Amortized Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Amortized Analysis Amortized Analysis 1. The concepts of amortized analysis 2. Methods of amortized analysis • Aggregate method • Accounting method • Potential method 3. Problem examples by amortized analysis •Stack • Binary counter • Dynamic array CP412 ADAII, Wilfrid Laurier University Introduction # 1 1. What is Amortized Analysis • Previous analysis focuses on time/space usage of algorithms for arbitrary input of a problem. – The worst analysis considers the worst cost over all possible inputs of given size – The average case considers the average cost over all possible input of given size. The average is a probability expectation. – Rough and pessimistic • Amortized Analysis is concerned with the overall cost of a sequence of operations – the average performance of each operation in the worst case over all possible sequences of the operations. CP412 ADAII, Wilfrid Laurier University Introduction # 2 Why concerning a sequence of operations – data structures typically undergo a sequence of operations. E.g. push or pop operations stack. – For a sequence of operations, the cost of an operation at different position are different. E.g. for tree insertion operation, the cost of early insertion and later insertions are different. – amortized analysis allows a tighter bound that better reflects performance than the worst case analysis CP412 ADAII, Wilfrid Laurier University Introduction # 3 Amortized Analysis vs other analysis • Amortized analysis vs average case analysis – Average case analysis relies on probabilistic assumptions about the data structures and operations in order to compute an expected running time of an algorithm. – Amortized analysis needs no such assumptions. – Amortized analysis offers a true upper bound on the worst case running time of a sequence of operations. – An average case bound does not provide a true upper bound. That means one may not “unlucky” and encounter an input that requires much more than the expected computation time. • Amortized analysis vs competitive analysis – Amortization is useful for competitive analysis's performance. Sleator and Tarjan (1985a) offer an example of using amortized analysis to perform competitive analysis CP412 ADAII, Wilfrid Laurier University Introduction # 4 History • In finance, amortization refers to paying off a debt, such as a loan or mortgage, by smaller payments made over time • Tarjan introduced amortized analysis for algorithms as a general technique in 1985 – Three methods of amortized analysis were recognized: – the banker's method (Brown and Tarjan,1980) – Aggregate method ((Aho et al. 1974) – potential method (Sleator 1985) CP412 ADAII, Wilfrid Laurier University Introduction # 5 2. Amortized analysis methods • The aggregate method, where the total running time for a sequence of operations is analyzed. T(n) is total cost over a worst-case sequence of n operations T(n) Amortized cost per operation = n • The accounting (or banker's) method, where we impose an extra charge on inexpensive operations and use it to pay for expensive operations later on. • The potential (or physicist's) method, in which we derive a potential function characterizing the amount of extra work we can do in each step. This potential either increases or decreases with each successive operation, but cannot be negative. CP412 ADAII, Wilfrid Laurier University Introduction # 6 Stack with push, pop, MultiPop operations Consider stack data structure with three operations Push(S, x) -- push x onto stack S, worst-case cost O(1). Pop (S) -- pop the top element of S, worst-case cost O(1). MultiPop(S, k): it pops top k elements of S, worst-case cost O(k). MultiPop (S, k) while S is not empty ; and k > 0 Pop (S) k = k - 1 end What is the worst-case complexity of n MultiPop Stack ops? Because any single MultiPop can be (n), the standard worst-case bound is O(n2). CP412 ADAII, Wilfrid Laurier University Introduction # 7 Aggregate method of stack Theorem: A sequence of n ops, on an initially empty stack, has cost O(n). Proof: Each element is popped at most once (either by Pop or during a MultiPop). Total cost of Pops, including MultiPops, is ≤ number of Pushes, which is at most n. Total cost of all operations is T(n) ≤ 2n. Thus, amortized cost per operation for this stack is at most 2. This bound holds in worst-case, over any sequence! CP412 ADAII, Wilfrid Laurier University Introduction # 8 Accounting method of Stack The key is to choose the amortized costs carefully. Suppose the actual cost of the ith operation is Ci , we use some other cost Ai as its amortized cost. Then, we have to make sure that, for any possible nn sequence of n operations, ACii ii11 The total credit accrued