Natural Image Coding in V1: How Much Use Is Orientation Selectivity?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R
1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R. Movellan, Member, IEEE, and Terrence J. Sejnowski, Fellow, IEEE Abstract—A number of current face recognition algorithms use (ICs). Barlow also argued that such representations are advan- face representations found by unsupervised statistical methods. tageous for encoding complex objects that are characterized by Typically these methods find a set of basis images and represent high-order dependencies. Atick and Redlich have also argued faces as a linear combination of those images. Principal compo- for such representations as a general coding strategy for the vi- nent analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise relationships sual system [3]. between pixels in the image database. In a task such as face Principal component analysis (PCA) is a popular unsuper- recognition, in which important information may be contained in vised statistical method to find useful image representations. the high-order relationships among pixels, it seems reasonable to Consider a set of basis images each of which has pixels. expect that better basis images may be found by methods sensitive A standard basis set consists of a single active pixel with inten- to these high-order statistics. Independent component analysis sity 1, where each basis image has a different active pixel. Any (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of optimal information given image with pixels can be decomposed as a linear com- transfer through sigmoidal neurons. -
Statistical Inference: Learning in Artificial Neural Networks Howard Hua Yang, Noboru Murata and Shun-Ichi Amari
Review Yang et al. – Learning in ANNs Statistical inference: learning in artificial neural networks Howard Hua Yang, Noboru Murata and Shun-ichi Amari Artificial neural networks (ANNs) are widely used to model low-level neural activities and high-level cognitive functions. In this article, we review the applications of statistical inference for learning in ANNs. Statistical inference provides an objective way to derive learning algorithms both for training and for evaluation of the performance of trained ANNs. Solutions to the over-fitting problem by model-selection methods, based on either conventional statistical approaches or on a Bayesian approach, are discussed. The use of supervised and unsupervised learning algorithms for ANNs are reviewed. Training a multilayer ANN by supervised learning is equivalent to nonlinear regression. The ensemble methods, bagging and arching, described here, can be applied to combine ANNs to form a new predictor with improved performance. Unsupervised learning algorithms that are derived either by the Hebbian law for bottom-up self-organization, or by global objective functions for top-down self-organization are also discussed. Although the brain is an extremely large and complex units and connections in an ANN are different at these system, from the point of view of its organization the hier- two levels. archy of the brain can be divided into eight levels: behavior, At the neural-activity level, the units and connections cortex, neural circuit, neuron, microcircuit, synpase, mem- model the nerve cells and the synapses between the neurons, brane and molecule. With advanced invasive and non- respectively. This gives a correspondence between an ANN invasive measurement techniques, the brain can be observed and a neural system1. -
Generalized Independent Component Analysis Over Finite Alphabets Amichai Painsky, Member, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY 1 Generalized Independent Component Analysis Over Finite Alphabets Amichai Painsky, Member, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE Abstract Independent component analysis (ICA) is a statistical method for transforming an observable multidimensional random vector into components that are as statistically independent as possible from each other. Usually the ICA framework assumes a model according to which the observations are generated (such as a linear transformation with additive noise). ICA over finite fields is a special case of ICA in which both the observations and the independent components are over a finite alphabet. In this work we consider a generalization of this framework in which an observation vector is decomposed to its independent components (as much as possible) with no prior assumption on the way it was generated. This generalization is also known as Barlow’s minimal redundancy representation problem and is considered an open problem. We propose several theorems and show that this NP hard problem can be accurately solved with a branch and bound search tree algorithm, or tightly approximated with a series of linear problems. Our contribution provides the first efficient and constructive set of solutions to Barlow’s problem. The minimal redundancy representation (also known as factorial code) has many applications, mainly in the fields of Neural Networks and Deep Learning. The Binary ICA (BICA) is also shown to have applications in several domains including medical diagnosis, multi-cluster assignment, network tomography and internet resource management. In this work we show this formulation further applies to multiple disciplines in source coding such as predictive coding, distributed source coding and coding of large alphabet sources. -
