Eleven Years of Mangrove–Mudflat Dynamics on the Mud

Total Page:16

File Type:pdf, Size:1020Kb

Eleven Years of Mangrove–Mudflat Dynamics on the Mud remote sensing Article Eleven Years of Mangrove–Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating UAV and Satellite Imagery Sebrian Mirdeklis Beselly 1,2,3,* , Mick van der Wegen 1,4, Uwe Grueters 5, Johan Reyns 1,4 , Jasper Dijkstra 4 and Dano Roelvink 1,2,4 1 Department of Coastal & Urban Risk & Resilience, Coastal Systems & Engineering and Port Development, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands; m.vanderwegen@un-ihe.org (M.v.d.W.); j.reyns@un-ihe.org (J.R.); d.roelvink@un-ihe.org (D.R.) 2 Department of Hydraulic Engineering, Section Coastal Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands 3 Department of Water Resources Engineering, Brawijaya University, Malang 65145, Indonesia 4 Deltares, 2629 HV Delft, The Netherlands; jasper.dijkstra@deltares.nl 5 Institute of Plant Ecology, Justus Liebig University, 35392 Giessen, Germany; uwe.grueters@bot2.bio.uni-giessen.de * Correspondence: s.m.beselly@tudelft.nl; Tel.: +31-152-151-160 Abstract: This article presents a novel approach to explore mangrove dynamics on a prograding delta by integrating unmanned aerial vehicle (UAV) and satellite imagery. The Porong Delta in Indonesia Citation: Beselly, S.M.; van der has a unique geographical setting with rapid delta development and expansion of the mangrove belt. Wegen, M.; Grueters, U.; Reyns, J.; This is due to an unprecedented mud load from the LUSI mud volcanic eruption. The mangrove Dijkstra, J.; Roelvink, D. Eleven Years dynamics analysis combines UAV-based Structure from Motion (SfM) photogrammetry and 11 years of Mangrove–Mudflat Dynamics on (2009–2019) satellite imagery cloud computing analysis by Google Earth Engine (GEE). Our analysis the Mud Volcano-Induced Prograding shows unique, high-spatiotemporal-resolution mangrove extent maps. The SfM photogrammetry Delta in East Java, Indonesia: Integrating UAV and Satellite analysis leads to a 3D representation of the mangrove canopy and an estimate of mangrove biophysi- Imagery. Remote Sens. 2021, 13, 1084. cal properties with accurate height and individual position of the mangroves stand. GEE derived https://doi.org/10.3390/rs13061084 vegetation indices resulted in high (three-monthly) resolution mangrove coverage dynamics over 11 years (2009–2019), yielding a value of more than 98% for the overall, producer and consumer Academic Editors: accuracy. Combining the satellite-derived age maps and the UAV-derived spatial tree structure Farid Dahdouh-Guebas and allowed us to monitor the mangrove dynamics on a rapidly prograding delta along with its structural Viviana Otero attributes. This analysis is of essential value to ecologists, coastal managers, and policymakers. Received: 27 January 2021 Keywords: mangroves; remote sensing; Google Earth Engine; SfM photogrammetry; UAV Accepted: 10 March 2021 Published: 12 March 2021 Publisher’s Note: MDPI stays neutral 1. Introduction with regard to jurisdictional claims in published maps and institutional affil- Mangroves are trees or large shrubs that grow in or adjacent to the intertidal zone and iations. are distributed along (sub-)tropical coasts and estuaries [1,2]. Mangroves are well-known for providing a range of ecosystem services such as timber production, carbon sequestration, soil formation, nutrient cycling, habitat creation for marine and terrestrial species, and protecting coastlines by attenuating waves and limiting erosion [2–4]. However, land use conversion has caused mangrove forests to decline at a rate three to five times larger Copyright: © 2021 by the authors. than the average forest loss. Hence, mangroves’ important ecosystem services will be Licensee MDPI, Basel, Switzerland. diminished [2]. This article is an open access article distributed under the terms and In order to gain a better understanding of the value of important ecological services conditions of the Creative Commons provided by mangroves, further efficient collection of data, e.g., mangrove extent, height, Attribution (CC BY) license (https:// individual position, and species membership are necessary. Earth observation offers a creativecommons.org/licenses/by/ method for the large-scale monitoring and assessment of the environment, especially