Shigella and Escherichia Coli at the Crossroads: Machiavellian Masqueraders Or Taxonomic Treachery?

Total Page:16

File Type:pdf, Size:1020Kb

Shigella and Escherichia Coli at the Crossroads: Machiavellian Masqueraders Or Taxonomic Treachery? J. Med. Microbiol. Ð Vol. 49 2000), 583±585 # 2000 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 EDITORIAL Shigella and Escherichia coli at the crossroads: machiavellian masqueraders or taxonomic treachery? Shigellae cause an estimated 150 million cases and genera. One authority has even proposed that entero- 600 000 deaths annually, and can cause disease after haemorrhagic E. coli EHEC) such as E. coli O157:H7 ingestion of as few as 10 bacterial cells [1]. They are are essentially `Shigella in a cloak of E. coli antigens' spread by the faecal±oral route, with food, water, [7]. fomites, insects especially ¯ies) and direct person-to- person contact. S. dysenteriae causes brisk and deadly Shigella-like strains of E. coli that cause an invasive, epidemics, particularly in the developing world; S. dysenteric diarrhoeal illness were ®rst described in ¯exneri and S. sonnei account for the endemic form of 1971, over a decade before the appearance in 1982 of the disease, particularly in industrialised nations; S. the new EHEC strains that launched the current wave boydii is rarely encountered [1, 2]. of interest in the E. coli±Shigella connection [8]. Termed `enteroinvasive E. coli' EIEC), these strains, Shigellosis is a locally invasive colitis in which bacteria like shigellae, were able to invade and proliferate invade and proliferate within colonocytes and mucosal within intestinal epithelial cells, eventually causing cell macrophages, trigger apoptosis of macrophages and death [4, 8]. EIEC share with shigellae a c. 140-MDa spread through the mucosa from cell to cell [1]. plasmid pINV) that encodes several outer-membrane Cytokines produced by epithelial cells and macro- proteins involved in invasion of host cells [4, 8]. Like phages in response to invading bacteria stimulate an shigellae, EIEC are usually non-motile and lactose- intense acute in¯ammatory response. This limits the negative. They are also usually lysine decarboxylase- extent of bacterial invasion, but also contributes to negative, a characteristic which, in both EIEC and mucosal injury [1]. Despite their local invasiveness, shigellae, is due to large deletions `black holes') in the shigellae rarely cause bacteraemia. However, shigello- genome that correspond to chromosomal regions sis occasionally precipitates the haemolytic-uraemic present in E. coli K-12. The deleted genes encode syndrome HUS), which is characterised by vaso- enzymes involved in metabolic reactions that produce occlusive renal failure, consumptive thrombocytopenia, compounds such as cadaverine that interfere with micro-angiopathic haemolytic anaemia and neuro- uptake of shigellae and EIEC by host cells. Hence, logical dysfunction. These manifestations result in part the deletions may enhance the ability to invade host from the actions of Shiga toxin, the distinctive cells [4]. EIEC and shigellae also exhibit considerable cytotoxin produced by S. dysenteriae type 1, on antigenic cross-reactivity [4, 8]. However, EIEC do not neurons and on renal and cerebral endothelial cells produce Shiga toxins and are not known to cause HUS. [1, 2]. Perhaps because of this, or because they are not known to have caused large-scale outbreaks, EIEC have Ever since the initial discovery of the dysentery received considerably less public health and media bacillus now S. dysenteriae) by Kiyoshi Shiga in attention than the now-notorious EHEC [7]. 1898 [3], Shigella spp. have generally been regarded on both microbiological and clinical grounds as distinct EHEC and shigellae exhibit a number of clinical and from Escherichia coli. Whereas most E. coli are pathogenetic differences. The prototypical EHEC- motile, ferment lactose, are lysine decarboxylase- and associated syndrome is haemorrhagic colitisÐpassage indole-positive, and are mostly avirulent, shigellae are of large-volume, grossly bloody stools without obvious non-motile, are typically lactose-, lysine decarboxylase- pus or mucus, accompanied by abdominal pain, but not and indole-negative, and are obligate pathogens [1, 4]. tenesmus or fever [5, 6]. This differs from classical Consequently, the emergence of E. coli O157:H7 and dysentery, and probably re¯ects the pancolitis of other Shiga toxin-producing E. coli strains that, like EHEC, in contrast to the more focal proctocolitis of shigellae, cause food- and water-borne outbreaks of shigellosis and EIEC infection, and the toxigenic but haemorrhagic