Screen Printing Technology for Energy Devices

Total Page:16

File Type:pdf, Size:1020Kb

Screen Printing Technology for Energy Devices Linköping Studies in Science and Technology Dissertations No. 1942 Screen Printing Technology for Energy Devices Andreas Willfahrt 2019 Norrköping © Andreas Willfahrt, 2019 Printed in Sweden by LiU Press ISSN 0345-7524 ISBN 978-91-7685-274-3 Screen Printing Technology for Energy Devices by Andreas Willfahrt February 2019 ISBN 978-91-7685-274-3 Linköping Studies in Science and Technology Dissertation No. 1942 ISSN 0345-7524 Dedicated to my family, my three gorgeous girls. Abstract The technical application of screen and stencil printing has been state of the art for decades. As part of the subtractive production process of printed circuit boards, for instance, screen and stencil printing play an important role. With the end of the 20th century, another field has opened up with organic electronics. Since then, more and more functional layers have been produced using prin- ting methods. Printed electronics devices offer properties that give almost every freedom to the creativity of product development. Flexibility, low weight, use of non-toxic materials, simple disposal and an enormous number of units due to the production process are some of the prominent keywords associated with this field. Screen printing is a widely-used process in printed electronics, as this pro- cess is very flexible with regard to the materials that can be used. In addition, a minimum resolution of approximately 30 µm is sufficiently high. The ink film thickness, which can be controlled over a wide range, is an extremely important advantage of the process. Depending on the viscosity, layer thicknesses of several hundred nanometres up to several hundred micrometres can be realised. The conversion and storage of energy is an important topic, either in the field of renewable energies or the energy supply of the Internet of Things (IoT). This thesis addresses the print production of both device classes. Vertically structured thermoelectric generators (TEGs) for energy conversion and stacked supercapacitors for energy storage are produced by screen printing. Papers I-IV focus on the generation of functional layers of vertically alig- ned thermoelectric generators. These can convert heat directly into electrical energy. The vertical design was chosen due to the simple application of the de- vice at the heat source. The general feasibility of screen-printed, vertically alig- ned TEGs was demonstrated. Optimisation of the thermoelectric materials is required, so that the process can be used sensibly. In paper III, the Ni containing model ink was optimised for filling the cavities in the insulator layer. In paper IV the printed thermoelectric generators are modelled. The performance of a set of parameters can be estimated by this model. The high Seebeck coefficient of ionic conductors is used in paper V in so-called ionic thermoelectric superca- pacitor (ITESC), a combination of TEG and supercapacitor. Paper VI presents an environmentally friendly supercapacitor with a printable separator based on cornstarch and citric acid, which has a competitive electrochemical performance compared to printed supercapacitors reported elsewhere. In paper VII, some parameters of screen-printed primary Zn/MnO2 cells are optimised and a prin- table separator based on cornstarch and lactic acid was successfully tested. Populärvetenskaplig sammanfattning Den tekniska tillämpningen av skärm- och stencilutskrift har varit topp- moderna i årtionden. Som en del av den subtraktiva produktionsprocessen av tryckta kretskort spelar exempelvis skärm- och stencilutskrift en viktig roll. I slutet av 1900-talet har ett annat fält öppnat med organisk elektronik. Sedan dess har allt fler funktionella lager producerats med hjälp av tryckmetoder. Tryckta elektronikanordningar erbjuder egenskaper som ger nästan all frihet till kreati- viteten i produktutvecklingen. Flexibilitet, låg vikt, användning av giftfria mate- rial, enkelt bortskaffande och ett enormt antal enheter på grund av produktions- processen är några av de framträdande nyckelord som hör till detta område. Skärmtryck är en allmänt använd process i tryckt elektronik, eftersom pro- cessen är mycket flexibel med avseende på material som kan användas. Dessutom är en minsta