The BIS Pocket Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patient-Monitoring Systems
17 Patient-Monitoring Systems REED M. GARDNER AND M. MICHAEL SHABOT After reading this chapter,1 you should know the answers to these questions: ● What is patient monitoring, and why is it done? ● What are the primary applications of computerized patient-monitoring systems in the intensive-care unit? ● How do computer-based patient monitors aid health professionals in collecting, analyzing, and displaying data? ● What are the advantages of using microprocessors in bedside monitors? ● What are the important issues for collecting high-quality data either automatically or manually in the intensive-care unit? ● Why is integration of data from many sources in the hospital necessary if a computer is to assist in critical-care-management decisions? 17.1 What Is Patient Monitoring? Continuous measurement of patient parameters such as heart rate and rhythm, respira- tory rate, blood pressure, blood-oxygen saturation, and many other parameters have become a common feature of the care of critically ill patients. When accurate and imme- diate decision-making is crucial for effective patient care, electronic monitors frequently are used to collect and display physiological data. Increasingly, such data are collected using non-invasive sensors from less seriously ill patients in a hospital’s medical-surgical units, labor and delivery suites, nursing homes, or patients’ own homes to detect unex- pected life-threatening conditions or to record routine but required data efficiently. We usually think of a patient monitor as something that watches for—and warns against—serious or life-threatening events in patients, critically ill or otherwise. Patient monitoring can be rigorously defined as “repeated or continuous observations or meas- urements of the patient, his or her physiological function, and the function of life sup- port equipment, for the purpose of guiding management decisions, including when to make therapeutic interventions, and assessment of those interventions” (Hudson, 1985, p. -
Capnography 101 Oxygenation and Ventilation
It’s Time to Start Using it! Capnography 101 Oxygenation and Ventilation What is the difference? Oxygenation and Ventilation Ventilation O Oxygenation (capnography) 2 (oximetry) CO Cellular 2 Metabolism Capnographic Waveform • Capnograph detects only CO2 from ventilation • No CO2 present during inspiration – Baseline is normally zero CD AB E Baseline Capnogram Phase I Dead Space Ventilation • Beginning of exhalation • No CO2 present • Air from trachea, posterior pharynx, mouth and nose – No gas exchange occurs there – Called “dead space” Capnogram Phase I Baseline A B I Baseline Beginning of exhalation Capnogram Phase II Ascending Phase • CO2 from the alveoli begins to reach the upper airway and mix with the dead space air – Causes a rapid rise in the amount of CO2 • CO2 now present and detected in exhaled air Alveoli Capnogram Phase II Ascending Phase C Ascending II Phase Early A B Exhalation CO2 present and increasing in exhaled air Capnogram Phase III Alveolar Plateau • CO2 rich alveolar gas now constitutes the majority of the exhaled air • Uniform concentration of CO2 from alveoli to nose/mouth Capnogram Phase III Alveolar Plateau Alveolar Plateau CD III AB CO2 exhalation wave plateaus Capnogram Phase III End-Tidal • End of exhalation contains the highest concentration of CO2 – The “end-tidal CO2” – The number seen on your monitor • Normal EtCO2 is 35-45mmHg Capnogram Phase III End-Tidal End-tidal C D AB End of the the wave of exhalation Capnogram Phase IV Descending Phase • Inhalation begins • Oxygen fills airway • CO2 level quickly -
Data Driven Investigation of Bispectral Index Algorithm
www.nature.com/scientificreports OPEN Data Driven Investigation of Bispectral Index Algorithm Hyung-Chul Lee, Ho-Geol Ryu, Yoonsang Park , Soo Bin Yoon, Seong Mi Yang, Hye-Won Oh & Chul-Woo Jung Received: 7 January 2019 Bispectral index (BIS), a useful marker of anaesthetic depth, is calculated by a statistical multivariate Accepted: 9 September 2019 model using nonlinear functions of electroencephalography-based subparameters. However, only Published: xx xx xxxx a portion of the proprietary algorithm has been identifed. We investigated the BIS algorithm using clinical big data and machine learning techniques. Retrospective data from 5,427 patients who underwent BIS monitoring during general anaesthesia were used, of which 80% and 20% were used as training datasets and test datasets, respectively. A histogram of data points was plotted to defne fve BIS ranges representing the depth of anaesthesia. Decision tree analysis was performed to determine the electroencephalography subparameters and their thresholds for classifying fve BIS ranges. Random sample consensus regression analyses were performed using the subparameters to derive multiple linear regression models of BIS calculation in fve BIS ranges. The performance of the decision tree and regression models was externally validated with positive predictive value and median absolute error, respectively. A four-level depth decision tree was built with four subparameters such as burst suppression ratio, power of electromyogram, 95% spectral edge frequency, and relative beta ratio. Positive predictive values were 100%, 80%, 80%, 85% and 89% in the order of increasing BIS in the fve BIS ranges. The average of median absolute errors of regression models was 4.1 as BIS value. -
