Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R
1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R. Movellan, Member, IEEE, and Terrence J. Sejnowski, Fellow, IEEE Abstract—A number of current face recognition algorithms use (ICs). Barlow also argued that such representations are advan- face representations found by unsupervised statistical methods. tageous for encoding complex objects that are characterized by Typically these methods find a set of basis images and represent high-order dependencies. Atick and Redlich have also argued faces as a linear combination of those images. Principal compo- for such representations as a general coding strategy for the vi- nent analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise relationships sual system [3]. between pixels in the image database. In a task such as face Principal component analysis (PCA) is a popular unsuper- recognition, in which important information may be contained in vised statistical method to find useful image representations. the high-order relationships among pixels, it seems reasonable to Consider a set of basis images each of which has pixels. expect that better basis images may be found by methods sensitive A standard basis set consists of a single active pixel with inten- to these high-order statistics. Independent component analysis sity 1, where each basis image has a different active pixel. Any (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of optimal information given image with pixels can be decomposed as a linear com- transfer through sigmoidal neurons.
[Show full text]