upplösning på cirka 30 µm tillräckligt bra. Bläckfilmens tjocklek, som kan styras över ett brett område, är en extremt viktig fördel med processen. Beroende på viskositeten kan skikttjockleken på flera hundra nanometer upp till flera hundra mikrometer realiseras. Omvandling och lagring av energi är ett viktigt ämne, antingen inom för- nybara energikällor eller energiförsörjningen av saker i saken (IoT). Denna av- handling riktar sig till utskriftsproduktionen av båda enhetsklasserna. Vertikalt strukturerade termoelektriska generatorer (TEG) för energiomvandling och sta- plade superkapacitorer för energilagring produceras genom skärmutskrift. Publikationer I-IV fokuserar på generering av funktionella lager av verti- kalt inriktade termoelektriska generatorer. Dessa kan omvandla värme direkt till elektrisk energi. Den vertikala konstruktionen valdes på grund av enkel anord- ning av anordningen vid värmekällan. Det generella genomförbara av skärm- tryckta vertikalt anpassade TEG-skivor visades. Optimering av termoelektris- ka material krävs, så att processen kan användas förnuftigt. I publikation III optimerades den Ni-innehållande modellfärgen för fyllning av kaviteterna i isolatskiktet. I publikation IV modelleras de tryckta termoelektriska generato- rerna. Utförandet av en uppsättning parametrar kan beräknas med denna mo- dell. Den höga Seebeck-koefficienten för jonledare används i publikation V i så kallad jonisk termoelektrisk superkapacitor (ITESC), en kombination av TEG och superkapacitor. Publikation VI presenterar en miljövänlig superkapacitet med en utskrivbar separator baserad på majsstärkelse och citronsyra, som har en konkurrenskraftig elektrokemisk prestanda jämfört med tryckta superkapa- citorer som rapporterats någon annanstans. I publikation VII optimeras vissa parametrar av skärmtryckta primära Zn / MnO2-celler och en testbar separator baserad på majsstärkelse och mjölksyra testades med framgång. Acknowledgements “The journey is the reward” Confucius comes closest to german aphorism “Der Weg ist das Ziel”. This sentence best de- scribes how I feel about my doctoral thesis, which is now being completed. The journey was longer than I initially thought, but with the proverb in mind I was more blessed than ‘condemned’ by this long journey. I would like to thank all nameless helpers who have their share in the back- ground or directly in the PhD thesis. To list all the names would go beyond the scope, but some really deserve special thanks, this applies to the following peo- ple, in alphabetic order: Annelie, Chris, Dan, Florian, Hui, John, Jonas, Karin, Katarina, Michael, Michl, Olga, Skomantas, Sophie, Thomas, and Zia. Frank for ink donations and discussions, Prof. Weidenkaff and Prof. Ludwigs at Stuttgart University for discussions and precious lab-time as well as their co-workers Anna and Marc for help and expertise. I met a lot of people in the course of this PhD, and I learned a lot from every single person. Still, there are some people outstan- ding, since they accompanied this long journey all the way long. These people deserve my sincere and deep gratitude: Xavier Crispin, the supervisor and motivator of this research work, who is a great person and scientist and thus a valuable conversation partner and innova- tor. His pursuit to the limit is laborious, but it allows a high quality result to be delivered. His great support over the last year has made it easier to reach the goal. And that is not the only reason why I owe him so much. Erich Steiner, co-supervisor at Stuttgart Media University, who actively accom- panied the entire journey. Together we learned a lot about new topics in the lectures. And as the outstanding teacher he is, he has decisively shaped the work through countless discussions and lessons. Isak Engquist, co-supervisor at Linköping University, beginning with the phase of the PhD after the licentiate degree. He was also always open minded and an equally valuable conversation partner for lively discussion. Gunter Hübner, co-supervisor at Stuttgart Media University, who provided the administrative framework and the financial basis for the research work. “It does not matter how slowly you go as long as you do not stop." Confucius Stuttgart/Norrköping, February 2019 Andreas Willfahrt Publications included in the Thesis Paper I: Optimising Stencil Thickness and Ink