A Calculus of Constructions with Explicit Subtyping Ali Assaf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to the Calculus of Inductive Constructions Christine Paulin-Mohring
Introduction to the Calculus of Inductive Constructions Christine Paulin-Mohring To cite this version: Christine Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. Bruno Woltzen- logel Paleo; David Delahaye. All about Proofs, Proofs for All, 55, College Publications, 2015, Studies in Logic (Mathematical logic and foundations), 978-1-84890-166-7. hal-01094195 HAL Id: hal-01094195 https://hal.inria.fr/hal-01094195 Submitted on 11 Dec 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introduction to the Calculus of Inductive Constructions Christine Paulin-Mohring1 LRI, Univ Paris-Sud, CNRS and INRIA Saclay - ˆIle-de-France, Toccata, Orsay F-91405 [email protected] 1 Introduction The Calculus of Inductive Constructions (CIC) is the formalism behind the interactive proof assis- tant Coq [24, 5]. It is a powerful language which aims at representing both functional programs in the style of the ML language and proofs in higher-order logic. Many data-structures can be repre- sented in this language: usual data-types like lists and binary trees (possibly polymorphic) but also infinitely branching trees. At the logical level, inductive definitions give a natural representation of notions like reachability and operational semantics defined using inference rules. -
Multi-Level Constraints
Multi-Level Constraints Tony Clark1 and Ulrich Frank2 1 Aston University, UK, [email protected] 2 University of Duisburg-Essen, DE, [email protected] Abstract. Meta-modelling and domain-specific modelling languages are supported by multi-level modelling which liberates model-based engi- neering from the traditional two-level type-instance language architec- ture. Proponents of this approach claim that multi-level modelling in- creases the quality of the resulting systems by introducing a second ab- straction dimension and thereby allowing both intra-level abstraction via sub-typing and inter-level abstraction via meta-types. Modelling ap- proaches include constraint languages that are used to express model semantics. Traditional languages, such as OCL, support intra-level con- straints, but not inter-level constraints. This paper motivates the need for multi-level constraints, shows how to implement such a language in a reflexive language architecture and applies multi-level constraints to an example multi-level model. 1 Introduction Conceptual models aim to bridge the gap between natural languages that are required to design and use a system and implementation languages. To this end, general-purpose modelling languages (GPML) like the UML consist of concepts that represent semantic primitives such as class, attribute, etc., that, on the one hand correspond to concepts of foundational ontologies, e.g., [4], and on the other hand can be nicely mapped to corresponding elements of object-oriented programming languages. Since GPML can be used to model a wide range of systems, they promise at- tractive economies of scale. At the same time, their use suffers from the fact that they offer generic concepts only. -
Union Types for Semistructured Data
Edinburgh Research Explorer Union Types for Semistructured Data Citation for published version: Buneman, P & Pierce, B 1999, Union Types for Semistructured Data. in Union Types for Semistructured Data: 7th International Workshop on Database Programming Languages, DBPL’99 Kinloch Rannoch, UK, September 1–3,1999 Revised Papers. Lecture Notes in Computer Science, vol. 1949, Springer-Verlag GmbH, pp. 184-207. https://doi.org/10.1007/3-540-44543-9_12 Digital Object Identifier (DOI): 10.1007/3-540-44543-9_12 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Union Types for Semistructured Data General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Union Typ es for Semistructured Data Peter Buneman Benjamin Pierce University of Pennsylvania Dept of Computer Information Science South rd Street Philadelphia PA USA fpeterbcpiercegcisupenn edu Technical -
Type Safety of Rewrite Rules in Dependent Types
