Publications Files/Hale Nolan and Wolkowicz 2003.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Publications Files/Hale Nolan and Wolkowicz 2003.Pdf Published online January 29, 2004 Nucleic Acids Research, 2004, Vol. 32, No. 2 e22 DOI: 10.1093/nar/gnh021 Oligonucleotide-directed site-speci®c integration of high complexity libraries into ssDNA templates M. B. Hale1,2,3, G. P. Nolan2,3,* and R. Wolkowicz2,3 1Department of Molecular Pharmacology, 2Department of Microbiology and Immunology and 3Baxter Laboratory in Genetic Pharmacology, School of Medicine, Stanford University, Stanford, CA 94305, USA Received October 31, 2003; Revised and Accepted December 22, 2003 ABSTRACT cassette cloning approach. In brief, a small oligonucleotide complementary to the non-random 3¢ end of the library We present an approach that generates an oligomer- oligonucleotide is annealed to prime a polymerase reaction Downloaded from based library with minimal need for restriction site that makes the library insert double stranded (3). The now modi®cation of sequences in the target vector. The double-stranded insert is restricted with endonucleases, puri- technique has the advantage that it can be applied ®ed by gel electrophoresis and ligated into a vector previously for generating peptide aptamer libraries at sites digested with complementary restriction enzymes. Because within proteins without the need for introducing the oligonucleotide is usually less than 100 bases long, it can ¯anking enzyme sites. As an example we present a be dif®cult to ef®ciently purify the double-stranded insert that nar.oxfordjournals.org phagemid retroviral shuttle vector that can be used was successfully cut with both restriction enzymes from to achieve stable expression of the library in mam- incompletely digested material. Both the ligation of a small malian cells for the purpose of screening for pep- insert into a much larger vector and the inability to adequately tides with desired biological activity. purify the insert can result in loss of library complexity. Here we have considered a different strategy: the creation of a single-stranded backbone vector that is compatible with a INTRODUCTION single-stranded insert containing the aptamer library. at LibrarySerials on September 14, 2010 Although such an approach has previously been used primar- A number of cloning strategies have evolved over the past ily for the substitution or incorporation of one or a few three decades ranging from the conventional cassette cloning nucleotides, we were encouraged that such site-directed approach using restriction enzymes and ligase to more recent mutagenesis has been used to successfully integrate sequences techniques involving cre recombinase (1) and integrase± as large as 27 bases such as the HA1 epitope (15), a size equal exisionase systems (2). The latter techniques are adequate for to that of many libraries. However, conventional site-directed basic cloning where the goal is to transfer a single insert into a mutagenesis is an inef®cient process that yields the desired vector. However, these techniques are less powerful when the number of unique sequences to be inserted increases. Such is product much less than 50% of the time (16), an ef®ciency too the case with aptamer libraries that require the insertion of low for library generation of suf®cient complexity. The more thousands or millions of different sequences into the same advanced QuikChange Mutagenesis method is still incapable backbone vector. of introducing sequences long enough to generate biologically At the DNA level an aptamer library can be de®ned by a active peptide libraries. When a 31 nucleotide sequence was constant region shared by all clones and a variable region that introduced, more than 25% of the transformants failed to carry is unique for every member represented in the library. In order the insert even after substantial optimization (17). This to achieve a high complexity library, it is necessary to insert a procedure does not improve transformation ef®ciency, critical suitably large number of unique inserts into a speci®c site for complex library production. within the vector. This is applicable for peptide libraries and The technique presented here uses a library oligonucleotide ribozyme libraries, among others (3±10). The number of that hybridizes to the single-stranded vector, and primes a unique clones within the library de®nes its complexity, and it polymerase reaction that uses the vector strand as template. is usually desirable to have a high complexity that represents The newly synthesized library strand is covalently closedÐ as many different sequences as possible. The creation of such creating a double-stranded DNA (dsDNA)Ðand puri®ed from libraries can represent a signi®cant share of the time invested template materials. Modi®cations to the technique ensure that in setting up a genetic screen using such libraries. nearly 100% of the resulting vectors can contain inserts. We The construction