Film Deposit Andreas Willfahrt, John Stephens, Gunter Hübner International Circular of Graphic Education and Research, 4, pp.6-17, 2011 Contribution: All the conceptual and most of the experimental work. Wrote the first draft and was involved in the final editing of the paper. Paper II: Optimization of aperture size and distance in the insulating mask of a five layer vertical stack forming a fully printed thermoelectric generator Andreas Willfahrt, Gunter Hübner Advances in Printing and Media Technology, Vol. 38, pp. 261–269, 2011 Contribution: All the conceptual and most of the experimental work. Wrote the manuscript and did the final editing of the paper. Paper III: Screen printing into cavities of a thick insulating layer as a part of a fully prin- ted thermoelectric generator Andreas Willfahrt, Jochen Witte, Gunter Hübner Proc. Int. Circle of Educational Institutes for Graphic Arts (IC), Sept 2011, Norrköping, Sweden. Contribution: All the conceptual and most of the
Recommended publications
  • OPTI510R: Photonics
    OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona [email protected] Meinel building R.626 Photodetectors Introduction Most important characteristics Photodetector types • Thermal photodetectors • Photoelectric effect • Semiconductor photodetectors Photodetectors p-n photodiode Response time p-i-n photodiode APD photodiode Noise Wiring Arrayed detector (Home Reading) Point-to-point WDM Transmission System - Building Blocks - transmitter receiver l l 1 terminal transmission line terminal 1 Tx point-to-point link section Rx l2 span l2 amplifier span l3 SMF or SMF or l3 NZDF NZDF EDFA EDFA EDFA l4 l4 DC DC l l 5 WDM mux 5 WDM demux l6 l6 dispersion dispersion ) amplifier - compensation compensation transmissionfiber transmissionfiber line) amplifier - (pre (in (booster) (booster) amplifier ln ln Raman Raman pump pump Laser sources Photodetectors Introduction Convert optical data into electrical data Laser beam characterization • Power measurement • Pulse energy measurement • Temporal waveform measurement • Beam profile Introduction Photodetector converts photon energy to a signal, mostly electric signal such as current (sort of a reverse LED) Photoelectric detector • Carrier generation by incident light • Carrier transport and/or multiplication by current gain mechanism • Interaction of current with external circuit Thermal detector • Conversion of photon to phonon (heat) • Propagation of phonon • Detection of phonon Important characteristics Wavelength coverage Sensitivity Bandwidth (response
    [Show full text]
  • Photoconductivity of Few-Layered P-Wse2 Phototransistors Via Multi-Terminal Measurements
    Photoconductivity of few-layered p-WSe2 phototransistors via multi-terminal measurements Nihar R. Pradhan a,*, Carlos Garcia a,b, Joshua Holleman a,b, Daniel Rhodes a,b, Chason Parkera,c, Saikat Talapatra d, Mauricio Terrones e,f, Luis Balicas a,* and Stephen A. McGill a ,* aNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA bDepartment of Physics, Florida State University, Tallahassee, FL 32306, USA c Leon High School, Tallahassee, FL 32308, USA dDepartment of Physics, Southern Illinois University, Carbondale, IL 62901, USA eDepartment of Physics, Pennsylvania State University, PA 16802, USA fCenter for 2-Dimensional and Layered Materials, Pennsylvania State University, PA 16802, USA Abstract: Recently, two-dimensional materials and in particular transition metal dichalcogenides (TMDs) were extensively studied because of their strong light-matter interaction and the remarkable optoelectronic response of their field-effect transistors (FETs). Here, we report a photoconductivity study from FETs built from few-layers of p-WSe2 measured in a multi-terminal configuration under illumination by a 532 nm laser source. The photogenerated current was measured as a function of the incident optical power, of the drain-to-source bias and of the gate voltage. We observe a considerably larger photoconductivity when the phototransistors were measured via a four-terminal configuration when compared to a two-terminal one. For an incident laser power of 248 nW, we extract 18 A/W and ~4000% for the two-terminal responsivity (R) and the concomitant external quantum efficiency (EQE) respectively, when a bias voltage Vds = 1 V and a gate voltage Vbg = 10 V are applied to the sample.