Type safety of rewrite rules in dependent types Frédéric Blanqui Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria Laboratoire Spécification et Vérification, 94235, Cachan, France Abstract The expressiveness of dependent type theory can be extended by identifying types modulo some additional computation rules. But, for preserving the decidability of type-checking or the logical consistency of the system, one must make sure that those user-defined rewriting rules preserve typing. In this paper, we give a new method to check that property using Knuth-Bendix completion. 2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation → Equational logic and rewriting; Theory of computation → Logic and verification Keywords and phrases subject-reduction, rewriting, dependent types Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.11 Supplement Material https://github.com/wujuihsuan2016/lambdapi/tree/sr Acknowledgements The author thanks Jui-Hsuan Wu for his prototype implementation and his comments on a preliminary version of this work. 1 Introduction The λΠ-calculus, or LF [12], is an extension of the simply-typed λ-calculus with dependent types, that is, types that can depend on values like, for instance, the type V n of vectors of dimension n. And two dependent types like V n and V p are identified as soon as n and p are two expressions having the same value (modulo the evaluation rule of λ-calculus, β-reduction). In the λΠ-calculus modulo rewriting, function and type symbols can be defined not only by using β-reduction but also by using rewriting rules [19]. Hence, types are identified modulo β-reduction and some user-defined rewriting rules. -
Djangoshop Release 0.11.2
djangoSHOP Release 0.11.2 Oct 27, 2017 Contents 1 Software Architecture 1 2 Unique Features of django-SHOP5 3 Upgrading 7 4 Tutorial 9 5 Reference 33 6 How To’s 125 7 Development and Community 131 8 To be written 149 9 License 155 Python Module Index 157 i ii CHAPTER 1 Software Architecture The django-SHOP framework is, as its name implies, a framework and not a software which runs out of the box. Instead, an e-commerce site built upon django-SHOP, always consists of this framework, a bunch of other Django apps and the merchant’s own implementation. While this may seem more complicate than a ready-to-use solution, it gives the programmer enormous advantages during the implementation: Not everything can be “explained” to a software system using graphical user interfaces. After reaching a certain point of complexity, it normally is easier to pour those requirements into executable code, rather than to expect yet another set of configuration buttons. When evaluating django-SHOP with other e-commerce solutions, I therefore suggest to do the following litmus test: Consider a product which shall be sold world-wide. Depending on the country’s origin of the request, use the native language and the local currency. Due to export restrictions, some products can not be sold everywhere. Moreover, in some countries the value added tax is part of the product’s price, and must be stated separately on the invoice, while in other countries, products are advertised using net prices, and tax is added later on the invoice. -
A Certified Study of a Reversible Programming Language
A Certified Study of a Reversible Programming Language∗ Luca Paolini1, Mauro Piccolo2, and Luca Roversi3 1 Dipartimento di Informatica, Università degli Studi di Torino, corso Svizzera 185, 10149 Torino, Italy [email protected] 1 Dipartimento di Informatica, Università degli Studi di Torino, corso Svizzera 185, 10149 Torino, Italy [email protected] 1 Dipartimento di Informatica, Università degli Studi di Torino, corso Svizzera 185, 10149 Torino, Italy [email protected] Abstract We advance in the study of the semantics of Janus, a C-like reversible programming language. Our study makes utterly explicit some backward and forward evaluation symmetries. We want to deepen mathematical knowledge about the foundations and design principles of reversible computing and programming languages. We formalize a big-step operational semantics and a denotational semantics of Janus. We show a full abstraction result between the operational and denotational semantics. Last, we certify our results by means of the proof assistant Matita. 1998 ACM Subject Classification F.1.2 Computation by Abstract Devices: Modes of Compu- tation, F.3.2 Logics and Meanings of Programs: Semantics of Programming Languages Keywords and phrases reversible computing, Janus, operational semantics, bi-deterministic eval- uation, categorical semantics Digital Object Identifier 10.4230/LIPIcs.TYPES.2015.7 1 Introduction Reversible computing is an alternative form of computing: the isentropic core of classical computing [14] and quantum computing [21]. A classic computation is (forward-)deterministic, -
Performance Engineering of Proof-Based Software Systems at Scale by Jason S
