Trichoptera & Lepidoptera I

Total Page:16

File Type:pdf, Size:1020Kb

Trichoptera & Lepidoptera I Tortricid moths (Lepidoptera) of Oceania Peter T Oboyski Essig Museum of Entomology University of California, Berkeley Family: Noctuidae (noctuid, owlet moths) Family: Geometridae (geometers) Family: Tortricidae ~ 1000 described species worldwide Small to medium size (0.5 - 2.5 cm wingspan) Often brown and gray, generally cryptic Mostly nocturnal Include pests of forestry and agriculture Some strictly monophagous others broadly polyphagous Most species are readily attracted to lights and are often numerical abundant One of the most species-rich families in the “microlepidoptera” Cryptophlebia pallifimbriana - Mape pest Cryptophlebia illepida - Macadamia pest Epiphyas postvittana - agricultural pest Successful lineages in the Polynesia Eccoptocera Dichelopa Strepsicrates Pararrhaptica Cydia Crocidosema Spheterista Bactra Cryptophlebia Tritopterna Archipini Bactrini Grapholitini Eucosmini Tortricinae Olethreutinae “leaf-rollers” “internal” feeders Tortricidae Below left: Tortrix viridana (Tortricinae: Tortricini) Larva within rolled leaves of Quercus sp. (Photo: Milan Zubrik) Above right: Cydia plicata (Olethreutinae: Grapholitini) Larva within seed of Sophora chrysophylla in Hawaii Pacific Islands Clarke Marquesas Tortricidae Rapa Micronesia Bradley Solomons New Hebrides Fiji Norfolk Island Diakonoff New Guinea Philippines Swezey, Zimmerman JFG Clarke Hawaii Surveys for microlepidoptera (particularly Tortricidae) in the Pacific To radiate or not to radiate? Genera of Tortricidae Soc Marq Rapa Haw Dichelopa - Australia (6) 2 26 15 0 Pararrhaptica 0 0 0 20 Spheterista 0 0 0 16 Cydia - Holearctic+ 1 1 0 20 Cryptophlebia - Afro-Asia-Pacific 3 2 1 2 Eccoptocera 0 0 0 11 Strepsicrates - Pan-pacific + 4 1 2 1 Bactra - mostly Old World 1 0 1 2 Crocidosema - S. Amer. (16) 1 1 1 4 Tritopterna - Indonesia (2) 1 1 1 0 Dudua - Indonesia (11) 0 1 1 0 To radiate or not to radiate? Genera of Tortricidae Soc Marq Rapa Haw Dichelopa - Australia (6) 2 26 15 0 Pararrhaptica 0 0 0 20 Spheterista 0 0 0 16 Cydia - Holearctic+ 1 1 0 20 Cryptophlebia - Afro-Asia-Pacific 3 2 1 2 Eccoptocera 0 0 0 11 Strepsicrates - Pan-pacific + 4 1 2 1 Bactra - mostly Old World 1 0 1 2 Crocidosema - S. Amer. (16) 1 1 1 4 Tritopterna - Indonesia (2) 1 1 1 0 Dudua - Indonesia (11) 0 1 1 0 26 2+ 6 15 Dichelopa distribution 16+ 20+ Spheterista & Pararrhaptica distribution 3 3 1 1 7 10 9 1 4 1 1 Adoxophyes distribution Plus: Seychelles, Reunion, Mauritius, Madagascar, India, Russia, Germany 1 1 1 1 1 1 1 1 1 1 1 1 2 2+ 9 2 7 Strepsicrates distribution Plus: Madagascar, Canary Islands, Saudi Arabia, Sri Lanka 1 2 1 1 1 1 1 Tritopterna eocnephaea distribution 1 2 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 1 7 2 11 1 2 1 1 4 1 Plus: Madagascar, India, Sri Lanka Dudua (aprobola) distribution 3 5 1 2 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 1 7 3 2 7 2 4 1 1 2 3+ 8 1 Cryptophlebia distribution Plus: Africa, Madagascar, Mauritius, Reunion, Seychelles, India, Sri Lanka, Saudi Arabia Cydia Hawaiian(Olethreutinae: Grapholitini) Cydia in: TaxonomyHawaii 13 previously1 cm described species from Hawaii --- 20 now known 220+ species, mostly holearctic ~20 1 1 3? Cydia distribution Conclusions For the “leaf-roller” tribe Archipini (subfamily Tortricinae), radiation of 1 genus per archipelago (2 in Hawaii) We can speculate that there may be niche preoccupation preventing establishment/radiation of other genera or Purely chance colonization on each archipelago Genera in the subfamily Olethreutinae (except for Cydia) appear to have limited radiations, instead with widespread individual species. General patterns suggest origins out of Indo-Australian area, except for Cydia in Hawaii Acknowledgements Advisors: George Roderick Berkeley Natural Rosemary Gillespie Jerry Powell History Museums Field & Lab assistants: Marie Franc Katie Roggenveen Zac Hannah Matt Strauser UC Berkeley Aviva Goldmann Walker Fund Jiao "Joyce" Xue Lepidoptera Phylogeny From Grimaldi & Engel (2005) Evolution of the Insects {modified from Kristensen (1999) Handbook of Zoology}.