    [Show full text]
  • An Investigation on the Printing of Metal and Polymer Powders Using Electrophotographic Solid Freeform Fabrication
    AN INVESTIGATION ON THE PRINTING OF METAL AND POLYMER POWDERS USING ELECTROPHOTOGRAPHIC SOLID FREEFORM FABRICATION By AJAY KUMAR DAS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Ajay Kumar Das Dedicated to my mother. ACKNOWLEDGMENTS I extend my sincere gratitude to my advisor and chairman of the thesis committee, Dr. Ashok V. Kumar for his guidance and support during the research work which made this thesis possible. I would also like to thank the thesis committee members Dr. John K. Schueller and Dr. Nagaraj Arakere for their patience in reviewing the thesis and for their valuable advice during the research work. I thank the Design and Rapid Prototyping Laboratory co-workers for being helpful, supportive and making the research a pleasurable experience. Last but not least, I would like to thank my parents for their love and encouragement during my studies abroad. iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................. ix LIST OF FIGURES ........................................................................................................... xi ABSTRACT.......................................................................................................................xv CHAPTER
    [Show full text]
  • Laser Printer - Wikipedia, the Free Encyclopedia
    Laser printer - Wikipedia, the free encyclopedia http://en. rvi kipedia.org/r,vi ki/Laser_pri nter Laser printer From Wikipedia, the free encyclopedia A laser printer is a common type of computer printer that rapidly produces high quality text and graphics on plain paper. As with digital photocopiers and multifunction printers (MFPs), Iaser printers employ a xerographic printing process but differ from analog photocopiers in that the image is produced by the direct scanning of a laser beam across the printer's photoreceptor. Overview A laser beam projects an image of the page to be printed onto an electrically charged rotating drum coated with selenium. Photoconductivity removes charge from the areas exposed to light. Dry ink (toner) particles are then electrostatically picked up by the drum's charged areas. The drum then prints the image onto paper by direct contact and heat, which fuses the ink to the paper. HP I-aserJet 4200 series printer Laser printers have many significant advantages over other types of printers. Unlike impact printers, laser printer speed can vary widely, and depends on many factors, including the graphic intensity of the job being processed. The fastest models can print over 200 monochrome pages per minute (12,000 pages per hour). The fastest color laser printers can print over 100 pages per minute (6000 pages per hour). Very high-speed laser printers are used for mass mailings of personalized documents, such as credit card or utility bills, and are competing with lithography in some commercial applications. The cost of this technology depends on a combination of factors, including the cost of paper, toner, and infrequent HP LaserJet printer drum replacement, as well as the replacement of other 1200 consumables such as the fuser assembly and transfer assembly.
    [Show full text]
  • High-Temperature Ultraviolet Photodetectors: a Review
    High-temperature Ultraviolet Photodetectors: A Review Ruth A. Miller,1 Hongyun So,2 Thomas A. Heuser,3 and Debbie G. Senesky1, a) 1Department of Aeronautics and Astronautics Stanford University, Stanford, CA 94305, USA 2Department of Mechanical Engineering Hanyang University, Seoul 04763, Korea 3Department of Materials Science and Engineering Stanford University, Stanford, CA 94305, USA Abstract Wide bandgap semiconductors have become the most attractive materials in optoelectronics in the last decade. Their wide bandgap and intrinsic properties have advanced the development of reliable photodetectors to selectively detect short wavelengths (i.e., ultraviolet, UV) in high temperature regions (up to 300°C). The main driver for the development of high-temperature UV detection instrumentation is in-situ monitoring of hostile environments and processes found within industrial, automotive, aerospace, and energy production systems that emit UV signatures. In this review, a summary of the optical performance (in terms of photocurrent-to-dark current ratio, responsivity, quantum efficiency, and response time) and uncooled, high-temperature characterization of III-nitride, SiC, and other wide bandgap semiconductor UV photodetectors is presented. a) Author to whom correspondence should be addressed. E-mail: [email protected] 1 I. INTRODUCTION On the electromagnetic spectrum, the ultraviolet (UV) region spans wavelengths from 400 nm to 10 nm (corresponding to photon energies from 3 eV to 124 eV) and is typically divided into three spectral bands: UV-A (400–320 nm), UV-B (320–280 nm), and UV-C (280– 10 nm). The Sun is the most significant natural UV source. The approximate solar radiation spectrum just outside Earth’s atmosphere, calculated as black body radiation at 5800 K using Plank’s law, is shown in Fig.
