Evidence of an Epidemic Spread of KPC-Producing Enterobacterales In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
516278V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/516278; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Description of Klebsiella africanensis sp. nov., 2 Klebsiella variicola subsp. tropicalensis subsp. nov. 3 and Klebsiella variicola subsp. variicola subsp. nov. 4 5 Carla Rodriguesa†, Virginie Passeta†, Andriniaina Rakotondrasoab, Thierno Abdoulaye 6 Dialloc, Alexis Criscuolod & Sylvain Brissea,* 7 8 a Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France 9 b Institut Pasteur Madagascar, Antananarivo, Madagascar 10 c Institut Pasteur of Dakar, Senegal 11 d Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, 12 France. 13 14 † These authors contributed equally to this work. 15 16 E-mail addresses: [email protected] (C. Rodrigues), 17 [email protected] (V. Passet), [email protected] (A. Rakotondrasoa), 18 [email protected] (T. A. Diallo), [email protected] (A. Criscuolo), 19 [email protected] (S. Brisse) “*Correspondence and reprints” 20 bioRxiv preprint doi: https://doi.org/10.1101/516278; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 21 Abstract 22 The bacterial pathogen Klebsiella pneumoniae comprises several phylogenetic groups 23 (Kp1 to Kp7), two of which (Kp5 and Kp7) have no taxonomic status. Here we show that 24 group Kp5 is closely related to Klebsiella variicola (Kp3), with an average nucleotide identity 25 (ANI) of 96.4%, and that group Kp7 has an ANI of 94.7% with Kp1 (K. -
Bacterial Dissimilation of Citric Acid Carl Robert Brewer Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1939 Bacterial dissimilation of citric acid Carl Robert Brewer Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons Recommended Citation Brewer, Carl Robert, "Bacterial dissimilation of citric acid " (1939). Retrospective Theses and Dissertations. 13227. https://lib.dr.iastate.edu/rtd/13227 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Brol<en or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Upper and Lower Case Letters to Be Used
Isolation, characterization and genome sequencing of a soil-borne Citrobacter freundii strain capable of detoxifying trichothecene mycotoxins by Rafiqul Islam A Thesis Presented to The University of Guelph In Partial Fulfilment of Requirements for the Degree of Doctor of Philosophy in Plant Agriculture Guelph, Ontario, Canada © Rafiqul Islam, April, 2012 ABSTRACT ISOLATION, CHARACTERIZATION AND GENOME SEQUENCING OF A SOIL- BORNE CITROBACTER FREUNDII STRAIN CAPABLE OF DETOXIFIYING TRICHOTHECENE MYCOTOXINS Rafiqul Islam Advisors: University of Guelph, 2012 Dr. K. Peter Pauls Dr. Ting Zhou Cereals are frequently contaminated with tricthothecene mycotoxins, like deoxynivalenol (DON, vomitoxin), which are toxic to humans, animals and plants. The goals of the research were to discover and characterize microbes capable of detoxifying DON under aerobic conditions and moderate temperatures. To identify microbes capable of detoxifying DON, five soil samples collected from Southern Ontario crop fields were tested for the ability to convert DON to a de-epoxidized derivative. One soil sample showed DON de-epoxidation activity under aerobic conditions at 22-24°C. To isolate the microbes responsible for DON detoxification (de-epoxidation) activity, the mixed culture was grown with antibiotics at 50ºC for 1.5 h and high concentrations of DON. The treatments resulted in the isolation of a pure DON de-epoxidating bacterial strain, ADS47, and phenotypic and molecular analyses identified the bacterium as Citrobacter freundii. The bacterium was also able to de-epoxidize and/or de-acetylate 10 other food-contaminating trichothecene mycotoxins. A fosmid genomic DNA library of strain ADS47 was prepared in E. coli and screened for DON detoxification activity. However, no library clone was found with DON detoxification activity. -
1471-2180-13-114.Pdf (2.637Mb)
Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato) Ottesen et al. Ottesen et al. BMC Microbiology 2013, 13:114 http://www.biomedcentral.com/1471-2180/13/114 Ottesen et al. BMC Microbiology 2013, 13:114 http://www.biomedcentral.com/1471-2180/13/114 RESEARCH ARTICLE Open Access Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato) Andrea R Ottesen1*, Antonio González Peña3, James R White2, James B Pettengill1, Cong Li1, Sarah Allard1, Steven Rideout4, Marc Allard1, Thomas Hill1, Peter Evans1, Errol Strain1, Steven Musser1, Rob Knight3 and Eric Brown1 Abstract Background: Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. Results: DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. -
