Toilets & Urinals Water Efficiency

Total Page:16

File Type:pdf, Size:1020Kb

Toilets & Urinals Water Efficiency California Energy Commission DOCKETED 12-AAER-2C TN 71765 Toilets & Urinals WaterJUL 29 2013 Efficiency Codes and Standards Enhancement (CASE) Initiative For PY 2013: Title 20 Standards Development Analysis of Standards Proposal for Toilets & Urinals Water Efficiency Docket #12-AAER-2C CASE Report July 29, 2013 Prepared for: PACIFIC GAS & ELECTRIC SOUTHERN CALIFORNIA SAN DIEGO GAS AND SOUTHERN CALIFORNIA COMPANY EDISON ELECTRIC GAS COMPANY Prepared by: Heidi Hauenstein, ENERGY SOLUTIONS NATURAL RESOURCES Tracy Quinn and Ed Osann, NATURAL RESOURCES DEFENSE COUNCIL DEFENSE COUNCIL This report was prepared by the California Statewide Utility Codes and Standards Program and funded by the California utility customers under the auspices of the California Public Utilities Commission. Copyright 2013 Pacific Gas and Electric Company, Southern California Edison, Southern California Gas, San Diego Gas & Electric. All rights reserved, except that this document may be used, copied, and distributed without modification. Neither PG&E, SCE, SoCalGas, SDG&E, nor any of its employees makes any warranty, express of implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to, patents, trademarks or copyrights. Acknowledgements The CASE Team would like to thank Gary Klein (Affiliated International Management, LLC), John Koeller (Koeller & Company), and Michael Read (Oak Lodge Sanitary District) for their contributions in the development of this standards proposal. Table of Contents 1 EXECUTIVE SUMMARY ..................................................................................................... 1 2 BACKGROUND .................................................................................................................. 3 2.1 Regulatory Background ............................................................................................ 3 2.1.1 Federal Regulatory Background .......................................................................................... 3 2.1.2 California Regulatory Background ...................................................................................... 3 2.2 Importance of Water Efficiency in California .................................................................. 4 2.3 Embedded Energy in California’s Potable Water .............................................................. 5 3 PRODUCT DESCRIPTION .................................................................................................. 6 3.1 Toilets ................................................................................................................. 6 3.1.1 Tank-type Toilets .......................................................................................................... 7 3.1.2 Valve-type (Flushometer Valve) Toilets ................................................................................. 9 3.1.3 Dual-Flush Toilets ......................................................................................................... 9 3.2 Urinals ............................................................................................................... 10 3.3 Flushing Devices (Valves) ........................................................................................ 11 3.3.1 Dual-Flush Valves ........................................................................................................ 12 3.3.2 Automatic Flushing Devices and Phantom Flushes .................................................................. 12 4 MANUFACTURING AND MARKET CHANNEL OVERVIEW ............................................ 13 5 ENERGY USAGE ............................................................................................................... 13 5.1 Test Methods ....................................................................................................... 13 5.1.1 Current Test Methods .................................................................................................... 13 5.1.2 Proposed Test Methods ................................................................................................... 16 5.2 Water and Energy Use per Unit for Non-Qualifying Products ........................................... 16 5.2.1 Residential Toilets ....................................................................................................... 17 5.2.2 Commercial Toilets ....................................................................................................... 18 5.2.3 Urinals ..................................................................................................................... 18 5.3 Efficiency Measures ............................................................................................... 18 5.4 Water & Energy Use per Unit for Qualifying Products .................................................... 18 5.4.1 Residential Toilets ....................................................................................................... 19 5.4.2 Commercial Toilets ....................................................................................................... 19 5.4.3 Urinals ..................................................................................................................... 19 6 MARKET SATURATION & SALES .................................................................................... 20 6.1 Current Market Situation ........................................................................................ 20 6.1.1 Total Stock and Shipments ............................................................................................. 20 6.1.2 Market Share of High Efficiency Options ............................................................................ 22 6.2 Future Market Adoption of High Efficiency Options ....................................................... 25 7 SAVINGS POTENTIAL ...................................................................................................... 27 7.1 Statewide California Energy Savings ........................................................................... 27 7.2 Other Benefits and Penalties .................................................................................... 29 7.1 State or Local Government Costs and Savings ............................................................... 29 8 ECONOMIC ANALYSIS .................................................................................................... 29 8.1 Incremental Cost .................................................................................................. 29 8.2 Design Life .......................................................................................................... 32 8.3 Lifecycle Cost / Net Benefit .................................................................................... 32 9 ACCEPTANCE ISSUES ....................................................................................................... 33 9.1 Infrastructure Issues ............................................................................................... 33 9.1.1 Potential Barriers and Compliance Issues ............................................................................. 33 9.1.2 Voluntary Programs ...................................................................................................... 37 9.2 Existing Standards and Standards under Development ..................................................... 38 9.2.1 Federal Appliance Standards ........................................................................................... 38 9.2.2 California Standards .................................................................................................... 38 9.2.3 Local Standards ........................................................................................................... 39 9.2.4 Other Standards .......................................................................................................... 40 9.3 Stakeholder Positions ............................................................................................. 40 10 ENVIRONMENTAL IMPACTS .......................................................................................... 41 10.1 Hazardous Materials .............................................................................................. 41 10.2 Air Quality .......................................................................................................... 41 10.3 Greenhouse Gases ................................................................................................. 41 11 RECOMMENDATIONS ..................................................................................................... 42 11.1 Recommended Standards Proposal ............................................................................. 42 11.2 Proposed Changes to the Title 20 Code Language .......................................................... 43 11.3 Implementation Plan .............................................................................................. 48 12 REFERENCES .................................................................................................................... 49 APPENDIX A: EMBEDDED ENERGY IN WATER ................................................................... A-1 APPENDIX B: COST ANALYSIS ASSUMPTIONS ...................................................................