    [Show full text]
  • Photoconductivity
    INSTRUCTIONAL MANUAL Photoconductivity Applied Science Department NITTTR, Sector-26, Chandigarh 0 EXPERIMENT: To study the Photoconductivity of CdS photo-resistor at constant irradiance and constant voltage a. To plot the current- voltage characteristics at constant irradiance. b. To measure photocurrent IPh as a function of irradiance at constant voltage. APPARATUS: Lamp housing, adjustable slit, polarizer, analyzer, two convex lens, photo- resistor, multimeter, an optical bench with fixing mounts. THEORY: Photoconductivity is an optical and electrical phenomenon in which a material become more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiations. It is the effect of increasing electrical conductivity in a solid due to light absorption. When the so-called internal photo effect takes place, the energy absorbed enables the transition of activator electrons into the conduction band and the charge exchange of traps with holes being created in the valence band. In the process, the number of charge carriers in the crystal lattice increases and as a result, the conductivity is enhanced. When light is absorbed by a material such as a semiconductor, the number of free electrons and electron holes changes and raises its electrical conductivity. To cause excitation, the light that strikes the semiconductor must have enough energy to raise electrons across the band gap. When a photoconductive material is connected as part of a circuit, it functions as a resistor whose resistance depends on the light intensity. In this context the material is called a photoresistor. Fig.1 depicts the current flow in a Fig.1 Working of a photoresistor photoresistor when exposed to light rays.
    [Show full text]
  • Photosensitive Camera Tubes and Devices Handbook
    11.2 PHOTOSENSITIVE CAMERA TUBES AND DEVICES 11.1 PHOTOSENSITIVITY / 11.2 11.1.1 Photoemitters / 11.2 11.1.2 Photoconductors / 11.5 11.2 PHOTOELECTRIC-INDUCED TELEVISION SIGNAL GENERATION / 11.5 11.2.1 Photoemission-Induced Charge Images / 11.5 11.2.2 Secondary-Emission-Induced Charge Images / 11.6 11.2.3 Electron-Bombardment-Induced Conductivity / 11.8 11.2.4 Photoconductive-Generated Charge Images / 11.9 11.2.5 Generation of Video Signals by Scanning / 11.11 11.2.6 Low-Velocity Scanning / 11.11 11.2.7 Return-Beam Signal Generation / 11.13 11.2.8 High-Velecity Scanning / 11.14 11.3 EVOLUTION AND DEVELOPMENT OF TELEVISION CAMERA TUBES / 11.14 11.3.1 Nonstorage Tubes / 11.14 11.3.2 Storage Tubes / 11.15 11.4 VIDICON-TYPE CAMERA TUBES / 11.26 11.4.1 Antimony Trisulfide Photoconductor / 11.26 11.4.2 Lead Oxide Photoconductor / 11.28 11.4.3 Selenium Photoconductor / 11.30 11.4.4 Silicon-Diode Photoconductive Target / 11.31 11.4.5 Cadmium Selenide Photoconductor / 11.32 11.4.6 Zinc Selenide Photoconductor / 11.32 11.5 INTERFACE WITH THE CAMERA / 11.33 11.5.1 Optical Input / 11.34 11.5.2 Operating Voltages / 11.34 11.5.3 Dynamic Focusing / 11.36 11.5.4 Beam Blanking / 11.36 11.5.5 Beam Trajectory Control / 11.38 11.5.6 Video Output / 11.40 11.5.7 Deflecting Coils and Circuits / 11.42 11.5.8 Magnetic Shielding / 11.42 11.5.9 Anti-Comet-Tail Tube / 11.42 11.6 CAMERA TUBE PERFORMANCE CHARACTERISTICS / 11.43 11.6.1 Sensitivity and Output / 11.44 11.6.2 Resolution / 11.45 11.6.3 Lag / 11.49 11.6.4 Lag-Reduction Techniques / 11.50 11.7 SINGLE-TUBE COLOR CAMERA SYSTEMS / 11.54 11.7.1 Single-Output-Signal Tubes / 11.55 11.7.2 Multiple-Output-Signal Tubes / 11.58 11.8 SOLID-STATE IMAGER DEVELOPMENT / 11.60 11.8.1 Early Imager Devices / 11.60 11.8.2 Improvements in Signal-to-Noise Ratio / 11.60 11.8.3 CCD Structures / 11.61 11.8.4 New Developments / 11.63 REFERENCES / 11.64 PHOTOSENSITIVITY 11.3 11.1 PHOTOSENSITIVITY A photosensitive camera tube is the light-sensitive device utilized in a television camera to develop the video signal.