by the data structure at any point nn is (ACii ) 0 ii11 CP412 ADAII, Wilfrid Laurier University Introduction # 9 Accounting method of Stack The actual costs (Ci) of operations in the stack example are: 1 for Push, 1 for Pop, min(k, s) for MultiPop, where s is the stack size when the MultiPop is called. Let us assign the following amortized costs (Ai) to these ops: 2 for Push 0 for Pop 0 for MultiPop The amortized cost of MultiPop is a constant (in fact, 0), even though it's real cost if variable. The intuition is that the credit accrued through Push operations will be enough to pay for the actual cost of MultiPop. CP412 ADAII, Wilfrid Laurier University Introduction # 10 Accounting method of stack Think of stack as a bank, where each deposit and withdrawal costs $1. When an item is pushed onto the stack, we use $1 for the Push operation, and leave the second dollar (of its amortized cost) with the item in the bank. This second (spare) dollar will be used to pay for the item's Pop. The item may be popped either through a single Pop or a MultiPop, but since each item in the stack has a spare dollar allocated to it, the Pop and MultiPop can be entirely paid using that credit. The amortized cost of Pop and MultiPop is therefore 0. Thus, for any sequence of n Push, Pop, MultiPop, the total amortized cost is at most 2n = O(n), and it is an upper bound on the actual cost. The average cost per operation is 2. CP412 ADAII, Wilfrid Laurier University Introduction # 11 Potential method of stack Keep track of the potential energy of the data structure. Start with initial data structure Di , and perform n updates. Let Ci be the actual cost of ith op; let Di be data structure state after op i. Function measures potential of data structure. Define amortized cost of operation i as ACii= + (( D i ) ( D i1 )) CP412 ADAII, Wilfrid Laurier University Introduction # 12 Potential method of stack Since ACii= + ( ( D i ) ( D i1 )), by adding them up them up over the sequence, we get nn ACii+ ( D n ) ( D0 ), ii11 Suppose (DDi ) (0 ) 0, for all i, then nn ACii ii11 So, amortized cost is an upper bound on actual total cost. How to define (Di ) CP412 ADAII, Wilfrid Laurier University Introduction # 13 Potential method of stack Let = number of items on stack ()0,()DDD00i ()0 Amortized cost of Push: ACii(( D i ) ( D i1 ))11 2 Amortized cost of Pop: ACii(( D i ) ( D i1 ))110 Amortized cost of MultiPop (S, k):: ACii(( D i ) (Dskski 1 )) min( , ) min( , ) 0 n Thus, amortized total cost Ani 2 , i 1 amortized cost per operation is O(1). CP412 ADAII, Wilfrid Laurier University Introduction # 14 Amortized Analysis of a Binary Counter Binary counter implemented as an array of bits: A[0...k - 1]. Consider incrementing A starting from 0. Increment (A) i = 0; while i k and A[i] = 1 A[i] = 0; i = i + 1; if i < k then A[i] = 1; Cost of Increment is number of bits flipped. CP412 ADAII, Wilfrid Laurier University Introduction # 15 Analysis of a Binary Counter Binary counter bit sequence: Value Bits Cost 0 0…000 0 1 0…001 1 2 0…010 2 3 0…011 1 In the worst-case, a single increment can flip k bits. There are n increments, so by standard worst-case analysis, the cost is O(nk). CP412 ADAII, Wilfrid Laurier University Introduction # 16 Amortized Analysis of Binary Counter Theorem: starting with 0, worst-case cost of n increments is O(n). Proof: Bit A[0] flips each increment. Bit A[1] flips every other increment. Bit A[i] flips during every 1/2i -th increment. During n increments, bit A[i] flips n/2i times. Assume n ≤ 2k; otherwise, the counter resets, and restart analysis. Total cost log n n 1 nn2 ii ii0022 Amortized cost per increment is 2 CP412 ADAII, Wilfrid Laurier University Introduction # 17 Accounting method of binary counter Let us assign the following amortized costs Ai = 2 for every increment operation Prove that up to j increments, the actual cost and amortized total coast satisfying: jj Cjii2 A ii11 CP412 ADAII, Wilfrid Laurier University Introduction # 18 CP412 ADAII, Wilfrid Laurier University Introduction # 19 Potential method of binary counter Let ii = (D ) be the number of 1's in the counter after nth operation, then i 0 = 0 for all i. Suppose ith Increment resets ti bits. Actual cost C ii = t + 1. ii1 bb, then iiit + 1 Amortized cost ACii( ii1 ) (t i + 1) ( b ii t +1 b i ) 2 n Thus, total amortized cost Ani 2 . i 1 CP412 ADAII, Wilfrid Laurier University Introduction # 20 Dynamic Array Description Think of an array initialized with a fixed number of slots, and supports APPEND and DELETE operations. When we APPEND too many elements, the array would be full and we need to expand the array (make the size larger). When we DELETE too many elements, we want to shrink to the array (make the size smaller).