of a random peptide expression library demonstrate that the procedure is suf®ciently ef®cient to requires a random central region usually 27±45 nucleotides in generate libraries of a complexity of at least 1 3 106. With length ¯anked by regions of de®ned sequence and the optimization and increases in scale it should be possible to backbone vector chosen to carry the library. Examples of make libraries of 1 3 108. The approach should simplify the such libraries can be found in multiple publications (3,5,11± creation of high complexity oligomer-based libraries in a 14). The process usually involves a modi®ed version of the number of experimental settings. *To whom correspondence should be addressed. Tel: +1 650 725 7002; Fax: +1 650 725 2383; Email: [email protected] Nucleic Acids Research, Vol. 32 No. 2 ã Oxford University Press 2004; all rights reserved e22 Nucleic Acids Research, 2004, Vol. 32, No. 2 PAGE 2 OF 7 Transformation of the heteroduplex MATERIALS AND METHODS The heteroduplex product was puri®ed by agarose gel Strains electrophoresis as the band that co-migrates with the covalently closed circular band of the double-stranded vector The Escherichia coli strain XL1-Blue was used in this study and was excised and phenol extracted. One microliter of the for transformation of plasmids and production of phage. This puri®ed DNA was used to transform 20 ml of electrocompetent strain carries an F' episome that confers tetracycline resistance XL1-Blue E.coli per electroporation cuvette (0.1 cm). and is required for pilus formation and phage infection. After rescuing for 2 h at 32°C in salt-optimized + carbon M13KO7 bacteriophage was used as the helper phage. (SOC) broth with vigorous agitation the entire transformation was used to innoculate 20 ml of LB containing ampicillin Puri®cation of ssDNA template (100 mg/ml). In addition, a small quantity of the transform- Bacteria transformed with the phagemid were cultured in LB ation was plated on ampicillin plates to determine library containing ampicillin (100 mg/ml) + tetracycline (50 mg/ml). complexity. The liquid culture was grown overnight and the This culture inoculated 2YT containing ampicillin (100 mg/ml) plasmid DNA puri®ed by alkaline lysis followed by binding to and helper phage. After 2 h of helper phage exposure, silica columns±Qiagen's Miniprep kit. kanamycin (50 mg/ml) was added and the culture incubated at Elimination of the template strand Downloaded from 32°C with agitation overnight. At stationary phase the bacteria were pelleted, the supernatant spun twice and ®ltered through One microgram of the plasmid prep was digested with SphI as a 0.45 mm Acrodisc ®lter. One hundred and ®fty microliters of above, visualized by agarose gel electrophoresis, and used to a 20% solution of PEG 8000 and 2.5 M NaCl was added per transform 20 ml of electrocompetent XL1-Blue E.coli. After milliliter of supernatant and incubated at 4°C for 45 min to rescuing for2hat32°C in SOC with vigorous agitation the precipitate the phage. The mixture was centrifuged at 11 000 g transformation was used to innoculate 20 ml of LB containing nar.oxfordjournals.org to pellet the phage. The pellet was resuspended in EDTA and ampicillin (100 mg/ml). After incubation overnight at 32°C the single-stranded DNA (ssDNA) extracted by phenol followed culture was either prepped directly or used to innoculate by precipitation with sodium acetate and ethanol. A 250 ml 500 ml of ampicillin±LB. culture grown overnight at 32°C with agitation yielded ~2 mg of ssDNA. RESULTS AND DISCUSSION Library strand synthesis We outline the approach by which we generate oligonucleo- at LibrarySerials on September 14, 2010 The library oligonucleotide (50 pmol) and 2 mg of the ssDNA tide-directed site-speci®c libraries as follows: (i) puri®cation template was combined with 0.5 ml of `Platinum Taq High of a single-stranded phagemid acceptor vector; (ii) design of a Fidelity' (a mixture of heat-activated Taq polymerase and corresponding library oligonucleotide insert ssDNA; (iii) Pyrococcus species GB-D polymerase from Invitrogen) in extension of the library ssDNA by priming; (iv) covalent 200 mM dNTP, 2 mM MgSO , 60 mM Tris±SO (pH 8.9), closing of the extended library strand to create a dsDNA for 4 4 transformation; and (v) puri®cation of the double-stranded 180 mM ammonium sulfate. This enzyme cocktail was chosen library (see Figure 1 for outline of protocol). to minimize misincorporation and enzyme stalling. It was activated by incubation at 95°C for 50 s followed by ramping Phagemid and oligonucleotide design down to 60°C over 1 min to anneal the library oligonucleotide. This technique required the puri®cation of one of two potential The sample temperature was then increased to 68°C for circular single strands of the vector used to express the library. 30 min. The reaction was quenched by addition of buffer- We created a phagemid that contained both the E.coli origin of saturated phenol to minimize low temperature mispriming.