when 4.0/). it comes to the mangrove forest inventory and spatial extent monitoring that are generally Remote Sens. 2021, 13, 1084. https://doi.org/10.3390/rs13061084 https://www.mdpi.com/journal/remotesensing Remote Sens. 2021, 13, 1084 2 of 28 difficult to carry out on the ground [5]. Mapping mangrove forests is one of the most challenging tasks in remote sensing since the forests are mostly quite large, located in a remote area, and persistent cloud cover in the tropical areas [2,6,7]. Several efforts have been made to monitor the spatial extent of mangrove forests from local to the global scales. Two global-scale mangrove extent maps were released for 2000, i.e., the World Atlas of Mangrove (WAM) [1] and the Global Mangrove Forest Distribution v1 (GMFD) [8]. Other current global products are the Continuous Global Mangrove Forest Cover for the 21st Century (GCMFC-21) that showing annual global mangrove forest cover from 2000 to 2012 [9] and Global Mangrove Watch (GMW) v2.0 [10]. Information on important structural attributes of mangroves such as tree height, age, and diameter at breast height (dbh) is required to characterise the mangrove forest stands. Accurate information of tree height is essential, since there is a high correlation of the height and the dbh, basal area (BA), and above ground biomass (AGB) [5,11]. Mangrove forests with their harsh physical conditions hinder surveyors from carrying out direct measurements in the field. In principle, a number of remote sensing approaches have been developed as supplement or substitute for ground-based inventory [12–15]. A Canopy Height Model (CHM)—that is, a three-dimensional representation of the forest—can be derived by using airborne or terrestrial LiDAR, Synthetic Aperture Radar (SAR), and high-resolution optical imagery [16]. Global satellite datasets such as Shuttle Radar Topography Mission (SRTM) and ICESat/ GLAS [16,17], and ICESat-2/ATLAS launched in 2018 [18] have proven to be useful in deriving canopy height, but they were released in a medium resolution of 30 m × 30 m. TanDEM-X InSAR, a DEM product developed by the German Space Agency (2011–2015) with a ground resolution of 12.5 × 12.5 m, has also been used to estimate canopy height [14]. Recently, Very High Resolution (VHR) CHM derived from Unmanned Aerial Vehicle (UAV)- based Structure from Motion (SfM) Photogrammetry has been deployed [15,16] often at a local scale. The SRTM, ICESat, and TanDEM are the most commonly utilised methods to estimate CHM since they have global coverage, and the data are easily accessible [19]. However, the passive/optical sensors solely obtain surface canopy information, and radar has at least limited penetration capability [19]. LiDAR, on the other hand, is able to penetrate the canopy cover to some extent depending on the acquisition design and lidar system [20]. However, this technique can be associated with high cost which limits the use of this system [16,19]. This study takes the Porong Estuary, Indonesia, as a case study. Porong Estuary provided a unique setting as this area is characterised by a rapidly prograding delta and concomitant mangrove expansion [21–23]. It is because of the mud volcanic eruption in 2006 and subsequent mudflow diversion known as LUSI (acronym of lumpur (mud) and sidoarjo (the regency name)) [23]. Several studies have been conducted to investigate the effects of LUSI’s high sediment load on the Porong River, the Porong Estuary, and surrounding coastal waters [21,24,25] and the development of mangrove on the created wetland in general [26–28]. However, none of them explored the mangrove dynamics and investigated the structural characterisation of the mangroves in the rapidly prograding delta. This study aims to analyse mangrove dynamics on a rapidly prograding delta by a novel integration of UAV SfM Photogrammetry and multiple sources of satellite imagery in cloud computing Google Earth Engine (GEE). The first objective of this study is to retrieve mangrove biophysical properties (height and individual location of trees) employing the off-the-shelf UAV SfM photogrammetry, in combination with ground-truthing based on field data. The second objective is to generate a three-monthly classification of mangrove areas using Landsat 7, Landsat 8, Sentinel 1, and Sentinel 2 in GEE. These mangrove extent maps represent