    [Show full text]
  • Cdse/Zns Quantum Dot Encapsulated Mos2 Phototransistor for Enhanced
    www.nature.com/scientificreports OPEN CdSe/ZnS quantum dot encapsulated MoS2 phototransistor for enhanced radiation hardness Received: 7 June 2018 Jinwu Park1, Geonwook Yoo2 & Junseok Heo1 Accepted: 17 December 2018 Notable progress achieved in studying MoS based phototransistors reveals the great potential to Published: xx xx xxxx 2 be applicable in various feld of photodetectors, and to further expand it, a durability study of MoS2 phototransistors in harsh environments is highly required. Here, we investigate efects of gamma rays on the characteristics of MoS2 phototransistors and improve its radiation hardness by incorporating CdSe/ZnS quantum dots as an encapsulation layer. A 73.83% decrease in the photoresponsivity was observed after gamma ray irradiation of 400 Gy, and using a CYTOP and CdSe/ZnS quantum dot layer, the photoresponsivity was successfully retained at 75.16% on average after the gamma ray irradiation. Our results indicate that the CdSe/ZnS quantum dots having a high atomic number can be an efective encapsulation method to improve radiation hardness and thus to maintain the performance of the MoS2 phototransistor. Two-dimensional materials such as transition metal dichalcogenides (TMD) have received considerable attention as a promising channel material for nanoelectronics devices1–6. Among a variety of TMD materials, molybdenum disulfde (MoS2) is the best known and is studied extensively. MoS2-based thin-flm transistors have interest- ing electrical characteristics, such as high ON/OFF ratio (~108) and high electron mobility (~200 cm2∙Vs−1)1. In addition, MoS2 is appropriate as an absorption layer of optoelectronic devices owing to its bandgap of 1.2–1.8 eV 7 depending on its number of layers (bulk MoS2 has an indirect bandgap of 1.2 eV and single-layer MoS2 has a direct bandgap of 1.8 eV8), fast photo-switching (within 110 μs9), and absorption coefcient (α = 1–1.5 × 106 cm−1 10 6 −1 11 for single-layer MoS2 and 0.1–0.6 × 10 cm for bulk MoS2 in the wavelength of 500–1200 nm).
    [Show full text]
  • Poly(N-Vinylcarbazole) (PVK) Photoconductivity Enhancement Induced by Doping with Cds Nanocrystals Through Chemical Hybridization
    J. Phys. Chem. B 2000, 104, 11853-11858 11853 Poly(N-vinylcarbazole) (PVK) Photoconductivity Enhancement Induced by Doping with CdS Nanocrystals through Chemical Hybridization Suhua Wang,† Shihe Yang,*,† Chunlei Yang,‡ Zongquan Li,‡ Jiannong Wang,‡ and Weikun Ge‡ Department of Chemistry, The Hong Kong UniVersity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and Department of Physics, The Hong Kong UniVersity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ReceiVed: February 9, 2000; In Final Form: June 7, 2000 We have functionalized poly(N-vinyl carbazole) (PVK) by controlled sulfonation. CdS nanocystals of 3-20 nm across were synthesized in the sulfonated PVK matrix with the CdS molar fraction of ∼1-18%. The CdS nanoparticle size increased with the molar fraction of CdS. At high CdS molar fractions, the CdS nanocrystals exist in both cubic and hexagonal phases. Photoluminescence efficiency of PVK decreases when the molar fraction of CdS increases due to quenching through interfacial charge transfer. Photoluminescence attributable to the CdS nanocrystals can be observed only at low molar fractions of CdS. Significant enhancement in photoconductivity induced by the chemical doping of CdS in PVK has also been demonstrated. Introduction formation of the CdS-PVK nanocomposite. The maximum molar fraction of CdS in the nanocomposite was ∼18% (∼5% Nanocomposites consisting of inorganic nanoparticles and v/v) based on the sulfonation degree of PVK, as determined by organic polymers often exhibit a host of mechanical, electrical, both X-ray photoelectron spectroscopy (XPS) and secondary optical and magnetic properties, which are far superior compared 7 1-4 ion mass spectrometry (SIMS).