Recommended publications
  • Amortized Analysis
    Amortized Analysis Outline for Today ● Euler Tour Trees ● A quick bug fix from last time. ● Cartesian Trees Revisited ● Why could we construct them in time O(n)? ● Amortized Analysis ● Analyzing data structures over the long term. ● 2-3-4 Trees ● A better analysis of 2-3-4 tree insertions and deletions. Review from Last Time Dynamic Connectivity in Forests ● Consider the following special-case of the dynamic connectivity problem: Maintain an undirected forest G so that edges may be inserted an deleted and connectivity queries may be answered efficiently. ● Each deleted edge splits a tree in two; each added edge joins two trees and never closes a cycle. Dynamic Connectivity in Forests ● Goal: Support these three operations: ● link(u, v): Add in edge {u, v}. The assumption is that u and v are in separate trees. ● cut(u, v): Cut the edge {u, v}. The assumption is that the edge exists in the tree. ● is-connected(u, v): Return whether u and v are connected. ● The data structure we'll develop can perform these operations time O(log n) each. Euler Tours on Trees ● In general, trees do not have Euler tours. a b c d e f a c d b d f d c e c a ● Technique: replace each edge {u, v} with two edges (u, v) and (v, u). ● Resulting graph has an Euler tour. A Correction from Last Time The Bug ● The previous representation of Euler tour trees required us to store pointers to the first and last instance of each node in the tours.
    [Show full text]
  • Lecture Notes of CSCI5610 Advanced Data Structures
    Lecture Notes of CSCI5610 Advanced Data Structures Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong July 17, 2020 Contents 1 Course Overview and Computation Models 4 2 The Binary Search Tree and the 2-3 Tree 7 2.1 The binary search tree . .7 2.2 The 2-3 tree . .9 2.3 Remarks . 13 3 Structures for Intervals 15 3.1 The interval tree . 15 3.2 The segment tree . 17 3.3 Remarks . 18 4 Structures for Points 20 4.1 The kd-tree . 20 4.2 A bootstrapping lemma . 22 4.3 The priority search tree . 24 4.4 The range tree . 27 4.5 Another range tree with better query time . 29 4.6 Pointer-machine structures . 30 4.7 Remarks . 31 5 Logarithmic Method and Global Rebuilding 33 5.1 Amortized update cost . 33 5.2 Decomposable problems . 34 5.3 The logarithmic method . 34 5.4 Fully dynamic kd-trees with global rebuilding . 37 5.5 Remarks . 39 6 Weight Balancing 41 6.1 BB[α]-trees . 41 6.2 Insertion . 42 6.3 Deletion . 42 6.4 Amortized analysis . 42 6.5 Dynamization with weight balancing . 43 6.6 Remarks . 44 1 CONTENTS 2 7 Partial Persistence 47 7.1 The potential method . 47 7.2 Partially persistent BST . 48 7.3 General pointer-machine structures . 52 7.4 Remarks . 52 8 Dynamic Perfect Hashing 54 8.1 Two random graph results . 54 8.2 Cuckoo hashing . 55 8.3 Analysis . 58 8.4 Remarks . 59 9 Binomial and Fibonacci Heaps 61 9.1 The binomial heap .
    [Show full text]
  • Fundamental Data Structures Contents
    Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis
    [Show full text]
  • Introduction to Algorithms, 3Rd
    Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England c 2009 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email special [email protected]. This book was set in Times Roman and Mathtime Pro 2 by the authors. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Introduction to algorithms / Thomas H. Cormen ...[etal.].—3rded. p. cm. Includes bibliographical references and index. ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper) 1. Computer programming. 2. Computer algorithms. I. Cormen, Thomas H. QA76.6.I5858 2009 005.1—dc22 2009008593 10987654321 Index This index uses the following conventions. Numbers are alphabetized as if spelled out; for example, “2-3-4 tree” is indexed as if it were “two-three-four tree.” When an entry refers to a place other than the main text, the page number is followed by a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged page number often indicates the first page of an exercise or problem, which is not necessarily the page on which the reference actually appears. ˛.n/, 574 (set difference), 1159 (golden ratio), 59, 108 pr. jj y (conjugate of the golden ratio), 59 (flow value), 710 .n/ (Euler’s phi function), 943 (length of a string), 986 .n/-approximation algorithm, 1106, 1123 (set cardinality), 1161 o-notation, 50–51, 64 O-notation, 45 fig., 47–48, 64 (Cartesian product), 1162 O0-notation, 62 pr.