Recommended publications
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • Strepsicrates Macropetana)
    Forest and Environment 108 LIFE HISTORY AND ABUNDANCE OF THE EUCALYPTUS LEAFROLLER (STREPSICRATES MACROPETANA) N.A. MAUCHLINE1, T.M. WITHERS2, Q. WANG1 and L. DAVIS1 1Plant Protection Group, Institute of Natural Resources, Massey University, Private Bag 11222, Palmerston North 2Forest Health, Forest Research, Private Bag 3020, Rotorua ABSTRACT The Eucalyptus leafroller, Strepsicrates macropetana Meyrick, has become a pest of increasing economic importance to young eucalypt plantations in New Zealand. Damage to shoot tips, leaves, and developing flowers can potentially impact on tree form and growth. Neither S. macropetana life history nor abundance in the field has been well researched up until now. A laboratory study showed that larvae developed through five instars, with colour ranging from translucent green/yellow to a pink/red. A full life cycle of this species was completed within 46.2 ± 11.4 days (mean ± SD) under laboratory conditions (20°C ± 2°C) on Eucalyptus macarthurii. A survey over 1998/1999 summer within the Manawatu region indicated that average leafroller occurrence was greater than five active individuals per tree on five of the fifteen Eucalyptus species examined. Of those five species, abundance was greater on trees without adult foliage. This insect occurred predominately within webbing about the apical shoot tips, and although rare (0.89%), up to six larvae were sometimes present within the same webbing. More detailed investigations, including the number of generations occurring per year in the field, is currently being carried out. Keywords: Tortricidae, Strepsicrates macropetana, leafroller, Eucalyptus, life-history, abundance. INTRODUCTION The Eucalyptus leafroller, Strepsicrates macropetana Meyrick, originated from Australia and was first recorded in New Zealand, within the Auckland region, around 1921.
    [Show full text]
  • E Near East Forestry and Range Commission
    November 2017 FO:NEFRC/2017/9 E NEAR EAST FORESTRY AND RANGE COMMISSION TWENTY-THIRD SESSION Beirut, Lebanon, 11 - 14 December 2017 FOREST HEALTH IN THE NEAR EAST AND NORTH AFRICA REGION I. INTRODUCTION 1. Based on FRA 2015 data, NENA forest cover is significantly small, estimated at 42 million hectares (3.0 percent of region’s land area) while Other Wooded Land (OWL) is estimated at 35.4 million hectares. In total both forests and OWL represents 5.4 percent of the land area of the region. 2. The forests in the NENA region are used for timber, wood fuel and many other forest related uses: grazing, agriculture, and as a source of non-wood products which are an integral part of the livelihood of the rural population. In addition to the socio-economic functions, these forests provide ecosystem services such as watershed management, soil protection and combatting desertification. 3. The increasing number of forest pest outbreaks in the NENA region is threatening the health and vitality of the forest cover. There are a number of factors that lead to pest outbreaks; increased travel and trade together with climate change impacts trigger pest introduction, establishment and rapid colonization events (FAO, 2009). Although the direct effects of climate on the population dynamics of forest insect pests and other biotic disturbance agents remain poorly understood, the common implicated causal factor for widespread decline of many tree species in multiple forest types is considered to be elevated temperatures and/or water stress. 4. Forest decline diseases are complex and involve interacting factors (Ceisla, 2011).
    [Show full text]
  • The Biology of Casmara Subagronoma (Lepidoptera
    insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms.