the dry season and wet season, where two maps were created during each of these seasons every three months. The third objective is to estimate the mangrove age and age-height relationship based on the combination of UAV and GEE analysis. Remote Sens. 2021, 13, 1084 3 of 28 2. Materials and Methods 2.1. Study Area The Porong Delta, as presented in Figure1 is located in East Java Province, Indonesia (7.569 S, 112.872 E). It is approximately 37 km southeast of Surabaya, the second-largest city in Indonesia. It has a monsoon climate with a dry (April-September) and wet (October- March) season [29], in which the high precipitation contributes up to 80% of the mean annual precipitation [30]. The Porong River is one of the two major branches of the Brantas watershed. The watershed is regulated with several large dams, barrages, and flood gates. During the dry season, the flow is diverted to Surabaya, and therefore
Recommended publications
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • The Evolution of the Artificial Wildbird Tidal Mudflat in Fukuoka, Japan
    1 The Evolution of the MIA DOCTO + SCOTT WALLS Jacob Bintliff, Mariana Chavez, Daniela Peña Corvillon, Artificial Wildbird Tidal Johanna Hoffman, Katelyn Walker, UC Berkeley, LA 205 Studio Mudflat in Fukuoka, Japan Spring 2012 2 PRESENTATION CONTENT INTRODUCTION // SCIENTIFIC ANALYSIS // WETLAND DESIGN // HUMAN INTERFACE // CONCLUSIONS 3 CONTEXT 4 5 6 CONTEXT BEFORE PRESENT 7 ISLAND CITY 8 9 ITERATIONS ORIGINAL WETLAND PLAN 10 ITERATIONS JAPAN STUDENT WORKSHOP 11 ITERATIONS 2008 Land Use Plan ~8.5 - 9 ha ~12 ha ~10 ha ~10 ~7 ha Setup of the central area ~8.75 ha ~38.25 ha We will establish a lively ~7 ha interactive space by inviting urban functions such as commercial and ~ 6.75 ha corporate functions, and dissemination of information on education, ~2.25 ha Wild Bird Park 3.9 ha 3.1 ha School and Amenities culture, and art. Further, public transportation Green Space facilities and facilities for 4.1 ha convenience are invited Assigned Facilities Teriha Town to improve the business Hospital ~18 ha environment in the area. Apartments 4.1+ ha Joint Independent Houses Spcialist Clinic 1.8 ha ~1.5 ha Commercial Elderly Elderly Center? Center Planned Subdivision 1.6 ha 1.2 ha Coporate (Sold) 0.9 ha Planned Use/Mixed Use Idustrial and hatches based on legend color code and denote use type Research & Development Currently Built Port Warf 1000 m UC BERKELEY LAND USE PLAN 12 ITERATIONS UC BERKELEY LAND USE PLAN 13 ITERATIONS 16 Hectare Wild Bird Park UC BERKELEY - JAPAN WETLAND DESIGN 14 DESIGN GOALS Provide natural habitat for migrating bird species
    [Show full text]
  • Journal of the Oklahoma Native Plant Society, Volume 2, Number 1
    54 Oklahoma Native Plant Record Volume 2, Number 1, December 2002 Schoenoplectus hallii and S. saximontanus 2000 Wichita Mountain Wildlife Refuge Survey Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 A survey to determine locations of populations of Schoenoplectus hallii and S. saximontanus was conducted at Wichita Mountains Wildlife Refuge in August and September 2000. One or both species were found at 20 of the 134 locations surveyed. A distinctive terminal achene character was found specifically that the transverse ridges of S. hallii appeared to be rounded and S. saximontanus appeared to be rounded with a projecting narrow wing. Basal macroachenes have not yet been properly described but are borne singly at the base of each culm and are about 3-4 times larger than the terminal achenes. It is speculated that amphicarpy may be related to grazing pressure, the basal macroachene being produced even if the upper portion is consumed, as a response to grazing. Both species are grazed/disturbed by bison, elk, and longhorns on the Refuge. Introduction the drawdown mud, sand, or gravel flats. A survey to determine locations of However in some places they occur in shallow populations of Schoenoplectus hallii (A. Gray) water up to a depth of about a foot [30.5cm]. S.G. Smith (Hall’s bulrush) and S. saximontanus They seem to compete with perennial emergent (Fernald) J. Raynal (Rocky Mountain bulrush) plants and with most emergent annuals. was conducted on the Wichita Mountains In addition to the 36 sites that I Wildlife Refuge during late August through personally examined, WMWR staff examined September 2000.