Recommended publications
  • Phagemid-Based Method of Producing Filamentous Bacteriophage Particles Displaying Antibody Molecules and the Corresponding Bacteriophage Particles
    Europäisches Patentamt *EP001433846A2* (19) European Patent Office Office européen des brevets (11) EP 1 433 846 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 15/10, C07K 16/00, 30.06.2004 Bulletin 2004/27 C12N 15/62, C12N 7/00, C12N 15/73 (21) Application number: 04005419.9 (22) Date of filing: 10.07.1991 (84) Designated Contracting States: • Griffiths, Andrew David AT BE CH DE DK ES FR GB GR IT LI LU NL SE Cambridge CB1 4AY (GB) • Jackson, Ronald Henry (30) Priority: 10.07.1990 GB 9015198 Cambridge CB1 2NU (GB) 19.10.1990 GB 9022845 • Holliger, Kaspar Philipp 12.11.1990 GB 9024503 Cambridge CB1 4HT (GB) 06.03.1991 GB 9104744 • Marks, James David 15.05.1991 GB 9110549 Kensington, CA 94707-1310 (US) • Clackson, Timothy Piers (62) Document number(s) of the earlier application(s) in Somerville, MA 02143 (US) accordance with Art. 76 EPC: • Chiswell, David John 97120149.6 / 0 844 306 Buckingham MK18 2LD (GB) 96112510.1 / 0 774 511 • Winter, Gregory Paul Cambridge CB2 1TQ (GB) (71) Applicants: • Bonnert, Timothy Peter • Cambridge Antibody Technology LTD Seattle, WA 98102 (US) Cambridge CB1 6GH (GB) • Medical Research Council (74) Representative: Walton, Seán Malcolm et al London W1B 1AL (GB) Mewburn Ellis LLP York House, (72) Inventors: 23 Kingsway • McCafferty, John London WC2B 6HP (GB) Babraham CB2 4AP (GB) • Pope, Anthony Richard Remarks: Cambridge CB1 2LW (GB) This application was filed on 08 - 03 - 2004 as a • Johnson, Kevin Stuart divisional application to the application mentioned Highfields, Cambridge CB3 7NY (GB) under INID code 62.
