Hindawi Publishing Corporation Advances in Pharmacological Sciences Volume 2010, Article ID 534184, 10 pages doi:10.1155/2010/534184 Research Article Testosterone and Cholesterol Vasodilation of Rat Aorta Involves L-Type Calcium Channel Inhibition E. Alvarez,´ 1 E. Cairrao,˜ 1, 2 M. Morgado,1 C. Morais,1 and I. Verde1 1 CICS—Centro de Investigac¸ao˜ em Ciˆencias da Saude,´ Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha,˜ Portugal 2 Centro Hospitalar da Cova da Beira E.P.E., Quinta do Alvito, 6200-251 Covilha,˜ Portugal CorrespondenceshouldbeaddressedtoI.Verde,
[email protected] Received 8 November 2009; Revised 7 January 2010; Accepted 16 January 2010 Academic Editor: Masahiro Oike Copyright © 2010 E. Alvarez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Testosterone has rapid nongenomic vasodilator effects which could be involved in protective cardiovascular actions. Several authors suggested specific mechanisms to explain this effect, but this matter was not clarified yet. We studied the actions of 2+ testosterone and cholesterol on endothelium-denuded rat aorta and their effects on the L-type Ca current (ICa,L) and potassium current (IK). Testosterone (1–100 μM) totally relaxed, in a rapid and concentration-dependent way, the aortic rings contracted by KCl or by (−)-Bay K8644 (BAY). Cholesterol also fully relaxed the contractions induced by KCl. None of the potassium channel antagonists tested (glibenclamide, tetraethylammonium and 4-aminopyridine) modified significantly the relaxant effect of testosterone. The antagonist of classic testosterone receptors, flutamide, did not modify the vasorelaxant effect of testosterone.