    [Show full text]
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]
  • Lombok Island, Sumbawa Island, and Samalas Volcano
    ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time.
    [Show full text]
  • MUD CREATURE STUDY Overview: the Mudflats Support a Tremendous Amount of Life
    MUD CREATURE STUDY Overview: The mudflats support a tremendous amount of life. In this activity, students will search for and study the creatures that live in bay mud. Content Standards Correlations: Science p. 307 Grades: K-6 TIME FRAME fOR TEACHING THIS ACTIVITY Key Concepts: Mud creatures live in high abundance in the Recommended Time: 30 minutes mudflats, providing food for Mud Creature Banner (7 minutes) migratory ducks and shorebirds • use the Mud Creature Banner to introduce students to mudflat and the endangered California habitat clapper rail. When the tide is out, Mudflat Food Pyramid (3 minutes) the mudflats are revealed and birds land on the mudflats to feed. • discuss the mudflat food pyramid, using poster Mud Creature Study (20 minutes) Objectives: • sieve mud in sieve set, using slough water Students will be able to: • distribute small samples of mud to petri dishes • name and describe two to three • look for mud creatures using hand lenses mud creatures • describe the mudflat food • use the microscopes for a closer view of mud creatures pyramid • if data sheets and pencils are provided, students can draw what • explain the importance of the they find mudflat habitat for migratory birds and endangered species Materials: How THIS ACTIVITY RELATES TO THE REFUGE'S RESOURCES Provided by the Refuge: What are the Refuge's resources? • 1 set mud creature ID cards • significant wildlife habitat • 1 mud creature flannel banner • endangered species • 1 mudflat food pyramid poster • 1 mud creature ID book • rhigratory birds • 1 four-layered sieve set What makes it necessary to manage the resources? • 1 dish of mud and trowel • Pollution, such as oil, paint, and household cleaners, when • 1 bucket of slough water dumped down storm drains enters the slough and mudflats and • 1 pitcher of slough water travels through the food chain, harming animals.
    [Show full text]
  • Mud Volcano Eruptions and Earthquakes in the Northern Apennines and Sicily, Italy
    Tectonophysics 474 (2009) 723–735 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily, Italy Marco Bonini Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Via G. La Pira 4, I-50121 Florence, Italy article info abstract Article history: The relations between earthquakes and the eruption of mud volcanoes have been investigated at the Pede–Apennine Received 28 November 2008 margin of the Northern Apennines and in Sicily. Some of these volcanoes experiencederuptionsorincreased Received in revised form 1 April 2009 activity in connection with historical seismic events, showing a good correlation with established thresholds of Accepted 20 May 2009 hydrological response (liquefaction) to earthquakes. However, the majority of eruptions have been documented to Available online 25 May 2009 be independent of seismic activity, being mud volcanoes often not activated even when the earthquakes were of suitable magnitude and the epicentre at the proper distance for the triggering. This behaviour suggests that Keywords: fi fl Mud volcanoes paroxysmal activity of mud volcanoes depends upon the reaching of a speci c critical state dictated by internal uid Vents pressure, and implies that the strain caused by the passage of seismic waves can activate only mud volcanoes in near- Earthquakes critical conditions (i.e., close to the eruption). Seismogenic faults, such as the Pede–Apennine thrust, often Eruptions structurally control the fluid reservoirs of mud volcanoes, which are frequently located at the core of thrust-related Northern Apennines folds. Such an intimate link enables mud volcanoes to represent features potentially suitable for recording Sicily perturbations associated with the past and ongoing tectonic activity of the controlling fault system.