    [Show full text]
  • Antibody Discovery for Development of a Serotyping Dengue Virus NS1 Capture Assay
    Antibody Discovery for Development of a Serotyping Dengue Virus NS1 Capture Assay Kebaneilwe Lebani Master of Biotechnology (Advanced) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Australian Institute for Bioengineering and Nanotechnology ABSTRACT Dengue virus (DENV) infections are a significant public health burden in tropical and sub-tropical regions of the world. Infections are caused by four different but antigenically related viruses which result in four DENV serotypes. The multifaceted nature of DENV pathogenesis hinders the sensitivity of assays designed for the diagnosis of infection. Different markers can be optimally detected at different stages of infection. Of particular clinical importance is the identification of acute viremia during the febrile phase of infection which is pivotal for management of infection. Non-structural protein 1 (NS1) has been identified as a good early surrogate marker of infection with possible applications in epidemiological surveillance and the development of blood screening assays. This contribution is towards using serotype-specificity to achieve specific and more sensitive diagnostic detection of DENV NS1. The general aim of this work is to isolate immune-reagents that can be used to develop an assay with improved sensitivity of DENV NS1 detection in a diagnostic setting. In this work, we sought to isolate serotype-specific antibodies that discern discreet antigenic differences in NS1 from each DENV serotype. Additionally, we also sought to isolate a pairing antibody that recognises NS1 from all four DENV serotypes (pan-reactive) for tandem capture of the DENV NS1. To achieve this, three naive, immunoglobulin gene libraries (a VH domain, a scFv and a Fab library) were interrogated for binders to recombinant NS1 antigen from all four DENV serotypes using phage display technology and various biopanning approaches.
    [Show full text]
  • Molecular Cloning and Functional Expression of Gibberellin 2- Oxidases, Multifunctional Enzymes Involved in Gibberellin Deactivation
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 4698–4703, April 1999 Plant Biology Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation STEPHEN G. THOMAS,ANDREW L. PHILLIPS, AND PETER HEDDEN* Institute of Arable Crops Research (IACR)-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, United Kingdom Communicated by Jake MacMillan FRS, University of Bristol, Bristol, United Kingdom, February 16, 1999 (received for review December 22, 1998) ABSTRACT A major catabolic pathway for the gibberel- centration of bioactive GAs, the genes for these enzymes have lins (GAs) is initiated by 2b-hydroxylation, a reaction cata- not yet been isolated and it has not been possible to study their lyzed by 2-oxoglutarate-dependent dioxygenases. To isolate a regulation. GA 2b-hydroxylase cDNA clone we used functional screening Gibberellin 2b-hydroxylase activity is abundant in seeds of a cDNA library from developing cotyledons of runner bean during the later stages of maturation, particularly in legume (Phaseolus coccineus L.) with a highly sensitive tritium-release seeds, which accumulate large amounts of 2b-hydroxylated b assay for enzyme activity. The encoded protein, obtained by GAs (6–8). Indeed, GA8, the first 2 -hydroxyGA to be heterologous expression in Escherichia coli, converted GA9 to identified, was extracted from seeds of runner bean (Phaseolus b GA51 (2 -hydroxyGA9) and GA51-catabolite, the latter pro- coccineus, originally classified as P. multiflorus) (9). In certain duced from GA51 by further oxidation at C-2. The enzyme thus species, including legumes, further metabolism of 2b- is multifunctional and is best described as a GA 2-oxidase.
    [Show full text]
  • 3 Main Classification of Vectors (With Diagram)
    4/20/2020 3 Main Classification of Vectors (With Diagram) Privacy Policy | Join our Community :- Upload Now 3 Main Classification of Vectors (With Diagram) Article shared by : The classifications are: 1. On the Basis of Our Aim with Gene of Interest 2. On the Basis of Host Cell Used 3. On the Basis of Cellular Nature of Host Cell. Vector Classification # 1. On the Basis of Our Aim with Gene of Interest: The point is what we are targeting from our gene of interest — its multiple copies or its protein product. Depending on these criteria vec tors are of following two types: 1. Cloning Vectors: We use a cloning vec tor when our aim is to just obtain numer ous copies (clones) of our gene of interest (hence the name cloning vectors). These are mostly used in construction of gene libraries. A number of organisms can be used as sources for cloning vectors. Some are created synthetically, as in the case of yeast artificial chromosomes and bacte rial artificial chromosomes, while others are taken from bacteria and bacteriopha ges. In all cases, the vector needs to be genetically modified in order to accommo date the foreign DNA by creating an in sertion site where the new DNA will fit ted. Example: PUC cloning vectors, pBR322 cloning vectors, etc. 2. Expression Vectors or Expression construct: www.biotechnologynotes.com/recombinant-dna-technology/3-main-classification-of-vectors-with-diagram/395 1/64 4/20/2020 3 Main Classification of Vectors (With Diagram) We use an expression vector when our aim is to obtain the protein prod uct of our gene of interest.