Recommended publications
  • Flushing Money Away?
    Florida Keys Aqueduct Authority Making Paradise Possible Are you flushing money away? WATER USE If every American home with older, inefficient toilets replaced them with new high efficiency toilets, we would SAVE save nearly 640 billion gallons 67% of water per year, equal to OLDER LOW more than two weeks of flow Toilets account for approximately 27 percent of a home’s TOILET FLOW over Niagara Falls. indoor water consumption. Toilets are also a major source of wasted water due to leaks or inefficiency. Jiggling the handle is not a solution! It’s a symptom of something that could cost you Replacement of older toilets with low flow models can hundreds of dollars while wasting thousands of gallons save approximately 4,000 gal per year per person. of water each year. A simple way to test your toilet for Whether you're remodeling a bathroom, building a new leaks is to add a few drops of food coloring to the top home, or simply replacing an old, leaky toilet, a Water- tank, wait a few hours and see if any color seeps down into the bowl. Sense labeled toilet is a great option. FKAA can help. WaterSense Florida Keys Aqueduct Authority has a wide variety of , a program Toilets use either a siphonic sponsored by the U.S. or a wash-down method to conservation tools and methods available for you to use. remove waste from the bowl. Please contact any of our offices and ask about how you Environmental Protection e siphonic method, more can start saving right away.
    [Show full text]
  • A Sewer Catastrophe Companion
    A SEWER CATASTROPHE COMPANION Dry Toilets for Wet Disasters EMERGENCY The year is 20__. The Juan de Fuca tectonic plate has shifted, causing an earthquake with a magnitude of 9.0, devastating the Pacific Northwest. Underground infrastructure has shaken. Sewers are broken and leaking into waterways. You have food and water, your house is still habitable, and your friends and fam- ily are all accounted for. Finally, you can slow down and take stock. You need to poop. Where will you go? RESPONSE This guide presents a toilet system that you can do yourself without relying on a co- ordinated and timely response by someone else. This system served after earthquakes destroyed sanitation systems in Haiti and New Zealand. This guide is for planning ahead and preparing kits, whether for yourself, your household, your apartment building, or your block. This flexible system is built around ubiquitous and freely available 5-gallon buckets. A solution for today that’s Urine itself is sterile, it can be applied to not a problem for tomor- land, dramatically reducing the amount of row. 1. Pee in Bucket material handling. After the earthquake in New Zealand, 2. Poop in Bucket people used separate toilets for poop and pee to reduces material handling, disease risks, and work. Washing hands is fundamental. We de- 3. Wash Hands signed a simple, efficient, and ergonomic portable sink using buckets. A solution for managing Store materials until they can be properly excreta that’s not excreting 1. Cap and processed and treated. This allows time for problems later. an official response and pickup, or to build Store your own compost processing area.
    [Show full text]
  • What Happens When We Flush?
