ein Verfahren angeben, nach welchen sich mittels einer end lichen Anzahl von Operationen entscheiden lat, ob die 1 Gleichung in ganzen rationalen Zahlen losbar ist.
    [Show full text]
  • Brief Sketches of Post-Calculus Courses
    Brief Sketches of Post-Calculus Courses The bulletin descriptions of courses often give you little idea about the topics of the courses, unless you happen to already know the many technical terms that the descriptions use. To address this gap, we offer brief, largely self-contained sketches that are written to give you a glimpse of our upper-level offerings. It may be especially useful to read these sketches around registration time, when you are deciding which courses to take next semester, or when planning for future courses. At the start of this document, we offer some possible routes for starting the mathematics major. While that may help you get started, we encourage all students who are considering the mathematics major to talk with an advisor in the department as early as possible so that you can get advice that is tailored to your background and to your academic and career goals. CONTENTS Suggestions for Getting Started on the Mathematics Major 2 A Comparison of the Computer Programming Options 3 Math 2185, Linear Algebra I for Math Majors 4 Math 2971, Introduction to Mathematical Reasoning 5 Math 3120, Elementary Number Theory 6 Math 3125, Linear Algebra II 7 Math 3257: Introduction to Complex Variables 8 Math 3342, Ordinary Differential Equations 9 Math 3343, Partial Differential Equations 10 Math 3359, Introduction to Mathematical Modeling 11 Math 3410, Mathematics of Finance, Math 3411, Stochastic Calculus Methods in Finance 12 Math 3553, Introduction to Numerical Analysis 13 Math 3613, Introduction to Combinatorics 14 Math
    [Show full text]
  • Almost All Diophantine Sets Are Undecidable Vladik Kreinovich University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-2017 Almost All Diophantine Sets Are Undecidable Vladik Kreinovich University of Texas at El Paso, [email protected] Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep Part of the Mathematics Commons Comments: Technical Report: UTEP-CS-17-77 Published in International Mathematical Forum, 2017, Vol. 12, No. 16, pp. 803-806. Recommended Citation Kreinovich, Vladik, "Almost All Diophantine Sets Are Undecidable" (2017). Departmental Technical Reports (CS). 1170. http://digitalcommons.utep.edu/cs_techrep/1170 This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. Almost All Diophantine Sets Are Undecidable Vladik Kreinovich Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA [email protected] Abstract The known 1970 solution to the 10th Hilbert problem says that no algo- rithm is possible that would decide whether a given Diophantine equation has a solution. In set terms, this means that not all Diophantine sets are decidable. In a posting to the Foundations of Mathematica mailing list, Timothy Y. Chow asked for possible formal justification for his im- pression that most Diophantine equations are not decidable. One such possible justification is presented in this paper. 1 Formulation of the Problem Decidability of Diophantine equations: a brief reminder. A Diophantine equation is an equation of the type P (x1; : : : ; xn; c1; : : : ; cm) = 0, where P is a polynomial with integer coefficients, x1; : : : ; xn are natural-valued unknowns, and c1; : : : ; cm are natural-valued parameters.
    [Show full text]