Monitoring Anesthetic Depth
ANESTHETIC MONITORING Lyon Lee DVM PhD DACVA MONITORING ANESTHETIC DEPTH • The central nervous system is progressively depressed under general anesthesia. • Different stages of anesthesia will accompany different physiological reflexes and responses (see table below, Guedel’s signs and stages). Table 1. Guedel’s (1937) Signs and Stages of Anesthesia based on ‘Ether’ anesthesia in cats. Stages Description 1 Inducement, excitement, pupils constricted, voluntary struggling Obtunded reflexes, pupil diameters start to dilate, still excited, 2 involuntary struggling 3 Planes There are three planes- light, medium, and deep More decreased reflexes, pupils constricted, brisk palpebral reflex, Light corneal reflex, absence of swallowing reflex, lacrimation still present, no involuntary muscle movement. Ideal plane for most invasive procedures, pupils dilated, loss of pain, Medium loss of palpebral reflex, corneal reflexes present. Respiratory depression, severe muscle relaxation, bradycardia, no Deep (early overdose) reflexes (palpebral, corneal), pupils dilated Very deep anesthesia. Respiration ceases, cardiovascular function 4 depresses and death ensues immediately. • Due to arrival of newer inhalation anesthetics and concurrent use of injectable anesthetics and neuromuscular blockers the above classic signs do not fit well in most circumstances. • Modern concept has two stages simply dividing it into ‘awake’ and ‘unconscious’. • One should recognize and familiarize the reflexes with different physiologic signs to avoid any untoward side effects and complications • The system must be continuously monitored, and not neglected in favor of other signs of anesthesia. • Take all the information into account, not just one sign of anesthetic depth. • A major problem faced by all anesthetists is to avoid both ‘too light’ anesthesia with the risk of sudden violent movement and the dangerous ‘too deep’ anesthesia stage. -
General Anesthesia and Altered States of Arousal: a Systems Neuroscience Analysis
General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Brown, Emery N., Patrick L. Purdon, and Christa J. Van Dort. “General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis.” Annual Review of Neuroscience 34, no. 1 (July 21, 2011): 601–628. As Published http://dx.doi.org/10.1146/annurev-neuro-060909-153200 Publisher Annual Reviews Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/86331 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ NIH Public Access Author Manuscript Annu Rev Neurosci. Author manuscript; available in PMC 2012 July 06. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Annu Rev Neurosci. 2011 ; 34: 601–628. doi:10.1146/annurev-neuro-060909-153200. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis Emery N. Brown1,2,3, Patrick L. Purdon1,2, and Christa J. Van Dort1,2 Emery N. Brown: [email protected]; Patrick L. Purdon: [email protected]; Christa J. Van Dort: [email protected] 1Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Abstract Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. -
Air & Surface Transport Nurses Association Position Statement
Air & Surface Transport Nurses Association Position Statement Advanced Airway Management Background In the early 1970s, civilian flight nursing became a recognized nursing specialty and an integral element in the care of critically ill and injured patients. Advanced airway management is an essential procedure in meeting those patient care goals. The procedure can be performed safely and effectively by properly trained transport teams; however, it is not without risks and complications. Individual state Boards of Nursing regulate registered nursing licensure. ASTNA believes transport providers and teams must work collegially and collaboratively with these regulatory bodies. Registered nurses who perform advanced airway management provide care under the direction and protocols of their medical directors. In addition, Registered Nurses who perform advanced airway management skills must have comprehensive initial and ongoing education to optimize clinical knowledge, skill, and decision-making ability. Education programs teaching these advanced airway management skills should include at least the following components: • Comprehensive review of airway/respiratory anatomy and physiology • Basic airway skills and techniques • Clinical assessment skills to evaluate the need for escalated intervention • Extraglottic airway devices • Tracheal intubation using a variety of devices • Surgical airway techniques • Pharmacology and clinical application of sedative, analgesic, hypnotic, and neuromuscular blocking agents used in advanced airway management • Patient safety monitoring equipment, including continuous pulse oximetry, continuous heart rate, and continuous monitoring of waveform capnography • Teamwork and crisis resource management, as applied to the clinical environment both as team leaders and team members Clinical best practices evolve continuously.1 Transport programs performing advanced airway should adopt policies that ensure clinical education and practice components remain current. -