    [Show full text]
  • Erosion and Accretion on a Mudflat: the Importance of Very 10.1002/2016JC012316 Shallow-Water Effects
    PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Erosion and Accretion on a Mudflat: The Importance of Very 10.1002/2016JC012316 Shallow-Water Effects Key Points: Benwei Shi1,2 , James R. Cooper3 , Paula D. Pratolongo4 , Shu Gao5 , T. J. Bouma6 , Very shallow water accounted for Gaocong Li1 , Chunyan Li2 , S.L. Yang5 , and YaPing Wang1,5 only 11% of the duration of the entire tidal cycle, but accounted for 1Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, China, 2Department 35% of bed-level changes 3 Erosion and accretion during very of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA, Department of Geography and 4 shallow water stages cannot be Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK, CONICET – Instituto Argentino de neglected when modeling Oceanografıa, CC 804, Bahıa Blanca, Argentina, 5State Key Laboratory of Estuarine and Coastal Research, East China morphodynamic processes Normal University, Shanghai, China, 6NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and This study can improve our understanding of morphological Delta Systems, and Utrecht University, Yerseke, The Netherlands changes of intertidal mudflats within an entire tidal cycle Abstract Understanding erosion and accretion dynamics during an entire tidal cycle is important for Correspondence to: assessing their impacts on the habitats of biological communities and the long-term morphological Y. P. Wang, evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very ypwang@nju.edu.cn shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper Citation: flows.
    [Show full text]
  • Response of Mud Volcanoes to Earthquakes: Role of Static Strains and Frequency-Dependence of Ground Motion
    IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 1P2_2B-O1 Room A3 Date/Time: July 21 17:00-17:15 Response of mud volcanoes to earthquakes: role of static strains and frequency-dependence of ground motion Michael Manga1, Maxwell Rudolph2, Marco Bonini3 1University of California, Berkeley, USA, 2University of Colorado, Boulder, USA, 3Consiglio Nazionale delle Ricerche, Florence, Italy E-mail: manga@seismo.berkeley.edu Distant earthquakes can trigger the eruption of mud volcanoes. We report observations of the response of the Davis-Schrimpf, California, mud volcanoes to 2 earthquakes and non-response to 4 other earthquakes. We find that eruptions are triggered by dynamic stresses and that the mud volcanoes are more sensitive to long period seismic waves than short period waves with the same amplitude. These observations are consistent with models in which fluid mobility is enhanced by dislodging bubbles by the time-varying flows produced by seismic waves. In the Northern Apennines, Italy, we document responses and non-responses to the May-June 2012 Emilia seismic sequence. Here we find that discharge only increases where dikes under the vents are unclamped by the static stresses produced by the earthquakes. Mud volcanoes can thus respond to static stress changes (if feeder dikes are unclamped) and dynamic stresses produced by seismic waves (possibly by mobilizing bubbles). ©IAVCEI 2013 Scientific Assembly. All rights reserved. 290 IAVCEI
    [Show full text]
  • Explosive Mud Volcano Eruptions and Rafting of Mud Breccia Blocks
    Earth and Planetary Science Letters 555 (2021) 116699 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Explosive mud volcano eruptions and rafting of mud breccia blocks ∗ Adriano Mazzini a,d, , Grigorii Akhmanov b, Michael Manga c, Alessandra Sciarra d, Ayten Huseynova e, Arif Huseynov e, Ibrahim Guliyev e a Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway b Faculty of Geology, Lomonosov Moscow State University, Moscow, Russian Federation c Department of Earth and Planetary Science, University of California, Berkeley, USA d Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma 1, Italy e Oil and Gas Institute, Azerbaijan National Academy of Sciences, Baku, Azerbaijan a r t i c l e i n f o a b s t r a c t Article history: Azerbaijan hosts the highest density of subaerial mud volcanoes on Earth. The morphologies characterizing Received 6 June 2020 these structures vary depending on their geological setting, frequency of eruption, and transport Received in revised form 11 October 2020 processes during the eruptions. Lokbatan is possibly the most active mud volcano on Earth exhibiting Accepted 26 November 2020 impressive bursting events every ∼5 years. These manifest with impressive gas flares that may reach Available online xxxx 3 more than 100 meters in height and the bursting of thousands of m of mud breccia resulting in Editor: J.-P. Avouac spectacular mud flows that extend for more than 1.5 kilometres. Unlike other active mud volcanoes, Keywords: to our knowledge Lokbatan never featured any visual evidence of enduring diffuse degassing (e.g., Lokbatan mud volcano Azerbaijan active pools and gryphons) at and near the central crater.
