Workability of 1045 Forgin Steel with Residual Copper
Total Page:16
File Type:pdf, Size:1020Kb
WORKABILITY OF 1045 FORGING STEEL WITH RESIDUAL COPPER by Luis Gonzalo Garza-Martínez. ABSTRACT Workability of 1045 steels with residual copper was investigated. Eight 1045 steels with differing copper contents, from 0.09% to 0.39% (by weight), were tested. High strain rate compression tests of pre-bulge samples were used to simulate forging conditions. The testing was divided into two stages: Stage one, in which the steels were oxidized at different temperatures from 1100 to 1200 °C for 10 and 30 minutes and deformed to determine the critical temperature where the surface cracking becomes severe. Stage two, in which the steels were oxidized for 1, 3, 5, and 7 minutes at their critical temperature and deformed. In the stage one testing, steels oxidized for 10 minutes and deformed exhibited a critical temperature. The critical temperature decreased with decreasing copper content, from 1160 °C for the steel with the highest copper content to 1110 °C for the steel with lowest copper content. Steels oxidized for 30 minutes and deformed did not exhibit severe cracking at any temperature, but the steel with the highest copper content deformed at 1140 °C exhibited some cracking. In stage two testing, the results were less consistent. The steels with high copper content (0.39 to 0.32%) exhibited maximum cracking at shorter times, while for the steels with medium copper content (0.30 to 0.21%) the maximum cracking occurred at longer times. No steel exhibited cracking when oxidized at 1200 °C and deformed. Hot-shortness is the brittleness in metal in the hot forging range. It was found that oxidation time and temperature are critical parameters for the control of hot-shortness. Steels have a critical temperature at which cracking becomes severe; this critical temperature is dependent on copper content for oxidation time of 10 minutes. Steels oxidized and deformed above their critical temperature did not present hot-shortness cracking; therefore, a forging practice that deforms the steel above its critical temperature ensures that defects like hot-shortness could be eliminated or reduced. iii TABLE OF CONTENTS ABSTRACT....................................................................................................................... iii LIST OF FIGURES .......................................................................................................... vii LIST OF TABLES............................................................................................................. xi ACKNOWLEDGMENTS ............................................................................................... xiii 1.0 INTRODUCTION ........................................................................................................1 1.1 Copper in Iron .......................................................................................................1 1.1.1 Copper in Iron, Historical Background.......................................................1 1.1.2 Residual Elements in Steel..........................................................................2 1.1.3 Problems of Copper in Iron.........................................................................4 1.1.4 Benefits of Copper in Iron ..........................................................................5 1.2 Hot Shortness ........................................................................................................6 1.2.1 The Copper-Iron System.............................................................................6 1.2.2 Hot Shortness Mechanisms.........................................................................7 1.2.3 Elements That Prevent Hot Shortness.........................................................9 1.2.4 Elements That Promote Hot Shortness .....................................................11 1.3 Brief Summary of Previous Studies ....................................................................11 1.4 Opportunities for the Present Study ....................................................................14 2.0 INDUSTRIAL RELEVANCE AND PROJECT OBJECTIVES................................15 3.0 EXPERIMENTAL PROCEDURES...........................................................................17 3.1 Experimental Steels ...........................................................................................17 3.2 Testing Methods ................................................................................................17 3.2.1 The Gleeble...............................................................................................17 3.2.2 Testing Specimens ....................................................................................19 3.3 The Test Matrix .................................................................................................22 3.3.1 Stage One Testing.....................................................................................23 v 3.3.2 Stage Two Testing ....................................................................................24 3.3.3 Other Tests................................................................................................25 3.4 Surface Crack Measuring Techniques and Analysis .........................................26 3.4.1 Hot-Shortness Cracking............................................................................26 3.4.2 Sample Mounting and Preparation............................................................28 3.4.3 Crack Measurement Techniques...............................................................32 4.0 RESULTS ..........................................................................................................35 4.1 Stage One Results ..............................................................................................36 4.1.1 Oxidation for 10 Minutes .........................................................................36 4.1.2 Oxidation for 30 Minutes .........................................................................48 4.1.3 Determination of Critical Temperature. ...................................................49 4.2 Stage Two Results .............................................................................................61 4.3 Special Tests ......................................................................................................72 4.4 Summary of the Results.....................................................................................74 5.0 DISCUSSION....................................................................................................75 5.1 Stage One Testing..............................................................................................75 5.2 Stage Two Testing .............................................................................................81 5.3 Summary of Ideas ..............................................................................................86 5.4 Industrial Insights ..............................................................................................87 6.0 SUMMARY.......................................................................................................89 7.0 FUTURE WORK...............................................................................................93 REFERENCES .........................................................................................................95 APPENDIX A ..........................................................................................................99 APPENDIX B ........................................................................................................101 vi LIST OF FIGURES Figure 1.1 Time trends in electric furnace production, from AISI statistics [2]. .............2 Figure 1.2 Scrap requirement for the US steel industry and supply of home scrap, obsolete scrap, and prompt, low residual scrap to the industry from 1967 to 1999 [3].3 Figure 1.3 Production of raw steel and hot metal (liquid pig iron) in the Unites State and net consumption of steel mill products from both domestic and imported supply from 1967 to 1996 [3]...................................................................................................4 Figure 1.4 The copper-iron phase diagram [4]................................................................7 Figure 1.5 1045 steel oxidized for 30 minutes at 1135 ºC. ..............................................8 Figure 1.6 Effect of ternary additions of solubility of copper in austenite at 1250 °C [4]. ................................................................................................................10 Figure 3.1 Gleeble testing equipment.............................................................................19 Figure 3.2 SICO test specimens, non oxidized at the top oxidized at 1000 °C for 24 hrs, both deformed at 1135 °C...........................................................................................20 Figure 3.3 Diagram of the flanged specimen (dimensions in [mm]). ............................21 Figure 3.4 Pre-bulged flanged test sample.. ...................................................................21 Figure 3.5 Diagram of the test matrix. ...........................................................................23 Figure 3.6 Thermal cycle used during stage one testing. ...............................................24 Figure 3.7 Thermal cycle used during stage two testing................................................25 Figure 3.8 Hot-shortness surface cracks of a steel with 0.35% copper, oxidized