    [Show full text]
  • Draft Version 2020-10-11
    Basic Data Structures for an Advanced Audience Patrick Lin Very Incomplete Draft Version 2020-10-11 Abstract I starting writing these notes for my fiancée when I was giving her an improvised course on Data Structures. The intended audience here has somewhat non-standard background for people learning this material: a number of advanced mathematics courses, courses in Automata Theory and Computational Complexity, but comparatively little exposure to Algorithms and Data Structures. Because of the heavy math background that included some advanced theoretical computer science, I felt comfortable with using more advanced mathematics and abstraction than one might find in a standard undergraduate course on Data Structures; on the other hand there are also some exercises which are purely exercises in implementational details. As such, these notes would require heavy revision in order to be used for more general audiences. I am heavily indebted to Pat Morin’s Open Data Structures and Jeff Erickson’s Algorithms, in particular the parts of the “Director’s Cut” of the latter that deal with randomization. Anyone familiar with these two sources will undoubtedly recognize their influences. I apologize for any strange notation, butchered analyses, bad analogies, misleading and/or factually incorrect statements, lack of references, etc. Due to the specific nature of these notes it can be hard to find time/reason to do large rewrites. Contents 1 Models of Computation for Data Structures 2 2 APIs (ADTs) vs Data Structures 4 3 Array-Based Data Structures 6 3.1 ArrayLists and Amortized Analysis . 6 3.2 Array{Stack,Queue,Deque}s ..................................... 9 3.3 Graphs and AdjacencyMatrices .
    [Show full text]
  • Amortizedanalysis-2X
    Data structures Static problems. Given an input, produce an output. DATA STRUCTURES I, II, III, AND IV Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ... I. Amortized Analysis Dynamic problems. Given a sequence of operations (given one at a time), II. Binary and Binomial Heaps produce a sequence of outputs. Ex. Stack, queue, priority queue, symbol table, union–find, …. III. Fibonacci Heaps IV. Union–Find Algorithm. Step-by-step procedure to solve a problem. Data structure. Way to store and organize data. Ex. Array, linked list, binary heap, binary search tree, hash table, … 1 2 3 4 5 6 7 8 7 Lecture slides by Kevin Wayne 33 22 55 23 16 63 86 9 http://www.cs.princeton.edu/~wayne/kleinberg-tardos 33 10 44 86 33 99 1 ● 4 ● 1 ● 3 ● 46 83 90 93 47 60 Last updated on 11/13/19 5:37 AM 2 Appetizer Appetizer Goal. Design a data structure to support all operations in O(1) time. Data structure. Three arrays A[1.. n], B[1.. n], and C[1.. n], and an integer k. ・INIT(n): create and return an initialized array (all zero) of length n. ・A[i] stores the current value for READ (if initialized). ・READ(A, i): return element i in array. ・k = number of initialized entries. ・WRITE(A, i, value): set element i in array to value. ・C[j] = index of j th initialized element for j = 1, …, k. ・If C[j] = i, then B[i] = j for j = 1, …, k. true in C or C++, but not Java Assumptions.
    [Show full text]
  • Amortized Analysis & Splay Trees
    Lecture 2: Amortized Analysis & Splay Trees Rafael Oliveira University of Waterloo Cheriton School of Computer Science [email protected] September 14, 2020 1 / 66 Overview Introduction Meet your TAs! Types of amortized analyses Splay Trees Implementing Splay-Trees Setup Splay Rotations Analysis Acknowledgements 2 / 66 Meet your TAs Thi Xuan Vu Office hours: Wed morning (put exact time here) Anubhav Srivastava Office hours: Thursday afternoon (put exact time here) 3 / 66 With regards to the final project: I highly encourage you all to explore an open problem (but survey is also completely fine! :) ). The reason I wanted to mention is that this may be a unique opportunity for many of you to explore! So be bold! :) If you solve an open problem, you also automatically get 100 in this course and get to publish a paper! (and also get to experience the exhilarating feeling of solving a cool problem!) Twenty years from now you will be more disappointed by the things you didn't do than by the ones you did do. So throw off the bowlines. Sail away from the safe harbor. Catch the trade winds in your sails. Explore. Dream. Discover. - Mark Twain Admin notes Late homework policy: I updated the late homework policy to be more flexible. Now each student has 10 late days without penalty for the entire term. 4 / 66 Twenty years from now you will be more disappointed by the things you didn't do than by the ones you did do. So throw off the bowlines. Sail away from the safe harbor.