colitis, a dysentery-like illness some- non-invasive nature of EHEC disease, in contrast to the times complicated by HUS [5, 6], has prompted a mucosal invasion of shigellosis. EHEC share with S. reconsideration of the relationship between these dysenteriae type 1 the production of bacteriophage- 584 EDITORIAL encoded Shiga toxin s) and expression of a type III assigned to two adjacent lineages within the distant) secretion apparatus [1, 9]. However, in contrast to phylogenetic group D. These data con®rmed the shigellae, EHEC produce a unique enterohaemolysin genetic diversity within Shigella spp., the intermingling and exhibit `attaching and effacing' adherence to of Shigella spp. and E. coli, and discrepancies between enterocytes similar to that exhibited by enteropatho- conventional Shigella `species' designations and ob- genic E. coli EPEC) [9]. Furthermore, whereas in served genetic relationships. They also localised shigellae the type III secretion apparatus is encoded on Shigella strains speci®cally to E. coli phylogenetic the 140-MDa virulence plasmid [1], in both EHEC and groups A and D [15]. Sequence analysis of the EPEC it is encoded on a chromosomal pathogenicity- housekeeping gene mdh and ribotyping yielded largely associated island termed `locus of enterocyte efface- similar results, but showed somewhat different dis- ment'. Moreover, the virulence plasmid of EHEC is tributions of the Shigella spp. among the E. coli distinct from that of Shigella spp. and EIEC as well as phylogenetic groups [15, 19]. from that of EPEC) [8±10]. Thus, EHEC, EIEC and EPEC all share with one another, and with shigellae, The data of Pupo et al. [15] showed that EIEC, EPEC one or more important clinical or pathogenetic features. and ETEC were distributed across multiple E. coli These perplexing similarities and differences are best lineages within phylogenetic groups A and B1, with understood in the context of the population structure of little clustering according to pathogenic type. No E. coli and Shigella spp. diarrhoeal strains were assigned to phylogenetic group B2, which is the source of most E. coli strains that The ®rst direct genetic insights into the evolutionary cause urinary tract infections, bacteraemia and neonatal relationships between Shigella spp. and E. coli were meningitis [20]. Of the diarrhoeagenic types, only provided by DNA±DNA re-association studies which EHEC of which all representatives studied were E. showed that shigellae exhibit .75% nucleotide simi- coli O157:H7) appeared among the non-aligned larity to E. coliÐwithin the range observed among lineages of reference strains, where they constituted a different E. coli strains [11]. Although the authors of single cluster [15]. These data contradicted the this report proposed only that shigellae could be part of hypothesis that O157:H7 EHEC are derived from the genus Escherichia, the data actually justify placing either shigellae or EIEC, and revealed that EIEC, Shigella spp. within E. coli proper. EPEC and ETEC have evolved independently several times in different E. coli lineages, presumably through Comparative DNA sequence analysis and multilocus horizontal acquisition of the requisite virulence traits enzyme electrophoresis MLEE) subsequently showed [15]. unequivocally that, from a population genetics stand- point, shigellae were better regarded as pathotypes or If O157:H7 EHEC did not evolve from shigellae or clones of E. coli [12±16]. These data showed that the EIEC, they may have arisen instead from a pre-existing four `Shigella' species constituted two related clusters lineage of O157 antigen-positive non-EHEC through within the larger E. coli population, one comprising horizontal acquisition of EHEC-speci®c virulence representatives of three of the four putative Shigella genes. However, this hypothesis was, in turn, contra- species, the other comprising representatives of all four dicted by analysis of the population structure of O157 species [12, 16]. Within each cluster, different Shigella antigen-positive E. coli strains representing diverse H species intermingled in an overlapping fashion in types, clinical sources and host species, which showed adjacent lineages, but in some instances were actually that O157:H7 EHEC occupy their own lineage, far placed together in the same lineage [16]. This indicated removed from non-EHEC, non-H7 O157 strains [21]. that the conventional nomenclature for Shigella spp. Thus, O157:H7 EHEC appeared to have acquired the could be justi®ed only on historical and clinical O157 antigen by horizontal transfer from an unknown grounds [13]. distant donor rather than by vertical inheritance from a clonal ancestor [21]. Over the past decade, understanding of the population structure of E. coli has been re®ned [17, 18]. The The ancestral clonal group within which O157:H7 precise position of Shigella strains within the E. coli EHEC did evolve was revealed by MLEE data showing phylogenetic tree was clari®ed by MLEE analysis of that the nearest neighbours of O157:H7 EHEC are diverse strains of shigellae, EHEC, EIEC, EPEC and EPEC strains of serotype