Performance Engineering of Proof-Based Software Systems at Scale by Jason S. Gross B.S., Massachusetts Institute of Technology (2013) S.M., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2021 © Massachusetts Institute of Technology 2021. All rights reserved. Author............................................................. Department of Electrical Engineering and Computer Science January 27, 2021 Certified by . Adam Chlipala Associate Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Performance Engineering of Proof-Based Software Systems at Scale by Jason S. Gross Submitted to the Department of Electrical Engineering and Computer Science on January 27, 2021, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Formal verification is increasingly valuable as our world comes to rely more onsoft- ware for critical infrastructure. A significant and understudied cost of developing mechanized proofs, especially at scale, is the computer performance of proof gen- eration. This dissertation aims to be a partial guide to identifying and resolving performance bottlenecks in dependently typed tactic-driven proof assistants like Coq. We present a survey of the landscape of performance issues in Coq, with micro- and macro-benchmarks. We describe various metrics that allow prediction of performance, such as term size, goal size, and number of binders, and note the occasional surprising lack of a bottleneck for some factors, such as total proof term size. -
Presentation on Ocaml Internals
OCaml Internals Implementation of an ML descendant Theophile Ranquet Ecole Pour l’Informatique et les Techniques Avancées SRS 2014 [email protected] November 14, 2013 2 of 113 Table of Contents Variants and subtyping System F Variants Type oddities worth noting Polymorphic variants Cyclic types Subtyping Weak types Implementation details α ! β Compilers Functional programming Values Why functional programming ? Allocation and garbage Combinatory logic : SKI collection The Curry-Howard Compiling correspondence Type inference OCaml and recursion 3 of 113 Variants A tagged union (also called variant, disjoint union, sum type, or algebraic data type) holds a value which may be one of several types, but only one at a time. This is very similar to the logical disjunction, in intuitionistic logic (by the Curry-Howard correspondance). 4 of 113 Variants are very convenient to represent data structures, and implement algorithms on these : 1 d a t a t y p e tree= Leaf 2 | Node of(int ∗ t r e e ∗ t r e e) 3 4 Node(5, Node(1,Leaf,Leaf), Node(3, Leaf, Node(4, Leaf, Leaf))) 5 1 3 4 1 fun countNodes(Leaf)=0 2 | countNodes(Node(int,left,right)) = 3 1 + countNodes(left)+ countNodes(right) 5 of 113 1 t y p e basic_color= 2 | Black| Red| Green| Yellow 3 | Blue| Magenta| Cyan| White 4 t y p e weight= Regular| Bold 5 t y p e color= 6 | Basic of basic_color ∗ w e i g h t 7 | RGB of int ∗ i n t ∗ i n t 8 | Gray of int 9 1 l e t color_to_int= function 2 | Basic(basic_color,weight) −> 3 l e t base= match weight with Bold −> 8 | Regular −> 0 in 4 base+ basic_color_to_int basic_color 5 | RGB(r,g,b) −> 16 +b+g ∗ 6 +r ∗ 36 6 | Grayi −> 232 +i 7 6 of 113 The limit of variants Say we want to handle a color representation with an alpha channel, but just for color_to_int (this implies we do not want to redefine our color type, this would be a hassle elsewhere). -
Practical Subtyping for System F with Sized (Co-)Induction Rodolphe Lepigre, Christophe Raffalli
Practical Subtyping for System F with Sized (Co-)Induction Rodolphe Lepigre, Christophe Raffalli To cite this version: Rodolphe Lepigre, Christophe Raffalli. Practical Subtyping for System F with Sized (Co-)Induction. 2017. hal-01289760v3 HAL Id: hal-01289760 https://hal.archives-ouvertes.fr/hal-01289760v3 Preprint submitted on 10 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License PRACTICAL SUBTYPING FOR SYSTEM F WITH SIZED (CO-)INDUCTION RODOLPHE LEPIGRE AND CHRISTOPHE RAFFALLI LAMA, UMR 5127 CNRS - Universit´eSavoie Mont Blanc e-mail address: frodolphe.lepigre j christophe.raff[email protected] Abstract. We present a rich type system with subtyping for an extension of System F. Our type constructors include sum and product types, universal and existential quanti- fiers, inductive and coinductive types. The latter two may carry annotations allowing the encoding of size invariants that are used to ensure the termination of recursive programs. For example, the termination of quicksort can be derived by showing that partitioning a list does not increase its size. The system deals with complex programs involving mixed induction and coinduction, or even mixed polymorphism and (co-)induction (as for Scott- encoded data types). -