    [Show full text]
  • Alien Invasive Species and International Trade
    Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A.
    [Show full text]
  • Pest and Diseases in Mango (Mangifera Indica L.) J
    PEST AND DISEASES IN MANGO (MANGIFERA INDICA L.) J. González-Fernández, J.I. Hormaza IHSM la Mayora CSIC-UMA, 29750 Algarrobo, Malaga, Spain EXECUTIVE SUMMARY In this work, we review the most important pests and diseases that affect mango production worldwide as well as the main measures implemented to control them. Pests and diseases are the main factors that can impact sustainable mango fruit production in the tropics and subtropics worldwide. Commercial cultivation of mango, characterized by expansion to new areas, changing crop management, replacement of varieties and increased chemical interventions, has altered significantly the pest and disease community structure in this crop in the different mango producing regions. In addition, climate change is inducing the emergence of new pests and, whereas globalization and trade liberalization have created wide opportunities for mango commercialization growth, at the same time, this can result in faster dispersion of pests and diseases among different mango growing areas if proper sanitary measures are not implemented. This review covers different topics related to pests and diseases in mango. First, a thorough description of the main pests and diseases that affect mango is provided. Second, the different approaches used in different mango producing countries for chemical and biological control are described. Third, recommendations for appropriate mango management techiques that include integrated pest and disease management, reduction in the use of chemicals and the implementation of a good monitoring and surveillance system to help control the main pests and diseases, are also discussed. Finally, the current knowledge on agrohomeopathy and Korean Natural Farming is analyzed and recommendations on future lines of research to optimize mango pest and disease control are discussed.
    [Show full text]
  • Report on the Badlands/Parkland Lepidoptera Survey 2017 by the Alberta Lepidopterists' Guild, Under Research Permit #17-171
    Report on the Badlands/Parkland Lepidoptera Survey 2017 by the Alberta Lepidopterists' Guild, under research permit #17-171 Report to Alberta Tourism, Park and Recreation, Parks Division November 2017 by Gregory R. Pohl Gregory Pohl and other members of the Alberta Lepidopterists' Guild were granted a research permit (#17-171) for moth and butterfly (Lepidoptera) observation and collection in the Tolman - Rumsey area of central Alberta in the summer of 2017. This is our report of the species observed and collected in the area. Study Sites: The following sites were visited and sampled for Lepidoptera: 1. Rowley townsite (Figure 1). 51.760°N 112.786°W. July 14-16, 2017. Abandoned home sites and field margins; disturbed area along train tracks. Although not a protected area requiring a permit, this was our base of operations and camping area, it was convenient to observe and collect moths and butterflies here. Most of the species encountered here are expected to occur in nearby parks and natural areas. Collecting methods - daytime observation and netting; UV light traps; mercury vapour lights. 2. "North Rumsey": Township Road 589, vicinity of Rumsey Natural Area. 51.965°N 112.625°W. July 15, 2017. Rolling parkland with small sloughs. Although not technically within the Rumsey Natural Area, this site is very near and is comprised of similar habitat. The species seen here are all expected within the natural area. Collecting methods - daytime observation and netting. 3. "West Rumsey": Western edge of Rumsey Natural Area (Figure 2). 51.882°N 112.691°W. July 15, 2017. Rolling parkland and grassland.
    [Show full text]
  • The Microlepidopterous Fauna of Sri Lanka, Formerly Ceylon, Is Famous
    ON A COLLECTION OF SOME FAMILIES OF MICRO- LEPIDOPTERA FROM SRI LANKA (CEYLON) by A. DIAKONOFF Rijksmuseum van Natuurlijke Historie, Leiden With 65 text-figures and 18 plates CONTENTS Preface 3 Cochylidae 5 Tortricidae, Olethreutinae, Grapholitini 8 „ „ Eucosmini 23 „ „ Olethreutini 66 „ Chlidanotinae, Chlidanotini 78 „ „ Polyorthini 79 „ „ Hilarographini 81 „ „ Phricanthini 81 „ Tortricinae, Tortricini 83 „ „ Archipini 95 Brachodidae 98 Choreutidae 102 Carposinidae 103 Glyphipterigidae 108 A list of identified species no A list of collecting localities 114 Index of insect names 117 Index of latin plant names 122 PREFACE The microlepidopterous fauna of Sri Lanka, formerly Ceylon, is famous for its richness and variety, due, without doubt, to the diversified biotopes and landscapes of this beautiful island. In spite of this, there does not exist a survey of its fauna — except a single contribution, by Lord Walsingham, in Moore's "Lepidoptera of Ceylon", already almost a hundred years old, and a number of small papers and stray descriptions of new species, in various journals. The authors of these papers were Walker, Zeller, Lord Walsingham and a few other classics — until, starting with 1905, a flood of new descriptions 4 ZOOLOGISCHE VERHANDELINGEN I93 (1982) and records from India and Ceylon appeared, all by the hand of Edward Meyrick. He was almost the single specialist of these faunas, until his death in 1938. To this great Lepidopterist we chiefly owe our knowledge of all groups of Microlepidoptera of Sri Lanka. After his death this information stopped abruptly. In the later years great changes have taken place in the tropical countries. We are now facing, alas, the disastrously quick destruction of natural bio- topes, especially by the reckless liquidation of the tropical forests.