Recommended publications
  • Escherichia Coli
    log bio y: O ro p c e i n M A l c Clinical Microbiology: Open a c c i e n s i l s Delmas et al., Clin Microbiol 2015, 4:2 C Access ISSN: 2327-5073 DOI:10.4172/2327-5073.1000195 Commentary Open Access Escherichia coli: The Good, the Bad and the Ugly Julien Delmas*, Guillaume Dalmasso and Richard Bonnet Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France *Corresponding author: Julien Delmas, Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France, Tel: +334731779; E-mail; [email protected] Received date: March 11, 2015, Accepted date: April 21, 2015, Published date: Aptil 28, 2015 Copyright: © 2015 Delmas J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The species Escherichia coli comprises non-pathogenic commensal strains that form part of the normal flora of humans and virulent strains responsible for acute infections inside and outside the intestine. In addition to these pathotypes, various strains of E. coli are suspected of promoting the development or exacerbation of chronic diseases of the intestine such as Crohn’s disease and colorectal cancer. Description replicate within both intestinal epithelial cells and macrophages. These properties were used to define a new pathotype of E. coli designated Escherichia coli is a non-sporeforming, facultatively anaerobic adherent-invasive E.
    [Show full text]
  • Accurate Differentiation of Escherichia Coli and Shigella Serogroups: Challenges and Strategies
    This is a repository copy of Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/157033/ Version: Published Version Article: Devanga Ragupathi, N.K. orcid.org/0000-0001-8667-7132, Muthuirulandi Sethuvel, D.P., Inbanathan, F.Y. et al. (1 more author) (2018) Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes and New Infections, 21. pp. 58-62. ISSN 2052-2975 https://doi.org/10.1016/j.nmni.2017.09.003 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ MINI REVIEW Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies N. K. Devanga Ragupathi, D. P. Muthuirulandi Sethuvel, F. Y. Inbanathan and B. Veeraraghavan Department of Clinical Microbiology, Christian Medical College, Vellore, India Abstract Shigella spp. and Escherichia coli are closely related; both belong to the family Enterobacteriaceae. Phenotypically, Shigella spp.
    [Show full text]
  • Maternal Milk Microbiota and Oligosaccharides Contribute to the Infant Gut Microbiota Assembly
    www.nature.com/ismecomms ARTICLE OPEN Maternal milk microbiota and oligosaccharides contribute to the infant gut microbiota assembly 1 2 2,3 2 4 2 Martin Frederik Laursen , Ceyda T. Pekmez , Melanie Wange Larsson , Mads Vendelbo Lind , Chloe Yonemitsu , Anni✉ Larnkjær , Christian Mølgaard2, Lars Bode4, Lars Ove Dragsted2, Kim F. Michaelsen 2, Tine Rask Licht 1 and Martin Iain Bahl 1 © The Author(s) 2021 Breastfeeding protects against diseases, with potential mechanisms driving this being human milk oligosaccharides (HMOs) and the seeding of milk-associated bacteria in the infant gut. In a cohort of 34 mother–infant dyads we analyzed the microbiota and HMO profiles in breast milk samples and infant’s feces. The microbiota in foremilk and hindmilk samples of breast milk was compositionally similar, however hindmilk had higher bacterial load and absolute abundance of oral-associated bacteria, but a lower absolute abundance of skin-associated Staphylococcus spp. The microbial communities within both milk and infant’s feces changed significantly over the lactation period. On average 33% and 23% of the bacterial taxa detected in infant’s feces were shared with the corresponding mother’s milk at 5 and 9 months of age, respectively, with Streptococcus, Veillonella and Bifidobacterium spp. among the most frequently shared. The predominant HMOs in feces associated with the infant’s fecal microbiota, and the dominating infant species B. longum ssp. infantis and B. bifidum correlated inversely with HMOs. Our results show that breast milk microbiota changes over time and within a feeding session, likely due to transfer of infant oral bacteria during breastfeeding and suggest that milk-associated bacteria and HMOs direct the assembly of the infant gut microbiota.