    [Show full text]
  • Evolutionary and Functional Studies of the Mouse Retroviral Restriction Gene, Fvl
    Evolutionary and Functional Studies of the Mouse Retroviral Restriction Gene, Fvl Scott Anthony Ellis A thesis submitted in part fulfilment of the requirements of the University of London for the degree of Doctor of Philosophy March 2000 Virology Division National Institute for Medical Research The Ridgeway Mm Hill London NW71AA ProQuest Number: 10015911 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10015911 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Fvl is a gene of mice known to restrict the replication of Murine Leukaemia virus (MLV) by blocking integration by an unknown mechanism. The gene itself is retroviral in origin, and is located on the distal part of chromosome 4. The sequence of markers known to flank Fvl in the mouse was used to identify sequence from the human homologues of these 2 genes. The construction of primers to these sequences permitted the screening of 2 YAC and a PAC human genomic libraries for clones containing either of these genes. The YAC libraries were negative for both markers.
    [Show full text]
  • Muta-Gene@ Phagemid in Vitro Mutagenesis Version 2 Instruction Manual
    ~1~248cl 1/28/98 4:44 PM Page A f > Muta-Gene@ Phagemid In Vitro Mutagenesis Version 2 Instruction Manual + Catalog Number + 170-3581 For Technical Service Call Your Local Bio-Rad OffIce or in the U.S. Call 1-800 -4BIORAD (1-800-424-6723) ~11’248Cl 1/28/98 4:44 P1.1 Page i + Foreword This manual contains background information and detailed protocols for performing in vitro mutagenesis with the Muta-Gene phagemid in vitro mutagenesis kit. The mutagenesis technique described is intrinsically very easy to use. It requires only one enzymatic step; the two bacterial strains are healthy and easy to grow; and the efficiency of mutagenesis is usually sufficient that mutants can be identified by DNA sequence analysis rather than a phenotypic or hybridization screen. Bio-Rad’s kit provides reagents of the highest quality. All components have been rigorously tested in in vitro mutagenesis experiments. If you have any questions regard- ing the use of these products, please contact your local Bio-Rad representative or Bio- Rad’s Technical Services at 1-800-4BIORAD. These products are for research use only and not for use in humans or for diagnostic procedures. Safety precautions should be used when handling hazardous materials (radioac- tive nucleotides, acrylamide, ethidium bromide, phenol, chloroform, ether, etc.). Users of this kit should comply with NIH or other relevant guidelines for recombinant DNA work. L Y + +-- LIT248C1 1/28/98 5:12 PM Page ToC1 -+- Table of Contents Section 1 Introduction ...........................................................................l
    [Show full text]
  • Exploiting Light Chains for the Scalable Generation and Platform Purification
    ARTICLE Received 12 Nov 2014 | Accepted 15 Dec 2014 | Published 12 Feb 2015 DOI: 10.1038/ncomms7113 OPEN Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG Nicolas Fischer1,*, Greg Elson1,*,w, Giovanni Magistrelli1, Elie Dheilly1, Nicolas Fouque1, Ame´lie Laurendon1,w, Franck Gueneau1, Ulla Ravn1, Jean-Franc¸ois Depoisier1, Valery Moine1, Sylvain Raimondi1, Pauline Malinge1, Laura Di Grazia1, Franc¸ois Rousseau1, Yves Poitevin1,Se´bastien Calloud1, Pierre-Alexis Cayatte1, Mathias Alcoz1, Guillemette Pontini1,Se´verine Fage`te1,w, Lucile Broyer1, Marie Corbier1, Delphine Schrag1,Ge´rard Didelot1, Nicolas Bosson1, Nessie Costes1, Laura Cons1, Vanessa Buatois1, Zoe Johnson1, Walter Ferlin1, Krzysztof Masternak1 & Marie Kosco-Vilbois1 Bispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a kl-body, is assembled by co-expressing one heavy chain and two different light chains, one k and one l. Using ten different targets, we demonstrate that light chains can play a dominant role in mediating specificity and high affinity. The kl-bodies support multiple modes of action, and their stability and pharmaco- kinetic properties are indistinguishable from therapeutic antibodies. Thus, the kl-body represents a unique, fully human format that exploits light-chain variable domains for antigen binding and light-chain constant domains for robust downstream processing, to realize the potential of bispecific antibodies.