    [Show full text]
  • Purely Functional Data Structures
    Purely Functional Data Structures Kristjan Vedel November 18, 2012 Abstract This paper gives an introduction and short overview of various topics related to purely functional data structures. First the concept of persistent and purely functional data structures is introduced, followed by some examples of basic data structures, relevant in purely functional setting, such as lists, queues and trees. Various techniques for designing more efficient purely functional data structures based on lazy evaluation are then described. Two notable general-purpose functional data structures, zippers and finger trees, are presented next. Finally, a brief overview is given of verifying the correctness of purely functional data structures and the time and space complexity calculations. 1 Data Structures and Persistence A data structure is a particular way of organizing data, usually stored in memory and designed for better algorithm efficiency[27]. The term data structure covers different distinct but related meanings, like: • An abstract data type, that is a set of values and associated operations, specified independent of any particular implementation. • A concrete realization or implementation of an abstract data type. • An instance of a data type, also referred to as an object or version. Initial instance of a data structure can be thought of as the version zero and every update operation then generates a new version of the data structure. Data structure is called persistent if it supports access to all versions. [7] It's called partially persistent if all versions can be accessed, but only last version can be modified and fully persistent if every version can be both accessed and mod- ified.
    [Show full text]
  • Mechanized Verification of the Correctness and Asymptotic Complexity of Programs
    Universit´ede Paris Ecole´ doctorale 386 | Sciences Math´ematiquesde Paris Centre Doctorat d'Informatique Mechanized Verification of the Correctness and Asymptotic Complexity of Programs The Right Answer at the Right Time Arma¨elGu´eneau Th`ese dirig´eepar Fran¸coisPottier et Arthur Chargu´eraud et soutenue le 16 d´ecembre 2019 devant le jury compos´ede : Jan Hoffmann Assistant Professor, Carnegie Mellon University Rapporteur Yves Bertot Directeur de Recherche, Inria Rapporteur Georges Gonthier Directeur de Recherche, Inria Examinateur Sylvie Boldo Directrice de Recherche, Inria Examinatrice Mihaela Sighireanu Ma^ıtrede Conf´erences, Universit´ede Paris Examinatrice Fran¸coisPottier Directeur de Recherche, Inria Directeur Arthur Chargu´eraud Charg´ede Recherche, Inria Co-directeur Abstract This dissertation is concerned with the question of formally verifying that the imple- mentation of an algorithm is not only functionally correct (it always returns the right result), but also has the right asymptotic complexity (it reliably computes the result in the expected amount of time). In the algorithms literature, it is standard practice to characterize the performance of an algorithm by indicating its asymptotic time complexity, typically using Landau's \big-O" notation. We first argue informally that asymptotic complexity bounds are equally useful as formal specifications, because they enable modular reasoning: a O bound abstracts over the concrete cost expression of a program, and therefore abstracts over the specifics of its implementation. We illustrate|with the help of small illustrative examples|a number of challenges with the use of the O notation, in particular in the multivariate case, that might be overlooked when reasoning informally. We put these considerations into practice by formalizing the O notation in the Coq proof assistant, and by extending an existing program verification framework, CFML, with support for a methodology enabling robust and modular proofs of asymptotic complexity bounds.