Linear Independent Component Analysis Over Finite Fields: Algorithms and Bounds Amichai Painsky, Member, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1 Linear Independent Component Analysis over Finite Fields: Algorithms and Bounds Amichai Painsky, Member, IEEE, Saharon Rosset and Meir Feder, Fellow, IEEE Abstract—Independent Component Analysis (ICA) is a sta- hold, and a more robust approach is required. In other words, tistical tool that decomposes an observed random vector into we would like to decompose any given observed mixture components that are as statistically independent as possible. into “as independent as possible” components, with no prior ICA over finite fields is a special case of ICA, in which both the observations and the decomposed components take values assumption on the way it was generated. This problem was over a finite alphabet. This problem is also known as minimal first introduced by Barlow [1] as minimal redundancy repre- redundancy representation or factorial coding. In this work we sentation and was later referred to as factorial representation focus on linear methods for ICA over finite fields. We introduce [2] or generalized ICA over finite alphabets [3]. a basic lower bound which provides a fundamental limit to the A factorial representation has several advantages. The prob- ability of any linear solution to solve this problem. Based on this bound, we present a greedy algorithm that outperforms ability of occurrence of any realization can be simply com- all currently known methods. Importantly, we show that the puted as the product of the probabilities of the individual overhead of our suggested algorithm (compared with the lower components that represent it (assuming such decomposition bound) typically decreases, as the scale of the problem grows. -
Bartlett TNN02.Pdf
1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R. Movellan, Member, IEEE, and Terrence J. Sejnowski, Fellow, IEEE Abstract—A number of current face recognition algorithms use (ICs). Barlow also argued that such representations are advan- face representations found by unsupervised statistical methods. tageous for encoding complex objects that are characterized by Typically these methods find a set of basis images and represent high-order dependencies. Atick and Redlich have also argued faces as a linear combination of those images. Principal compo- for such representations as a general coding strategy for the vi- nent analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise relationships sual system [3]. between pixels in the image database. In a task such as face Principal component analysis (PCA) is a popular unsuper- recognition, in which important information may be contained in vised statistical method to find useful image representations. the high-order relationships among pixels, it seems reasonable to Consider a set of basis images each of which has pixels. expect that better basis images may be found by methods sensitive A standard basis set consists of a single active pixel with inten- to these high-order statistics. Independent component analysis sity 1, where each basis image has a different active pixel. Any (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of optimal information given image with pixels can be decomposed as a linear com- transfer through sigmoidal neurons. -
Deep Learning in Neural Networks: an Overview
Neural Networks 61 (2015) 85–117 Contents lists available at ScienceDirect Neural Networks journal homepage: www.elsevier.com/locate/neunet Review Deep learning in neural networks: An overview Jürgen Schmidhuber The Swiss AI Lab IDSIA, Istituto Dalle Molle di Studi sull'Intelligenza Artificiale, University of Lugano & SUPSI, Galleria 2, 6928 Manno-Lugano, Switzerland article info a b s t r a c t Article history: In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in Received 2 May 2014 pattern recognition and machine learning. This historical survey compactly summarizes relevant work, Received in revised form 12 September much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth 2014 of their credit assignment paths, which are chains of possibly learnable, causal links between actions Accepted 14 September 2014 and effects. I review deep supervised learning (also recapitulating the history of backpropagation), Available online 13 October 2014 unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. Keywords: Deep learning ' 2014 Published by Elsevier Ltd. Supervised learning Unsupervised learning Reinforcement learning Evolutionary computation Contents 1. Introduction to Deep Learning (DL) in Neural Networks (NNs).................................................................................................................................. 86 2. Event-oriented -
Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R
1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R. Movellan, Member, IEEE, and Terrence J. Sejnowski, Fellow, IEEE Abstract—A number of current face recognition algorithms use (ICs). Barlow also argued that such representations are advan- face representations found by unsupervised statistical methods. tageous for encoding complex objects that are characterized by Typically these methods find a set of basis images and represent high-order dependencies. Atick and Redlich have also argued faces as a linear combination of those images. Principal compo- for such representations as a general coding strategy for the vi- nent analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise relationships sual system [3]. between pixels in the image database. In a task such as face Principal component analysis (PCA) is a popular unsuper- recognition, in which important information may be contained in vised statistical method to find useful image representations. the high-order relationships among pixels, it seems reasonable to Consider a set of basis images each of which has pixels. expect that better basis images may be found by methods sensitive A standard basis set consists of a single active pixel with inten- to these high-order statistics. Independent component analysis sity 1, where each basis image has a different active pixel. Any (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of optimal information given image with pixels can be decomposed as a linear com- transfer through sigmoidal neurons.