    Anthropology Now ISSN: 1942-8200 (Print) 1949-2901 (Online) Journal homepage: http://www.tandfonline.com/loi/uann20 What Happens When We Flush? Nicholas C. Kawa To cite this article: Nicholas C. Kawa (2016) What Happens When We Flush?, Anthropology Now, 8:2, 34-43 To link to this article: http://dx.doi.org/10.1080/19428200.2016.1202580 Published online: 29 Sep 2016. Submit your article to this journal Article views: 17 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uann20 Download by: [Tufts University] Date: 04 January 2017, At: 14:38 features reach far into our houses with their tentacles, they are carefully hidden from view, and we are happily ignorant of the invisible Venice What Happens When of shit underlying our bathrooms, bedrooms, dance halls, and parliaments.”1 We Flush? So what really happens when the mod- ern toilet goes “flush”? The human excreta it Nicholas C. Kawa handles most certainly does not disappear. Instead, a potential resource is turned into waste. But it hasn’t always been this way, and ost people who use a flush toilet prob- it doesn’t have to be. Mably don’t spend a lot of time thinking about where their bodily fluids and solids will journey after they deposit them. This is be- Dark Earths and Night Soils cause modern sanitation systems are designed to limit personal responsibilities when it Much of my research as an environmental comes to managing these most intimate forms anthropologist has focused on human rela- of excreta.
    [Show full text]
  • Composting Toilets: a Review* of Their Use in Public Venues in the U.S
    Composting Toilets: A Review* of Their Use in Public Venues in the U.S. (Updated November 8, 2016) Introduction :::::::::::::::::::::::::::::: 1 The Crystal Springs Golf Course :::::::::: 5 Manufacturers :::::::::::::::::::::::::::: 1 El Pol´ınSpring ::::::::::::::::::::::::::: 6 Buildings at the Vermont Law School ::::: 2 San Jose Environmental Innovation Center7 The Bronx Zoo Eco-Restroom ::::::::::::: 4 Frequently asked questions :::::::::::::::: 7 The University of Vermont :::::::::::::::: 5 Concluding remarks ::::::::::::::::::::: 11 Installations in California ::::::::::::::::: 5 Introduction Mention \composting toilet", and most people will think of something suitable for a summer cabin or a rural residence off the grid|a kind of classy outhouse|surely not something suitable for installation in an urban environment. As one person has remarked, flush toilets are the accepted social standard. The idea of collecting human excrement in a basement composting bin does not exactly square with the modern paradigm of gracious living. There is, however, more to the story. In what follows, we describe six composting toilet installations of varying types, currently installed for public use in locations in the United States, including three in California. We consider only those for institutional, industrial, municipal and commercial venues, i.e., those for which maintenance can be assured. We do not consider composting toilet installations for residential use. In our descriptions, we include comments by administrators, architects and users. As we shall see, every one of these six installations is positively viewed. We also include a section on frequently asked questions, including discussions of costs and possible legal barriers. Manufacturers: Clivus Multrum is the leader A comprehensive list of manufacturers of composting toilets is available as a pdf that may be downloaded from http://www.susana.org/en/resources/library/details/876.
    [Show full text]
  • In 1858, London Was Caught in the Grip of a Deadly Health Crisis: Its Largest River Was Overflowing with Poop
    Paired Texts In 1858, London was caught in the grip of a deadly health crisis: Its largest river was overflowing with poop. By Allison Friedman UP years, Londoners have been dumping human CLOSE Synthesizing As you read these articles, think about how big problems can waste into the Thames [temz], the great river spark the creation of new inventions. that rushes through the city. Now, London is suffering the hottest summer in recent history. LOOK FOR WORD NERD’S 10 WORDS IN BOLD The steaming heat is cooking the filthy river into a bubbling, foul-smelling stew. Newspapers Let’s journey to the city of London, England, are calling this situation “The Great Stink.” in the summer of 1858. Horse-drawn carriages The problem isn’t merely gross. It’s also clip-clop through the streets. Ladies wearing deadly. Over the past 50 years, tens of thousands giant, tentlike skirts glide past shop windows. of people have died from drinking the polluted Kids stand on street corners, selling newspapers water of the Thames River. Can the Great and cigars and fried fish. Stink force the city to clean up the river before But you don’t notice any of that. All you thousands more are sickened? can think about is the overpowering, stomach- turning, eye-watering smell of poop. The Problem of Poop As you will soon discover, the entire city For as long as humans have walked the is caught in the grip of a stinky crisis. For earth, figuring out what to do with human GARY HANNA BY ILLUSTRATION 10 STORYWORKS waste has been one of our greatest into the Thames, to prevent challenges.