    [Show full text]
  • A Review of the Source and Function of Microbiota in Breast Milk
    68 A Review of the Source and Function of Microbiota in Breast Milk M. Susan LaTuga, MD, MSPH1 Alison Stuebe, MD, MSc2,3 Patrick C. Seed, MD, PhD4 1 Department of Pediatrics, Division of Neonatology, Albert Einstein Address for correspondence M. Susan LaTuga, MD, MSPH, Albert College of Medicine, Bronx, New York Einstein College of Medicine, 1601 Tenbroeck Ave, 2nd floor, Bronx, NY 2 Department of Obstetrics and Gynecology, University of North 10461 (e-mail: mlatuga@montefiore.org). Carolina School of Medicine 3 Department of Maternal and Child Health, Gillings School of Global Public Health, Chapel Hill, North Carolina 4 Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina Semin Reprod Med 2014;32:68–73 Abstract Breast milk contains a rich microbiota composed of viable skin and non-skin bacteria. The extent of the breast milk microbiota diversity has been revealed through new culture-independent studies using microbial DNA signatures. However, the extent to which the breast milk microbiota are transferred from mother to infant and the function of these breast milk microbiota for the infant are only partially understood. Here, we appraise hypotheses regarding the formation of breast milk microbiota, including retrograde infant-to-mother transfer and enteromammary trafficking, and we review current knowledge of mechanisms determining the extent of breast milk microbiota transfer from mother to infant. We highlight known functions of constituents in the breast milk microbiota—to enhance immunity, liberate nutrients, synergize with breast Keywords milk oligosaccharides to enhance intestinal barrier function, and strengthen a functional ► enteromammary gut–brain axis. We also consider the pathophysiology of maternal mastitis with respect trafficking to a dysbiosis or abnormal shift in the breast milk microbiota.
    [Show full text]
  • Studies of the Spread and Diversity of the Insect Symbiont Arsenophonus Nasoniae
    Studies of the Spread and Diversity of the Insect Symbiont Arsenophonus nasoniae Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Steven R. Parratt September 2013 Abstract: Heritable bacterial endosymbionts are a diverse group of microbes, widespread across insect taxa. They have evolved numerous phenotypes that promote their own persistence through host generations, ranging from beneficial mutualisms to manipulations of their host’s reproduction. These phenotypes are often highly diverse within closely related groups of symbionts and can have profound effects upon their host’s biology. However, the impact of their phenotype on host populations is dependent upon their prevalence, a trait that is highly variable between symbiont strains and the causative factors of which remain enigmatic. In this thesis I address the factors affecting spread and persistence of the male-Killing endosymbiont Arsenophonus nasoniae in populations of its host Nasonia vitripennis. I present a model of A. nasoniae dynamics in which I incorporate the capacity to infectiously transmit as well as direct costs of infection – factors often ignored in treaties on symbiont dynamics. I show that infectious transmission may play a vital role in the epidemiology of otherwise heritable microbes and allows costly symbionts to invade host populations. I then support these conclusions empirically by showing that: a) A. nasoniae exerts a tangible cost to female N. vitripennis it infects, b) it only invades, spreads and persists in populations that allow for both infectious and heritable transmission. I also show that, when allowed to reach high prevalence, male-Killers can have terminal effects upon their host population.
    [Show full text]
  • Pathogenesis and Evolution of Virulence in Enteropathogenic and Enterohemorrhagic Escherichia Coli
    Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli Michael S. Donnenberg, Thomas S. Whittam J Clin Invest. 2001;107(5):539-548. https://doi.org/10.1172/JCI12404. Perspective Escherichia coli, a venerable workhorse for biochemical and genetic studies and for the large-scale production of recombinant proteins, is one of the most intensively studied of all organisms. The natural habitat of E. coli is the gastrointestinal tract of warm-blooded animals, and in humans, this species is the most common facultative anaerobe in the gut. Although most strains exist as harmless symbionts, there are many pathogenic E. coli strains that can cause a variety of diseases in animals and humans. In addition, from an evolutionary perspective, strains of the genus Shigella are so closely related phylogenetically that they are included in the group of organisms recognized as E. coli (1, 2). Pathogenic E. coli strains differ from those that predominate in the enteric flora of healthy individuals in that they are more likely to express virulence factors — molecules directly involved in pathogenesis but ancillary to normal metabolic functions. Expression of these virulence factors disrupts the normal host physiology and elicits disease. In addition to their role in disease processes, virulence factors presumably enable the pathogens to exploit their hosts in ways unavailable to commensal strains, and thus to spread and persist in the bacterial community. It is a mistake to think of E. coli as a homogenous species. Most genes, even those encoding conserved metabolic functions, are polymorphic, with […] Find the latest version: https://jci.me/12404/pdf PERSPECTIVE SERIES Bacterial polymorphisms Martin J.