Proof-Assistants Using Dependent Type Systems
CHAPTER 18 Proof-Assistants Using Dependent Type Systems Henk Barendregt Herman Geuvers Contents I Proof checking 1151 2 Type-theoretic notions for proof checking 1153 2.1 Proof checking mathematical statements 1153 2.2 Propositions as types 1156 2.3 Examples of proofs as terms 1157 2.4 Intermezzo: Logical frameworks. 1160 2.5 Functions: algorithms versus graphs 1164 2.6 Subject Reduction . 1166 2.7 Conversion and Computation 1166 2.8 Equality . 1168 2.9 Connection between logic and type theory 1175 3 Type systems for proof checking 1180 3. l Higher order predicate logic . 1181 3.2 Higher order typed A-calculus . 1185 3.3 Pure Type Systems 1196 3.4 Properties of P ure Type Systems . 1199 3.5 Extensions of Pure Type Systems 1202 3.6 Products and Sums 1202 3.7 E-typcs 1204 3.8 Inductive Types 1206 4 Proof-development in type systems 1211 4.1 Tactics 1212 4.2 Examples of Proof Development 1214 4.3 Autarkic Computations 1220 5 P roof assistants 1223 5.1 Comparing proof-assistants . 1224 5.2 Applications of proof-assistants 1228 Bibliography 1230 Index 1235 Name index 1238 HANDBOOK OF AUTOMAT8D REASONING Edited by Alan Robinson and Andrei Voronkov © 2001 Elsevier Science Publishers 8.V. All rights reserved PROOF-ASSISTANTS USING DEPENDENT TYPE SYSTEMS 1151 I. Proof checking Proof checking consists of the automated verification of mathematical theories by first fully formalizing the underlying primitive notions, the definitions, the axioms and the proofs. Then the definitions are checked for their well-formedness and the proofs for their correctness, all this within a given logic. -
Categorical Models of Type Theory
Categorical models of type theory Michael Shulman February 28, 2012 1 / 43 Theories and models Example The theory of a group asserts an identity e, products x · y and inverses x−1 for any x; y, and equalities x · (y · z) = (x · y) · z and x · e = x = e · x and x · x−1 = e. I A model of this theory (in sets) is a particularparticular group, like Z or S3. I A model in spaces is a topological group. I A model in manifolds is a Lie group. I ... 3 / 43 Group objects in categories Definition A group object in a category with finite products is an object G with morphisms e : 1 ! G, m : G × G ! G, and i : G ! G, such that the following diagrams commute. m×1 (e;1) (1;e) G × G × G / G × G / G × G o G F G FF xx 1×m m FF xx FF m xx 1 F x 1 / F# x{ x G × G m G G ! / e / G 1 GO ∆ m G × G / G × G 1×i 4 / 43 Categorical semantics Categorical semantics is a general procedure to go from 1. the theory of a group to 2. the notion of group object in a category. A group object in a category is a model of the theory of a group. Then, anything we can prove formally in the theory of a group will be valid for group objects in any category. 5 / 43 Doctrines For each kind of type theory there is a corresponding kind of structured category in which we consider models. -
A Calculus of Constructions with Explicit Subtyping Ali Assaf
A calculus of constructions with explicit subtyping Ali Assaf To cite this version: Ali Assaf. A calculus of constructions with explicit subtyping. 2014. hal-01097401v1 HAL Id: hal-01097401 https://hal.archives-ouvertes.fr/hal-01097401v1 Preprint submitted on 19 Dec 2014 (v1), last revised 14 Jan 2016 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A calculus of constructions with explicit subtyping Ali Assaf September 16, 2014 Abstract The calculus of constructions can be extended with an infinite hierar- chy of universes and cumulative subtyping. In this hierarchy, each uni- verse is contained in a higher universe. Subtyping is usually left implicit in the typing rules. We present an alternative version of the calculus of constructions where subtyping is explicit. This new system avoids prob- lems related to coercions and dependent types by using the Tarski style of universes and by introducing additional equations to reflect equality. 1 Introduction The predicative calculus of inductive constructions (PCIC), the theory behind the Coq proof system [15], contains an infinite hierarchy of predicative universes Type0 : Type1 : Type2 : ... and an impredicative universe Prop : Type1 for propositions, together with a cumulativity relation: Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 ⊆ ...