University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-2017 Almost All Diophantine Sets Are Undecidable Vladik Kreinovich University of Texas at El Paso,
[email protected] Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep Part of the Mathematics Commons Comments: Technical Report: UTEP-CS-17-77 Published in International Mathematical Forum, 2017, Vol. 12, No. 16, pp. 803-806. Recommended Citation Kreinovich, Vladik, "Almost All Diophantine Sets Are Undecidable" (2017). Departmental Technical Reports (CS). 1170. http://digitalcommons.utep.edu/cs_techrep/1170 This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
[email protected]. Almost All Diophantine Sets Are Undecidable Vladik Kreinovich Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA
[email protected] Abstract The known 1970 solution to the 10th Hilbert problem says that no algo- rithm is possible that would decide whether a given Diophantine equation has a solution. In set terms, this means that not all Diophantine sets are decidable. In a posting to the Foundations of Mathematica mailing list, Timothy Y. Chow asked for possible formal justification for his im- pression that most Diophantine equations are not decidable. One such possible justification is presented in this paper. 1 Formulation of the Problem Decidability of Diophantine equations: a brief reminder. A Diophantine equation is an equation of the type P (x1; : : : ; xn; c1; : : : ; cm) = 0, where P is a polynomial with integer coefficients, x1; : : : ; xn are natural-valued unknowns, and c1; : : : ; cm are natural-valued parameters.