applied sciences Review Antioxidant Production in Dunaliella Uttam Kumer Roy 1,2,*, Birthe Vejby Nielsen 2 and John James Milledge 2 1 School of Architecture, Building and Civil Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK 2 Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
[email protected] (B.V.N.);
[email protected] (J.J.M.) * Correspondence:
[email protected] Abstract: Microalgae have become an attractive natural source of a diverse range of biomolecules, including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable pro- duction of such compounds from microalgae biomass is still challenging. The main hurdles are: (a) increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost- effective downstream processing (extraction and purification); (d) optimal storage of post-processed antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, indus- trial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells, and the opportunities and limitations of current technologies for antioxidant enzymes production from microalgae biomass as an alternative to common microbial sources. Keywords: Dunaliella; antioxidant enzymes; cultivation conditions; post-harvest processing 1. Introduction Citation: Roy, U.K.; Nielsen, B.V.; Microalgae are singled celled micro-bio-factories capable of producing a wide variety Milledge, J.J. Antioxidant Production of high-value compounds (carbohydrates, proteins, lipids, carotenoids, phycobiliproteins, in Dunaliella. Appl. Sci. 2021, 11, 3959. phenolic, polyunsaturated fatty acids and antioxidants) used in the pharmaceutical, nu- https://doi.org/10.3390/app11093959 traceutical, cosmetic, and food processing industries [1–10].