Escherichia Coli
log bio y: O ro p c e i n M A l c Clinical Microbiology: Open a c c i e n s i l s Delmas et al., Clin Microbiol 2015, 4:2 C Access ISSN: 2327-5073 DOI:10.4172/2327-5073.1000195 Commentary Open Access Escherichia coli: The Good, the Bad and the Ugly Julien Delmas*, Guillaume Dalmasso and Richard Bonnet Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France *Corresponding author: Julien Delmas, Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France, Tel: +334731779; E-mail; [email protected] Received date: March 11, 2015, Accepted date: April 21, 2015, Published date: Aptil 28, 2015 Copyright: © 2015 Delmas J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The species Escherichia coli comprises non-pathogenic commensal strains that form part of the normal flora of humans and virulent strains responsible for acute infections inside and outside the intestine. In addition to these pathotypes, various strains of E. coli are suspected of promoting the development or exacerbation of chronic diseases of the intestine such as Crohn’s disease and colorectal cancer. Description replicate within both intestinal epithelial cells and macrophages. These properties were used to define a new pathotype of E. coli designated Escherichia coli is a non-sporeforming, facultatively anaerobic adherent-invasive E. -
Shigella and Escherichia Coli at the Crossroads: Machiavellian Masqueraders Or Taxonomic Treachery?
J. Med. Microbiol. Ð Vol. 49 2000), 583±585 # 2000 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 EDITORIAL Shigella and Escherichia coli at the crossroads: machiavellian masqueraders or taxonomic treachery? Shigellae cause an estimated 150 million cases and genera. One authority has even proposed that entero- 600 000 deaths annually, and can cause disease after haemorrhagic E. coli EHEC) such as E. coli O157:H7 ingestion of as few as 10 bacterial cells [1]. They are are essentially `Shigella in a cloak of E. coli antigens' spread by the faecal±oral route, with food, water, [7]. fomites, insects especially ¯ies) and direct person-to- person contact. S. dysenteriae causes brisk and deadly Shigella-like strains of E. coli that cause an invasive, epidemics, particularly in the developing world; S. dysenteric diarrhoeal illness were ®rst described in ¯exneri and S. sonnei account for the endemic form of 1971, over a decade before the appearance in 1982 of the disease, particularly in industrialised nations; S. the new EHEC strains that launched the current wave boydii is rarely encountered [1, 2]. of interest in the E. coli±Shigella connection [8]. Termed `enteroinvasive E. coli' EIEC), these strains, Shigellosis is a locally invasive colitis in which bacteria like shigellae, were able to invade and proliferate invade and proliferate within colonocytes and mucosal within intestinal epithelial cells, eventually causing cell macrophages, trigger apoptosis of macrophages and death [4, 8]. EIEC share with shigellae a c. 140-MDa spread through the mucosa from cell to cell [1]. plasmid pINV) that encodes several outer-membrane Cytokines produced by epithelial cells and macro- proteins involved in invasion of host cells [4, 8]. -
Citrobacter Koseri, Levinea Malonatica
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1990, p. 107-108 Vol. 40, No. 1 0020-7713/90/010107-02$02.oo/o Copyright 0 1990, International Union of Microbiological Societies Correct Names of the Species Citrobacter koseri, Levinea malonatica , and Citrobacter diversus Request for an Opinion WILHELM FREDERIKSEN Department of Diagnostic Bacteriology and Antibiotics, Statens Seruminstitut, DK-2300 Copenhagen S,Denmark The single species carrying the three names Citrobacter koseri, Levinea malonatica, and Citrobacter diversus differs by at least eight characteristics from Citrobacter diversum as described by Werkman and Gillen in 1932. It is obviously not the same organism. Accordingly, the species should not carry the name proposed by Werkman and Gillen. I request that the name Citrobacter diversus be placed on the list of nomina rejicienda. Citrobacter koseri is the correct name. Levinea koseri is a correct combination when the genus Levinea is accepted. The epithet maZoonatica is a later synonym of the epithet koseri. In 1932 Werkman and Gillen (7) proposed a new genus, taxon C. diversum described by Werkman and Gillen in the Citrobacter, containing seven species. The description of following characteristics: motility, production of H,S, and Citrobacter diversum (sic) of Werkman and Gillen was based production of acid from inositol and raffinose. To this can be on two strains. These strains have not been kept available in added production of acid from glycogen, melizitose, starch, collections, and the name C. diversum did not come into and galactose, as Table 1 shows. general use. Ewing and Davis obviously accepted four deviations to In 1970 Frederiksen (4) described a new species which he lead to the statement about reactions “similar to those named Citrobacter koseri. -