    [Show full text]
  • Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
    Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems-
    [Show full text]
  • Draft High Efficiency Toilet Specification
    Version 1.0 EPA Water Efficiency Program 7 April 2006 Draft High Efficiency Toilet Specification 1.0 SCOPE AND OBJECTIVE This specification establishes the criteria to qualify a high efficiency toilet (HET) under the United States EPA Water Efficiency Program. It is applicable to: y single-flush, tank-type gravity toilets; y dual-flush, tank-type gravity toilets; y dual-flush, tank-type flushometer tank (pressure-assist) toilets, y tank-type, flushometer tank (pressure-assist) toilets, and y tank-type electrohydraulic toilets. The specification is designed to ensure both sustainable, efficient water use and a high level of user satisfaction with flushing performance. 2.0 SUMMARY OF CRITERIA To qualify under the program, toilets must meet criteria in three areas: y Effective flush volume shall not exceed 1.28 gallons1 (4.8 liters), as specified in Section 3.0; y Solid waste removal must be 350 grams2 or greater, as specified in Section 4.0; and y The toilet must conform to the adjustability and other supplementary requirements specified in Section 5.0. Conformance with these criteria must be established through independent laboratory testing, as specified in Section 6.0. 3.0 WATER EFFICIENCY CRITERIA 3.1 Single Flush Toilets - The effective flush volume shall not exceed 1.28 gallons (4.8 liters). The effective flush volume is the average flush volume when tested in accordance with ASME A112.19.2-2003. 3.2 Dual Flush Toilets - The effective flush volume shall not exceed 1.28 gallons (4.8 liters). The effective flush volume is defined as the composite, average flush volume of two reduced flushes and one full flush.
    [Show full text]
  • 2 the Robo-Toilet Revolution the Actress and the Gorilla
    George, Rose, 2014, The Big Necessity: The Unmentionable World of Human Waste and Why It Matters (pp. 39-64). Henry Holt and Co.. Kindle Edition. 2 THE ROBO-TOILET REVOLUTION THE ACTRESS AND THE GORILLA The flush toilet is a curious object. It is the default method of excreta disposal in most of the industrialized, technologically advanced world. It was invented either five hundred or two thousand years ago, depending on opinion. Yet in its essential workings, this everyday banal object hasn’t changed much since Sir John Harington, godson of Queen Elizabeth I, thought his godmother might like something that flushed away her excreta, and devised the Ajax, a play on the Elizabethan word jakes, meaning privy. The greatest improvements to date were made in England in the later years of the eighteenth century and the early years of the next by the trio of Alexander Cumming (who invented a valve mechanism), Joseph Bramah (a Yorkshireman who improved on Cumming’s valve and made the best lavatories to be had for the next century), and Thomas Crapper (another Yorkshireman who did not invent the toilet but improved its parts). In engineering terms, the best invention was the siphonic flush, which pulls the water out of the bowl and into the pipe. For the user, the S-bend was the godsend, because the water that rested in the bend created a seal that prevented odor from emerging from the pipe. At the height of Victorian invention, when toilets were their most ornate and decorated with the prettiest pottery, patents for siphonic flushes, for example, were being requested at the rate of two dozen or so a year.
    [Show full text]
  • Composting Toilets
    Advanced Methods and Materials AMM201 Composting Toilets This Advanced Method and Material was developed jointly by the City of Bellingham SCOPE Building Department and Sustainable Connections to enhance water conservation ef- All habitable build- forts by providing a means for the installation of composting toilets. ings. DEFINITIONS Composting toilet: A BENEFITS human waste disposal system that utilizes a Composting toilets can help achieve zero waterless or low-fl ush toilet in conjunction water consumption. When used in com- with a tank in which bination with wastewater re-utilization aerobic bacteria break in irrigation and other household water down the waste. reduction techniques, costs can be cut by up to 60%. Additional benefi ts of com- PERMIT posting toilets include: REQUIREMENTS In general, the person Lower electricity costs (to pump water installing the com- and sewage) posting toilet obtains any required permits. Elimination of infrastructure costs For specifi c informa- to provide fresh water or collect and tion applicants should treat sewage contact the COB End state is a valuable fertilizer Permit Center/Build- ing Services Division Contribute up to 3 LEED® points for for more information: your project (360) 778-8300 or [email protected]. The average household spends as much as $500 per year on its water and sewer bill. A four-person household using a traditional 3.5 gallon fl ush toilet will fl ush some 70 gallons per day down the toilet (that’s an annual volume of over 25,000 gallons per year). Compared to sewage systems, on-site composting and greywater treatment has less impact on the environment (large effl uent releases into watercourses and oceans are avoided, disruption to soils systems through pipeline installation is eliminated and leakage of raw sewage into groundwater through pipe deterioration and breakage is eliminated).