The Bispectral Index Response to Tracheal Intubation Is Similar In
458 GENERAL ANESTHESIA The bispectral index response to tracheal intuba- tion is similar in normotensive and hypertensive patients [La réponse de l’index bispectral à l’intubation endotrachéale est similaire chez les patients normotendus et hypertendus] Masayasu Nakayama MD,* Hiromichi Ichinose MD,† Shuji Yamamoto MD,† Noriaki Kanaya MD,* Akiyoshi Namiki MD PhD* Purpose: To compare the hemodynamic and bispectral index (BIS) Conclusion : Les patients hypertendus ou non réagissent par la même responses to tracheal intubation in normotensive and hypertensive réaction d’éveil (mesurée par le BIS) à l’intubation endotrachéale mal- patients. gré l’augmentation de la réponse vasopressive chez les hypertendus. Method: Three minutes after induction of anesthesia with thiamy- lal and fentanyl, tracheal intubation was performed in 24 nor- motensive and 22 hypertensive patients. Heart rate (HR), mean arterial pressure (MAP), and BIS were measured every minute. HE bispectral index (BIS), obtained from Results: Tracheal intubation increased HR, MAP, and BIS in both bispectral analysis of the electroencephalo- normotensive and hypertensive patients. The increase in MAP was gram (EEG), reflects the hypnotic compo- significantly greater in hypertensive patients than in normotensive nent of anesthesia.1–3 Previous studies have patients, but there were no differences in HR or BIS in the two T shown that tracheal intubation is associated with groups of patients. increases in BIS as well as heart rate (HR) and blood Conclusion: Patients with and without hypertension exhibit the pressure.4–6 Therefore, intubation is likely to affect same arousal response (as measured by BIS) to tracheal intubation both the hypnotic and antinociceptive components of despite the enhanced vasopressor response in hypertensive anesthesia. -
An Introduction to Anaesthesia
What You Need to KNoW about An introduction to anaesthesia Introduction divided into three stages: induction, main- n Central neuraxial block, e.g. spinal or Anaesthetic experience in the undergradu- tenance and emergence. epidural (Figure 1 and Table 1). ate timetable is often very limited so it can In regional anaesthesia, nerve transmis- remain somewhat of a mysterious practice sion is blocked, and the patient may stay Components of a general well into specialist training. This introduc- awake or be sedated or anaesthetized dur- anaesthetic tion to the components of an anaesthetic ing a procedure. Techniques used include: A general anaesthetic always involves an will help readers to get more from clinical n Local anaesthetic field block hypnotic agent, usually an analgesic and attachments in surgery and anaesthetics or n Peripheral nerve block may also include muscle relaxation. The serve as an introduction to the topic for n Nerve plexus block combination is referred to as the ‘triad of novice or non-anaesthetists. anaesthesia’. Figure 1. Schematic vertical longitudinal section The relative importance of each com- Types and sites of anaesthesia of vertebral column and structures encountered ponent depends on surgical and patient The term anaesthesia comes from the when performing central neuraxial blocks. * factors: the intervention planned, site, Greek meaning loss of sensation. negative pressure space filled with fat and surgical access requirement and the Anaesthetic practice has evolved from a venous plexi. † extends to S2, containing degree of pain or stimulation anticipated. need for pain relief and altered conscious- arachnoid mater, CSF, pia mater, spinal cord The technique is tailored to the individu- ness to allow surgery. -
Inpatient Sepsis Management
Inpatient Sepsis Management - Adult Page 1 of 6 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. This algorithm should not be used to treat pregnant women. PRESENTATION EVALUATION TREATMENT Call Code Blue Team1 Patient exhibits at least two of the Yes following modified SIRS criteria: ● Temperature < 36 or > 38.4°C Is patient ● MERIT team1 to evaluate and notify Primary MD/APP STAT ● Heart rate > 110 bpm unresponsive? ● Prepare transfer to ICU See Page 2: Sepsis ● Respiratory rate > 24 bpm ● Assess for presence of infection (see Appendix A) Management ● WBC count < 3 or > 15 K/microliter ● Assess for organ dysfunction (see Appendix B) No Yes ● Primary team to consider goals of care discussion if appropriate Is 1,2 the patient ● Sepsis APP to notify unstable? Primary MD/APP 1,2 ● Sepsis APP to evaluate ● See Page 2: Sepsis No ● Assess for presence of infection (see Yes Management Appendix A) Sepsis? ● Assess for organ dysfunction (see ● For further work up, Appendix B) No initiate Early Sepsis Order Set ● Follow up evaluation by SIRS = systemic inflammatory response syndrome Primary Team APP = advanced practice provider 1 For patients in the Acute Cancer -
A Look at Closed Claims