Biomedical Applications of Bacteria-Derived Polymers
polymers Review Biomedical Applications of Bacteria-Derived Polymers Jonathan David Hinchliffe, Alakananda Parassini Madappura, Syed Mohammad Daniel Syed Mohamed and Ipsita Roy * Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S1 3JD, UK; jhinchliffe3@sheffield.ac.uk (J.D.H.); [email protected] (A.P.M.); smdsyedmohamed1@sheffield.ac.uk (S.M.D.S.M.) * Correspondence: I.Roy@sheffield.ac.uk; Tel.: +44-11-4222-5962 Abstract: Plastics have found widespread use in the fields of cosmetic, engineering, and medical sciences due to their wide-ranging mechanical and physical properties, as well as suitability in biomedical applications. However, in the light of the environmental cost of further upscaling current methods of synthesizing many plastics, work has recently focused on the manufacture of these polymers using biological methods (often bacterial fermentation), which brings with them the advantages of both low temperature synthesis and a reduced reliance on potentially toxic and non-eco-friendly compounds. This can be seen as a boon in the biomaterials industry, where there is a need for highly bespoke, biocompatible, processable polymers with unique biological properties, for the regeneration and replacement of a large number of tissue types, following disease. However, barriers still remain to the mass-production of some of these polymers, necessitating new research. This review attempts a critical analysis of the contemporary literature concerning the use of a number of bacteria-derived polymers in the context of biomedical applications, including the biosynthetic Citation: Hinchliffe, J.D.; Parassini pathways and organisms involved, as well as the challenges surrounding their mass production. -
Accurate Differentiation of Escherichia Coli and Shigella Serogroups: Challenges and Strategies
This is a repository copy of Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/157033/ Version: Published Version Article: Devanga Ragupathi, N.K. orcid.org/0000-0001-8667-7132, Muthuirulandi Sethuvel, D.P., Inbanathan, F.Y. et al. (1 more author) (2018) Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes and New Infections, 21. pp. 58-62. ISSN 2052-2975 https://doi.org/10.1016/j.nmni.2017.09.003 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ MINI REVIEW Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies N. K. Devanga Ragupathi, D. P. Muthuirulandi Sethuvel, F. Y. Inbanathan and B. Veeraraghavan Department of Clinical Microbiology, Christian Medical College, Vellore, India Abstract Shigella spp. and Escherichia coli are closely related; both belong to the family Enterobacteriaceae. Phenotypically, Shigella spp. -
Complete Genome Sequence of Endophytic Nitrogen-Fixing
Lin et al. Standards in Genomic Sciences (2015) 10:22 DOI 10.1186/s40793-015-0004-2 SHORT GENOME REPORT Open Access Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E Li Lin1†, Chunyan Wei2†, Mingyue Chen3†, Hongcheng Wang3, Yuanyuan Li3, Yangrui Li1,2, Litao Yang1,2,4* and Qianli An3* Abstract Klebsiella variicola strain DX120E (=CGMCC 1.14935) is an endophytic nitrogen-fixing bacterium isolated from sugarcane crops grown in Guangxi, China and promotes sugarcane growth. Here we summarize the features of the strain DX120E and describe its complete genome sequence. The genome contains one circular chromosome and two plasmids, and contains 5,718,434 nucleotides with 57.1% GC content, 5,172 protein-coding genes, 25 rRNA genes, 87 tRNA genes, 7 ncRNA genes, 25 pseudo genes, and 2 CRISPR repeats. Keywords: Endophyte, Klebsiella variicola, Klebsiella pneumoniae, Nitrogen fixation, Pathogenicity, Plant growth-promoting bacteria, Sugarcane Introduction roots and shoots, to fix N2 in association with sugarcane The species Klebsiella variicola was classified in 2004 plants, and to promote sugarcane growth [10], and