    [Show full text]
  • Restrooms & Plumbing
    Restrooms & Plumbing Every building with a water supply uses plumbing to convey and control the water. Plumbing fixtures are a ubiquitous part of our daily lives. Almost all build- Plumbing ings used by people have at least one restroom. Examples are schools, hospitals, fixtures are hotels, service stations, stores, government buildings, places of worship, office a ubiquitous buildings, convenience stores, and entertainment sites. part of our Because of the large numbers of plumbing fixtures and the enormous amounts daily lives. of water they collectively use, federal and California statues set water-use stan- Restrooms dards for some fixtures and appliances. Manufacturers and water interests have and plumb- continued to examine opportunities for water efficiency and associated energy ing fixtures efficiency. In addition, performance testing for some plumbing fixtures resulted in are prime new specifications, such as the EPA WaterSense specification for high-efficiency toilets (HETs). New specifications for faucets and shower heads are being devel- targets for oped, resulting in a series of improved products. Restroom and plumbing fixtures new design are prime targets for new design or retrofit with high-efficiency technologies. or retrofit with high- Water-using technologies that have specific potential for water conservation are efficiency discussed in this section. For each technology, alternative water-efficiency meth- ods are scored “High” (better than 50 percent savings), “Medium” (10-50 percent technolo- savings), or “Low” (less
    [Show full text]
  • Water Efficiency Water Management Options
    water efficiency Water Management Options SANITARY AND DOMESTIC USES Often overlooked are the water and cost savings achievable in domestic water usage by commercial and industrial facilities. While water efficiency measures should begin with the highest water use operations such as cooling, cleaning, rinsing, heating, etc., many facilities miss the easy improvements that can be made in domestic water devices such as toilets, urinals, sink faucets, and showers. Domestic water use at industrial and commercial facilities may range from a few percent at a food processing industry to more than 50 percent in an office setting. Average daily domestic demands in commercial/industrial settings range between 20 and 35 gallons per day (gpd) per employee, and a savings of 25 to 30 percent in this domestic usage is readily achievable. Best-in-class domestic water FIGURE 1 use in business settings has been Typical Water Consumption for Toilets documented in the range of seven to 10 gpd per employee. Years Manufactured Gravity Tank Style Flush Valve Style Toilets Pre-1977 5.0-7.0 gpf 4.5-5.0 gpf Americans consume almost 4.8 billion 1977 to mid 1990s 3.5 (some 5.0 gpf) 3.5 gpf gallons of water daily by flushing toilets Mid 1990s 1.6 maximum 1.6 maximum and urinals. In a business office setting, toilet water usage alone can account for approximately one-third of all water used. A number of water efficiency options exist for toilets in most facilities constructed before 1994 that have not been Gravity Flush Toilet renovated recently. The three major types of toilets include gravity flush, flush valve, and pressurized tank type.
    [Show full text]
  • Water Efficiency Standards We 1: Enhance Water Efficiency Standards
    WE 1: ENHANCE WATER EFFICIENCY STANDARDS WE 1: ENHANCE WATER EFFICIENCY STANDARDS New York City Plumbing Code and Administrative Code Proposal developed by the Water Efficiency & Building Stormwater Committee Summary Issue: Although New York City receives substantial rainfall, the city is still vulnerable in dry years and has experienced seven droughts in the last 45 years. Fortunately, the need for water can be easily reduced with more-efficient plumbing fixtures. Recommendation: Enhance water efficiency standards for plumbing fixtures. Proposed Legislation, Rule or Study Amendments to the New York City Plumbing Code: 1. Add the following definitions to Section 202: DUAL-FLUSH TOILET. A toilet that enables the user to select a high flush for solid waste or a reduced volume, low flush for liquid waste. HIGH-EFFICIENCY TOILET (HET). A toilet that is authorized by the WaterSense Program of the United States Environmental Protection Agency to bear the WaterSense label. NON-WATER URINAL. A urinal that discharges into the sanitary drainage system but is not supplied by a water distribution system. WATERSENSE-LABELED FIXTURE. A plumbing fixture that has been tested by a third-party laboratory in accordance with the WaterSense Program of the United States Environmental Protection Agency, has been certified by such laboratory as meeting the performance and efficiency requirements of the program and has been authorized by the program to use its label. 2. Add a new Section 417.4.2 as follows: 417.4.2 Limitation on showerheads. The aggregate allowable flow rate from all shower head fixtures (including rain systems, waterfalls, bodysprays, and jets) that can operate simultaneously in a single shower compartment shall be limited to the flow rate in Table 604.4 for a single shower head.
    [Show full text]