Looking at the past to improve A Look at the future: • Ethical considerations preclude direct, Closed Claims prospective experimentation to quantify Where and how can we improve? risks and predict outcomes associated with differences in anesthesia practice. • Prospective nonexperimental studies are prohibitively expensive for rare events, Mary Wojnakowski, CRNA, PhD such as anesthesia incidents. Associate Professor Midwestern University • Retrospective studies are therefore the Nurse Anesthesia Program norm, including examination of closed malpractice claims. Definitions: • Malpractice claim: demand for financial compensation for an injury resulting from medical care. • Closed malpractice claim: claim is dropped or ASA Closed Claims Project settled by the parties or adjudicated by the courts. • Closed Claim Analysis: closed claim file is reviewed by a practicing provider and consists of relevant hospital & medical records, narrative statement from involved healthcare personnel, expert & peer reviews, summaries of depositions, outcome reports, and cost of settlement. • Standardized form for data collection • Initiated in 1984 • Initial findings: unexpected group of claims • Currently contains approx 8000 claims (14 out of 900) that involved sudden dating back to 1962 from 35 cardiac arrest in relatively healthy patients participating insurance carriers. who had received spinal anesthesia. • Excludes claims for dental damage • Sudden appearance of bradycardia & hypotension, which rapidly progressed • Propose: improve patient safety and -
The Introduction of Bispectral Index (BIS) in Anesthesia Practice
EDITORIAL VIEW The introduction of bispectral index (BIS) in anesthesia practice Dario Galante, MD, Matteo Melchionda, MD University Department of Anesthesia and Intensive Care University Hospital Ospedali Riuniti, Foggia, Italy Correspondance: Dario Galante, MD, University Department of Anesthesia and Intensive Care, University Hospital Ospedali Riuniti, Foggia (Italy); E-mail: [email protected] SUMMARY During every surgical procedure we must keep the anesthetic level at an appropriate level so that the patient will neither feel pain nor remember the operation. Yet this anesthetic depth must be balanced against the negative effects and consequences of excess anesthetic and the associated potential for delayed wake up. A wide range of monitoring devices allows us to to avoid the risks of pain, unwanted movements, hemodynamic changes as well as awareness. During the past few years processed EEG signals have become available that help gauge the depth of anesthesia by generating a score linked to EEG activity, which becomes depressed as anesthesia deepens. The bispectral index (BIS) represents one of these innovative methods of monitoring in anesthesia, even if more studies are still needed to make it more precise, especially in pediatric patients and neonates where reliability has yet to be well established. Key words: Bispectral index; Neurological monitoring; Awareness; Depth of anesthesia Citation: Galante D, Melchionda M. The introduction of bispectral index (BIS) in anesthesia practice. Anaesth Pain & Intensive Care 2012;16(3):235-236 The Bispectral IndexTM (Aspect Medical Systems Inc., b) It calculates the index of the state of sedation due to Newton, Mass) is a complex EEG parameter that changes induced by anesthetics by an algorithm combines power spectrum analysis, time domain analysis c) It obtains the value that is recorded by means of a and it values their changes over time. -
National Institute for Clinical Excellence Guidance on Measuring Depth of Anaesthesia: Limitations of EEG-Based Technology
Volume 110, Number 3, March 2013 British Journal of Anaesthesia 110 (3): 325–8 (2013) doi:10.1093/bja/aet006 EDITORIAL I Downloaded from https://academic.oup.com/bja/article/110/3/325/250090 by guest on 30 September 2021 National Institute for Clinical Excellence guidance on measuring depth of anaesthesia: limitations of EEG-based technology J. J. Pandit1* and T. M. Cook2 1 Nuffield Department of Anaesthetics, Oxford University Hospitals, Oxford, UK 2 Royal United Hospital, Bath, UK * E-mail: [email protected] Accidental awareness during anaesthesia, especially with The available evidence on the impact of the technologies on pain and subsequent recall of the event, is a terrifying pros- reducing the likelihood of intraoperative awareness is limited. Overall, [EEG-base monitors are] not associated with a statistic- pect. A high proportion of those who experience it are ally significant reduction in intra-operative awareness in reported to go on to develop symptoms similar to post- patients classified as at higher risk ... traumatic stress disorder.1 The reported incidence of recall after general anaesthesia, as ascertained by later question- What is the anaesthetist reader (or patient) to make of these ing using the Brice questionnaire, is high, 1–2 per 1000 contemporaneous and conflicting conclusions? cases (although the majority of these do not involve painful The bodies providing these two sources of advice had very experiences, are very brief recollections, or both).2 –8 There- different remits, which may explain the opposing conclu- fore, a monitor to help the anaesthetists identify those sions. The Technology Assessment Report was a review (in- patients who are awake during surgery would be extremely cluding a meta-analysis which incorporated results of a 11 useful.