    [Show full text]
  • Tortrix Viridana, L
    PLAGAS Y ENFERMEDADES DE LAS MASAS FORESTALES EXTREMEÑAS 6 Tortrix viridana, L. JUNTA DE EXTREMADURA Consejería de Industria, Energía y Medio ambiente DESCRIPCIÓN Orden: Lepidoptera; Familia: Tortricidae Especie defoliadora, ocasionalmente polífaga, si bien ataca principalmente a especies del género 1 Quercus, lo hace con especial relevancia a Quercus ilex y Quercus suber, aunque en Extremadura también se han observado daños relevantes en robledales de Quercus pyrenaica. El imago tiene una envergadura de entre 18 y 23 mm. El tórax, cabeza y alas anteriores son de color verde claro y las alas posteriores grisáceas con una línea blanco-amarillenta. Antenas filiformes y abdomen rechoncho con penachos de escamas en su extremo. No hay dimorfismo sexual. La puesta suele ser de unos 60 huevos que pone en varios grupos de dos o tres, recubiertos por escamas del abdomen y restos que se encuentran en los ramillos donde se produce la puesta, apenas llegan a medir 1, 5 mm de largo. La oruga pasa por 5 estadíos, variando su coloración a lo largo del proceso desde el gris claro hasta un verde cobre pálido. En su último estadío la oruga tiene la cabeza y el pronoto de color negro y abundantes punteaduras del mismo color por el cuerpo. Antes de crisalidar habrá alcanzado una longitud de entre 15 y 20 mm y una anchura de unos 2,5 mm. Las pupas son de color marrón oscuro, alargadas, de unos 10 mm de longitud. CICLO BIOLÓGICO Los huevos eclosionan entre mediados de marzo y abril. La larva se dirige a las yemas donde realiza un agujero por donde penetra para iniciar su alimentación.
    [Show full text]
  • Identification of PCR-RFLP Haplotypes for Assessing Genetic Variation in the Green Oak Leaf Roller Tortrix Viridana L
    Schroeder et.al.·Silvae Genetica (2005) 54-1, 17-24 Identification of PCR-RFLP Haplotypes For Assessing Genetic Variation in the Green Oak Leaf Roller Tortrix viridana L. (Lepidoptera, Tortricidae) By H. SCHROEDER1) and F. SCHOLZ Federal Research Centre for Forestry and Forest Products (BFH), Institute for forest genetics and forest tree breeding (Received 8th February 2005) Abstract (e.g. BOGDANOWICZ et al., 1993; COGNATO et al., 1999) are PCR-RFLPs were performed to assess intraspecific possible. For population research the cytochrome oxi- variation in the green oak leaf roller, Tortrix viridana. dase subunits I and II are often used (e.g. SPERLING et The cytochrome oxidase I and II genes were amplified al., 1999; KRUSE and SPERLING, 2001; RONDAN et al., with universal and self designed primers, respectively, 2002). resulting in three PCR-fragments of 802 bp, 729 bp and In this study PCR-RFLPs were exerted to establish 680 bp. 29 restrictions endonucleases were tested for molecular markers for population genetic studies in T. variation in these PCR-patterns. Seven of these viridana and to get a first insight into which level i.e. enzymes were chosen for further research. We found 13 haplotypes in four populations across a total of 436 indi- within or among populations, variation occurs. First viduals. In addition all haplotypes were sequenced. results give indication for differentiation among popula- More single nucleotide substitutions were detected in tions of this major forest pest. This information will be the sequences, particularly in the middle of the relevant for forest management for predicting future cytochrome oxidase I gene, missed by the used restric- pest outbreaks and expansion.