    [Show full text]
  • Amortized Analysis
    DESIGN AND ANALYSIS OF ALGORITHMS (DAA 2018) Juha Kärkkäinen Based on slides by Veli Mäkinen Master’s Programme in Computer Science 06/09/2018 1 ANALYSIS OF RECURRENCES & AMORTIZED ANALYSIS Master’s Programme in Computer Science DAA 2018 week 1 / Juha Kärkkäinen 06/09/2018 2 ANALYSIS OF RECURRENCES • Analysing recursive, divide-and-conquer algorithms • Step 1: Divide problem into subproblems • Step 2: Solve subproblems recursively • Step 3: Combine subproblem results • Three methods • Substitution method (Section 4.3 in book) • Recursion-tree method (Section 4.4) • Master method (Section 4.5) • Quicksort (Chapter 7) • We will continue on Week II with this topic with advanced recursive algorithms Master’s Programme in Computer Science DAA 2018 lecture 1 / Juha Kärkkäinen 06/09/2018 3 QUICKSORT pivot 4 7 8 1 3 6 5 2 9 1 3 2 4 7 8 6 5 9 1 3 2 4 6 5 7 8 9 2 3 4 5 6 7 8 9 2 3 5 6 Bad pivot causes recursion tree to be skewed O(n2) worst case. We learn next week how to select a perfect pivot (median) in linear time! Master’s Programme in Computer Science DAA 2018 lecture 1 / Juha Kärkkäinen 06/09/2018 4 QUICKSORT WITH PERFECT PIVOT … … … … … … … log n levels … … O(n) work on each level O(n log n) time This is called the recursion tree method. Master’s Programme in Computer Science DAA 2018 lecture 1 / Juha Kärkkäinen 06/09/2018 5 QUICKSORT WITH PERFECT PIVOT • Running time can also be stated as a recurrence (recursively defined equation): recursive calls • T(n) = 2T(n/2) + O(n) divide and combine • T(1) = O(1) base case • Assumes n=2k for some integer k>0 (why is this fine to assume?).
    [Show full text]
  • Analysis of Algorithms
    Analysis of Algorithms CSci 653, TTh 9:30-10:50, ISC 0248 Professor Mao, [email protected], 1-3472, McGl 114 General Information I Office Hours: TTh 11:00 – 12:00 and W 3:00 – 4:00 I Textbook: Intro to Algorithms (any edition), CLRS, McGraw Hill or MIT Press. I Prerequisites/background: Linear algebra, Data structures and algorithms, and Discrete math Use of Blackboard I Announcements I Problem sets (aka assignments or homework) I Lecture notes I Grades I Check at least weekly Lecture Basics I Lectures: Slides + board (mostly) I Lecture slides ⊂ lecture notes posted on BB I Not all taught in class are in the lecture notes/slides, e.g., some example problems. So take your own notes in class Course Organization I Mathematical foundation I Methods of analyzing algorithms I Methods of designing algorithms I Additional topics chosen from the lower bound theory, amortization, probabilistic analysis, competitive analysis, NP-completeness, and approximation algorithms Grading I About 12 problem sets: 60% I Final: 40% (in-class) Grading Policy (may be curved) I [90;100]: A or A- I [80;90): B+, B, or B- I [70;80): C+, C, or C- I [60;70): D+, D, or D- I [0;60):F Homework Submission Policy I Hardcopy (stapled and typeset in LaTex) to be submitted at the beginning of class on the due date I Extensions may be permitted for illness, family emergency, and travel to interviews/conferences. Requests must be made prior to the due date Homework Policy I Homework must be typeset in LaTex.
    [Show full text]
  • 8 Priority Queues 8 Priority Queues Dijkstra's Shortest Path Algorithm
    8 Priority Queues 8 Priority Queues A Priority Queue S is a dynamic set data structure that supports the following operations: ñ S: build(x1; : : : ; xn): Creates a data-structure that contains An addressable Priority Queue also supports: just the elements x1; : : : ; xn. ñ handle S: insert(x): Adds element x to the data-structure, ñ S: insert(x): Adds element x to the data-structure. and returns a handle to the object for future reference. ñ element S: minimum(): Returns an element x S with 2 ñ S: delete(h): Deletes element specified through handle h. minimum key-value key[x]. ñ S: decrease-key(h; k): Decreases the key of the element ñ element delete-min : Deletes the element with S: () specified by handle h to k. Assumes that the key is at least minimum key-value from and returns it. S k before the operation. ñ boolean S: is-empty(): Returns true if the data-structure is empty and false otherwise. Sometimes we also have ñ S: merge(S ): S : S S ; S : . 0 = [ 0 0 = 8 Priority Queues © Harald Räcke 303 © Harald Räcke 304 Dijkstra’s Shortest Path Algorithm Prim’s Minimum Spanning Tree Algorithm Algorithm 19 Prim-MST(G (V , E, d), s V) Algorithm 18 Shortest-Path(G (V , E, d), s V) = ∈ = ∈ 1: Input: weighted graph G (V , E, d); start vertex s; 1: Input: weighted graph G (V , E, d); start vertex s; = = 2: Output: pred-fields encode MST; 2: Output: key-field of every node contains distance from s; 3: S.build(); // build empty priority queue 3: S.build(); // build empty priority queue 4: for all v V s do 4: for all v V s do ∈ \{ } ∈ \{ } 5: v.
    [Show full text]