    [Show full text]
  • Photodetectors
    Photodetectors A photodetector converts electromagnetic radiation (photons) into an electrical signal (electrons) Many applications, including: 1. Detection of signals in optical communications systems (e.g. fibre-based systems) 2. General light detection (e.g. camera light meters) 3. Imaging (e.g. digital cameras) 4. Solar cells The photoconductor The simplest type of photodetector, consisting of a piece of semiconductor with two contacts. Incident light causes the conductivity of the semiconductor to change – this change is measured by an external circuit. light semiconductor contact I bias Conductivity σe= (μn n+ μ p ) p Where µn and µp are the electron and hole mobilities n and p are the electron and hole densities σ generally increases under illumination mainly because n and/or p increase (although µn or µp may also change) Types of photoconductivity p-doped n-doped INTRINSIC EXTRINSIC Intrinsic photoconductivity – band to band transitions involving creation of BOTH electrons and holes Extrinsic photoconductivity - band to impurity level transition (or other way) – only one type of carrier is created Extrinsic photoconductivity is generally used to detect low energy photons (long wavelength, far IR). Semiconductor must be cooled to prevent ionisation of the dopant atoms. For visible and near-infrared spectral region intrinsic photoconductivity is used. The energy limits of this process are determined by: Low energy (long wavelength) Incident photons must have sufficient energy to hν EG excite electrons across the bandgap hc hc νh ≥ EG ≥ ⇒ EG ∴ λ ≤ λ EG High energy (short wavelength) As the photon energy increases above the EG the absorption length in the semiconductor decreases rapidly (absorption coefficient increases) Increasing hν Decreasing λ Carriers created near to the surface may diffuse to the surface where they recombine rapidly before being able to produce a measurable photoeffect.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Semiconductors 1853-1919: an historical study of selenium and some related materials Hempstead, Colin Antony How to cite: Hempstead, Colin Antony (1977) Semiconductors 1853-1919: an historical study of selenium and some related materials, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8205/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 SEMIGOIDUCTORS 1853-1919: AF HISTORICAL STUDY OP SEIENIUM AND SOME RELATED MATERIALS. COLIN ANTONY HEMPSTEAD. DEGREE: DOCTOR OP PHILOSOPHY. INSTITUTION: UNIVERSITY OP DURHAM, DEPARTMENT: PHILOSOPHY. YEAR OP SUBMISSION: 1977. The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. No part of this thesis has- previously "been suhmitted for a degree in any Uniyersity. The copyright of this- thesis rests with the author.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Semiconductors 1853-1919: an historical study of selenium and some related materials Hempstead, Colin Antony How to cite: Hempstead, Colin Antony (1977) Semiconductors 1853-1919: an historical study of selenium and some related materials, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8205/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 SEMIGOIDUCTORS 1853-1919: AF HISTORICAL STUDY OP SEIENIUM AND SOME RELATED MATERIALS. COLIN ANTONY HEMPSTEAD. DEGREE: DOCTOR OP PHILOSOPHY. INSTITUTION: UNIVERSITY OP DURHAM, DEPARTMENT: PHILOSOPHY. YEAR OP SUBMISSION: 1977. The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. No part of this thesis has- previously "been suhmitted for a degree in any Uniyersity. The copyright of this- thesis rests with the author.
    [Show full text]