    [Show full text]
  • Revolver Is a New Class of Transposon-Like Gene Composing the Triticeae Genome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central DNA RESEARCH 15, 49–62, (2008) doi:10.1093/dnares/dsm029 Revolver is a New Class of Transposon-like Gene Composing the Triticeae Genome Motonori TOMITA*, Kasumi SHINOHARA, and Mayu MORIMOTO Molecular Genetics Laboratory, Faculty of Agriculture, Tottori University, 101, Koyama-minami 4-chome, Tottori City, Tottori 680-8553, Japan (Received 22 May 2007; accepted on 5 December 2007) Abstract Revolver discovered in the Triticeae plant is a novel class of transposon-like gene and a major com- ponent of the large cereal genome. An 89 bp segment of Revolver that is enriched in the genome of rye was isolated by deleting the DNA sequences common to rye and wheat. The entire structure of Revolver was determined by using rye genomic clones, which were screened by the 89 bp probe. Revolver consists of 2929—3041 bp with an inverted repeated sequence on each end and is dispersed through all seven chromosomes of the rye genome. Revolver is transcriptionally active, and the isolated full-length cDNA (726 bp) reveals that Revolver harbors a single gene consisting of three exons (342, 88, and 296 bp) and two introns (750 and 1237 bp), and encodes 139 amino acid residues of protein, which shows simi- larity to some transcriptional regulators. Revolver variants ranging from 2665 to 4269 bp, in which 50 regions were destructed, indicate structural diversities around the first exon. Revolver does not share iden- tity with any known class I or class II autonomous transposable elements of any living species.
    [Show full text]
  • Download Book
    Methods in Molecular Biology 1701 Michael Hust Theam Soon Lim Editors Phage Display Methods and Protocols M ETHODS IN M OLECULAR B IOLOGY Series Editor John M. Walker School of Life and Medical Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Phage Display Methods and Protocols Edited by Michael Hust Technische Universit€at Braunschweig, Braunschweig, Germany Theam Soon Lim Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia Editors Michael Hust Theam Soon Lim Technische Universit€at Braunschweig Institute for Research in Molecular Medicine Braunschweig, Germany Universiti Sains Malaysia Minden, Penang, Malaysia ISSN 1064-3745 ISSN 1940-6029 (electronic) Methods in Molecular Biology ISBN 978-1-4939-7446-7 ISBN 978-1-4939-7447-4 (eBook) DOI 10.1007/978-1-4939-7447-4 Library of Congress Control Number: 2017956713 © Springer Science+Business Media LLC 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Characterization of an RNA-Dependent RNA Polymerase Activity Associated with La France Isometric Virus†
    JOURNAL OF VIROLOGY, Mar. 1997, p. 2264–2269 Vol. 71, No. 3 0022-538X/97/$04.0010 Copyright q 1997, American Society for Microbiology Characterization of an RNA-Dependent RNA Polymerase Activity Associated with La France Isometric Virus† MICHAEL M. GOODIN,‡ BETH SCHLAGNHAUFER, TIFFANY WEIR, AND C. PETER ROMAINE* Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania 16802 Received 12 August 1996/Accepted 19 November 1996 Purified preparations of La France isometric virus (LIV), an unclassified, double-stranded RNA (dsRNA) virus of Agaricus bisporus, were associated with an RNA-dependent RNA polymerase (RDRP) activity. RDRP activity cosedimented with the 36-nm isometric particles and genomic dsRNAs of LIV during rate-zonal centrifugation in sucrose density gradients, suggesting