and consisted of clinical and plant-associated isolates thusshowsapotentialasabiofertilizer.Herewe [1].The species K. singaporensis was classified in 2004 present a summary of the features of the K. variicola based on a single soil isolate [2] and was recently identi- strain DX120E (=CGMCC 1.14935) and its complete fied as a later junior heterotypic synonym of K. variicola genome sequence, and thus provide a genetic back- [3]. K. variicola is able to fix N2 [1]. K. variicola strain ground to understand its endophytic lifestyle, plant At-22, one of the dominant bacteria in the fungus gar- growth-promoting potentials, and similarities and dens of leaf-cutter ants, provides nitrogen source by N2 differences to other plant-associated and clinical K. -
Maternal Milk Microbiota and Oligosaccharides Contribute to the Infant Gut Microbiota Assembly
www.nature.com/ismecomms ARTICLE OPEN Maternal milk microbiota and oligosaccharides contribute to the infant gut microbiota assembly 1 2 2,3 2 4 2 Martin Frederik Laursen , Ceyda T. Pekmez , Melanie Wange Larsson , Mads Vendelbo Lind , Chloe Yonemitsu , Anni✉ Larnkjær , Christian Mølgaard2, Lars Bode4, Lars Ove Dragsted2, Kim F. Michaelsen 2, Tine Rask Licht 1 and Martin Iain Bahl 1 © The Author(s) 2021 Breastfeeding protects against diseases, with potential mechanisms driving this being human milk oligosaccharides (HMOs) and the seeding of milk-associated bacteria in the infant gut. In a cohort of 34 mother–infant dyads we analyzed the microbiota and HMO profiles in breast milk samples and infant’s feces. The microbiota in foremilk and hindmilk samples of breast milk was compositionally similar, however hindmilk had higher bacterial load and absolute abundance of oral-associated bacteria, but a lower absolute abundance of skin-associated Staphylococcus spp. The microbial communities within both milk and infant’s feces changed significantly over the lactation period. On average 33% and 23% of the bacterial taxa detected in infant’s feces were shared with the corresponding mother’s milk at 5 and 9 months of age, respectively, with Streptococcus, Veillonella and Bifidobacterium spp. among the most frequently shared. The predominant HMOs in feces associated with the infant’s fecal microbiota, and the dominating infant species B. longum ssp. infantis and B. bifidum correlated inversely with HMOs. Our results show that breast milk microbiota changes over time and within a feeding session, likely due to transfer of infant oral bacteria during breastfeeding and suggest that milk-associated bacteria and HMOs direct the assembly of the infant gut microbiota. -
A Review of the Source and Function of Microbiota in Breast Milk
68 A Review of the Source and Function of Microbiota in Breast Milk M. Susan LaTuga, MD, MSPH1 Alison Stuebe, MD, MSc2,3 Patrick C. Seed, MD, PhD4 1 Department of Pediatrics, Division of Neonatology, Albert Einstein Address for correspondence M. Susan LaTuga, MD, MSPH, Albert College of Medicine, Bronx, New York Einstein College of Medicine, 1601 Tenbroeck Ave, 2nd floor, Bronx, NY 2 Department of Obstetrics and Gynecology, University of North 10461 (e-mail: mlatuga@montefiore.org). Carolina School of Medicine 3 Department of Maternal and Child Health, Gillings School of Global Public Health, Chapel Hill, North Carolina 4 Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina Semin Reprod Med 2014;32:68–73 Abstract Breast milk contains a rich microbiota composed of viable skin and non-skin bacteria. The extent of the breast milk microbiota diversity has been revealed through new culture-independent studies using microbial DNA signatures. However, the extent to which the breast milk microbiota are transferred from mother to infant and the function of these breast milk microbiota for the infant are only partially understood. Here, we appraise hypotheses regarding the formation of breast milk microbiota, including retrograde infant-to-mother transfer and enteromammary trafficking, and we review current knowledge of mechanisms determining the extent of breast milk microbiota transfer from mother to infant. We highlight known functions of constituents in the breast milk microbiota—to enhance immunity, liberate nutrients, synergize with breast Keywords milk oligosaccharides to enhance intestinal barrier function, and strengthen a functional ► enteromammary gut–brain axis. We also consider the pathophysiology of maternal mastitis with respect trafficking to a dysbiosis or abnormal shift in the breast milk microbiota.