    [Show full text]
  • Marine Geology 378 (2016) 196–212
    Marine Geology 378 (2016) 196–212 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector) Desirée Palomino a,⁎, Nieves López-González a, Juan-Tomás Vázquez a, Luis-Miguel Fernández-Salas b, José-Luis Rueda a,RicardoSánchez-Lealb, Víctor Díaz-del-Río a a Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Puerto Pesquero S/N, 29640 Fuengirola, Málaga, Spain b Instituto Español de Oceanografía, Centro Oceanográfico de Cádiz, Muelle Pesquero S/N, 11006 Cádiz, Spain article info abstract Article history: The seabed morphology, type of sediments, and dominant benthic species on eleven mud volcanoes and diapirs Received 28 May 2015 located on the northern sector of the Gulf of Cádiz continental slope have been studied. The morphological char- Received in revised form 30 September 2015 acteristics were grouped as: (i) fluid-escape-related features, (ii) bottom current features, (iii) mass movement Accepted 4 October 2015 features, (iv) tectonic features and (v) biogenic-related features. The dominant benthic species associated with Available online 9 October 2015 fluid escape, hard substrates or soft bottoms, have also been mapped. A bottom current velocity analysis allowed, the morphological features to be correlated with the benthic habitats and the different sedimentary and ocean- Keywords: fl Seepage ographic characteristics. The major factors controlling these features and the benthic habitats are mud ows Mud volcanoes and fluid-escape-related processes, as well as the interaction of deep water masses with the seafloor topography.
    [Show full text]
  • Impact of Land Disaster to the Change of Spatial Planning and Economic Growth
    Impact of Land Disaster to the Change of Spatial Planning and Economic Growth Setyo ANGGRAINI, Erfan SUSANTO, San P. RUDIANTO, Indonesia Key words : Lapindo Mud Disaster; Spatial Planning; Landright sertification; Land Zonation. SUMMARY Sidoarjo is a district located in East Java, Indonesia. This district is in the south of Surabaya, the capital city of East Java, with area 63.438,534 ha or 634,39 km2, consist of agricultural land 28.763 Ha, sugarcane plantations 8.164 Ha, aquaculture land 15.729 Ha, and the rest are settlement and industrial land. This district located on the lowland between two great river, Kali Surabaya and Kali Porong, and its impact to the structure of the soil which are Grey Alluvial 6.236,37 Ha, Assosiation of Grey and Brown Alluvial 4.970,23 Ha, Hydromart Alluvial 29.346,95 Ha, and Dark Grey Gromosol 870,70 Ha. Lapindo mud is an event leaking gas drilling that occurs in Sidoarjo by negligence of PT. Lapindo Brantas. Impact of Lapindo mud is felt by people at three (3) Districts, there are Porong District, Jabon subdistrict, and Tanggulangin District. This proved to some areas near the Lapindo mudflow as: Houses, factories, fields, places of worship, schools and others into a sea of Lapindo mud. These facts indicate that spatial planning changes, also the economic, social life and agricultural. The first part of this paper contains a preliminary study / literature based on books, papers, internet sources and also field study about the Sidoarjo District such as geographical location, its potential demography, and a bit about its history.
    [Show full text]