    [Show full text]
  • Y Epinotia Subocellana (Donovan, [1806]), Dos Nueva Sespecies Para La Península Ibérica (Lepidoptera: Tortricidae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Ylla, J.; Groenen, F.; Maciá, R. Gravitarmata margarotana (Heinemann, 1863) y Epinotia subocellana (Donovan, [1806]), dos nueva sespecies para la Península Ibérica (Lepidoptera: Tortricidae) SHILAP Revista de Lepidopterología, vol. 35, núm. 138, junio, 2007, pp. 261-264 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Disponible en: http://www.redalyc.org/articulo.oa?id=45513810 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 261-264 Gravitarmata margarota 23/6/07 18:13 Página 261 SHILAP Revta. lepid., 35 (138), 2007: 261-264 SRLPEF ISSN:0300-5267 Gravitarmata margarotana (Heinemann, 1863) y Epinotia subocellana (Donovan, [1806]), dos nuevas especies para la Península Ibérica (Lepidoptera: Tortricidae) J. Ylla, F. Groenen & R Macià Resumen Los autores citan a los tortrícidos Gravitarmata margarotana (Heinemann, 1863) y Epinotia subocellana (Do- novan, [1806]) por primera vez para la Península Ibérica. PALABRAS CLAVE: Lepidoptera, Tortricidae, Gravitarmata margarotana, Epinotia subocellana, nuevas citas, Pe- nínsula Ibérica. Gravitarmata margarotana (Heinemann, 1863) and Epinotia subocellana (Donovan, [1806]), two new species for the Iberian Peninsula. (Lepidoptera: Tortricidae) Abstract The tortricids moths Gravitarmata margarotana (Heinemann, 1863), and Epinotia subocellana (Donovan, [1806]), are reported for the first time from the Iberian Peninsula. KEY WORDS: Lepidoptera, Tortricidae, Gravitarmata margarotana, Epinotia subocellana, new records, Iberian Peninsula. Introducción En el año 2005, el segundo de los autores fue requerido para examinar una caja que contenía va- rios ejemplares de tortrícidos procedentes de España.
    [Show full text]
  • Varietal Reaction Against the Incidence of Major Pests of Litchi
    Journal of Entomology and Zoology Studies 2018; 6(5): 131-133 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Varietal reaction against the incidence of major JEZS 2018; 6(5): 131-133 © 2018 JEZS pests of litchi (Litchi chinensis Sonnerat) Received: 21-07-2018 Accepted: 22-08-2018 Rajeev Ranjan Rajeev Ranjan and Vijay Kumar Department of Entomology Dr. Rajendra Prasad Central Abstract Agricultural University, Pusa, Litchi (Litchi chinensis Sonn.) is attacked by several pests and litchi mite (Aceria litchii Keifer), litchi Samastipur, Bihar, India fruit borer (Conopomorpha cramerella Snellen) and litchi leaf roller (Dudua aprobola Meyrick) as major Vijay Kumar pests of litchi causing substantial damage to litchi foliage and fruits at various stages of growth. Study on Department of Entomology varietal reaction against these pests reveal that litchi cultivar ‘Shahi’ was proved most preferred by the Dr. Rajendra Prasad Central pests recording maximum pest incidence viz; mite (53.10%), fruit borer (49.70) and leaf roller (39.90) Agricultural University, Pusa, followed by cv. ‘Rose Scented’ which recorded 44.30, 36.30 and 36.50 percent infestation, respectively Samastipur, Bihar, India against the pests. Whereas the litchi cultivar ‘Deshi’ and ‘Kasba’ were least preferred for the major pests of litchi recording 22.30 and 25.30 percent mite incidence, 18.20 and 20.70 percent fruit borer incidence and 17.00 and 27.00 percent leaf roller incidence during the years of infestation. The other cultivars ‘China’, ‘Dehrarose’, ‘Mandraji’, and ‘Early Bedana’ were found comparatively more susceptible to the pest incidence in comparison to the litchi cultivars ‘Deshi’ and ‘Kasba’.
    [Show full text]