that the enzyme is a constituent of the virion. Enzyme activity was maximal in the presence of all four nucleotides, a reducing agent (dithiothreitol or b-mercapto- ethanol), and Mg21 and was resistant to inhibitors of DNA-dependent RNA polymerases (actinomycin D, a-amanitin, and rifampin). The radiolabeled enzyme reaction products were predominantly (95%) single- stranded RNA (ssRNA) as determined by cellulose column chromatography and ionic-strength-dependent sensitivity to hydrolysis by RNase A. Three major size classes of ssRNA transcripts of 0.95, 1.3, and 1.8 kb were detected by agarose gel electrophoresis, although the transcripts hybridized to all nine of the virion-associated dsRNAs. The RNA products synthesized in vitro appeared to be of a single polarity, as they hybridized to an ssDNA corresponding to one strand of a genomic dsRNA and not to the complementary strand.
    [Show full text]
  • Changes in Mitochondrial Stability During the Progression of the Barrett’S Esophagus Disease Sequence N
    O’Farrell et al. BMC Cancer (2016) 16:497 DOI 10.1186/s12885-016-2544-2 RESEARCH ARTICLE Open Access Changes in mitochondrial stability during the progression of the Barrett’s esophagus disease sequence N. J. O’Farrell1, R. Feighery1, S. L. Picardo1, N. Lynam-Lennon1, M. Biniecka2, S. A. McGarrigle1, J. J. Phelan1, F. MacCarthy3,D.O’Toole3, E. J. Fox4, N. Ravi1, J. V. Reynolds1 and J. O’Sullivan1* Abstract Background: Barrett’s esophagus follows the classic step-wise progression of metaplasia-dysplasia-adenocarcinoma. While Barrett’s esophagus is a leading known risk factor for esophageal adenocarcinoma, the pathogenesis of this disease sequence is poorly understood. Mitochondria are highly susceptible to mutations due to high levels of reactive oxygen species (ROS) coupled with low levels of DNA repair. The timing and levels of mitochondria instability and dysfunction across the Barrett’s disease progression is under studied. Methods: Using an in-vitro model representing the Barrett’s esophagus disease sequence of normal squamous epithelium (HET1A), metaplasia (QH), dysplasia (Go), and esophageal adenocarcinoma (OE33), random mitochondrial mutations, deletions and surrogate markers of mitochondrial function were assessed. In-vivo and ex-vivo tissues were also assessed for instability profiles. Results: Barrett’s metaplastic cells demonstrated increased levels of ROS (p < 0.005) and increased levels of random mitochondrial mutations (p < 0.05) compared with all other stages of the Barrett’s disease sequence in-vitro. Using patient in-vivo samples, Barrett’s metaplasia tissue demonstrated significantly increased levels of random mitochondrial deletions (p = 0.043) compared with esophageal adenocarcinoma tissue, along with increased expression of cytoglobin (CYGB) (p < 0.05), a gene linked to oxidative stress, compared with all other points across the disease sequence.
    [Show full text]
  • Genetic Mobility and Instability of Retroviral Vector in Vector Producer Cells for Gene Therapy Won-Bin Young Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Genetic mobility and instability of retroviral vector in vector producer cells for gene therapy Won-Bin Young Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Young, Won-Bin, "Genetic mobility and instability of retroviral vector in vector producer cells for gene therapy" (1999). Retrospective Theses and Dissertations. 12196. https://lib.dr.iastate.edu/rtd/12196 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]