    [Show full text]
  • The Spot 42 RNA: a Regulatory Small RNA with Roles in the Central
    1 The Spot 42 RNA: A regulatory small RNA with roles in the central 2 metabolism 3 Cecilie Bækkedal and Peik Haugen* 4 5 Department of Chemistry, The Norwegian Structural Biology Centre (NorStruct) and Centre for 6 Bioinformatics (SfB), UiT – The Arctic University of Norway, 9037 Tromsø, Norway 7 8 Key words: sRNA, small RNA, Spot 42, spf, non-coding RNA, gamma proteobacteria, pirin. 9 *Correspondence to: Peik Haugen; E-mail: [email protected] 10 Disclosure statement: the authors have no conflict of interest and nothing to disclose. 11 12 The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA 13 (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the 14 majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently 15 Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate 16 metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP 17 complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution 18 of spf, show family-specific secondary structural features of Spot 42, and link highly conserved 19 structural regions to mRNA target binding. 20 Introduction 21 The spf gene is highly conserved in Escherichia, Shigella, Klebsiella, Salmonella and Yersinia 22 (genera) within the Enterobacteriacea family.1 In E. coli the spf gene is flanked by polA 23 (upstream) and yihA (downstream),2,3 and a CRP binding sequence and -10 and -35 promoter 24 sequences are found upstream of spf.
    [Show full text]
  • Final Risk Assessment of Escherichia Coli K-12 Derivatives (PDF)
    ATTACHMENT I--FINAL RISK ASSESSMENT OF ESCHERICHIA COLI K-12 DERIVATIVES (February 1997) I. INTRODUCTION Escherichia coli is one of a number of microorganisms which are normal inhabitants of the colons of virtually all warm- blooded mammals. E. coli belongs to the taxonomic family known as Enterobacteriaceae, which is one of the best-defined groups of bacteria. The strain E. coli K-12 is a debilitated strain which does not normally colonize the human intestine. It has also been shown to survive poorly in the environment, has a history of safe commercial use, and is not known to have adverse effects on microorganisms or plants. Because of its wide use as a model organism in research in microbial genetics and physiology, and its use in industrial applications, E. coli K-12 is one of the most extensively studied microorganisms. History of Commercial Use and Products Subject to TSCA Jurisdiction E. coli K-12 has a history of safe use. Its derivatives are currently used in a large number of industrial applications, including the production of specialty chemicals (e.g., L- aspartic, inosinic, and adenylic acids) and human drugs such as insulin and somatostatin (Dynamac, 1990). Further, E. coli can produce a number of specialty chemicals such as enzymes which would be regulated under TSCA. An insulin-like hormone for use as a component of cell culture media, resulting from a fermentation application in which E. coli was used as the recipient, has already been reviewed under TSCA (Premanufacture Notice P87-693). EPA recently reviewed a submission (94-1558) for use of E.
    [Show full text]
  • Escherichia Coli As Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum Β-Lactamase (ESBL) Production
    animals Review Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-Lactamase (ESBL) Production Sónia Ramos 1,2,3, Vanessa Silva 1,2,3,4 , Maria de Lurdes Enes Dapkevicius 5,6 , Manuela Caniça 7,8 , María Teresa Tejedor-Junco 9,10 , Gilberto Igrejas 2,3,4 and Patrícia Poeta 1,4,* 1 Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; [email protected] (S.R.); [email protected] (V.S.) 2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; [email protected] 3 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal 4 Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal 5 Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal; [email protected] 6 Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal 7 National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; [email protected] 8 Centre for the Studies of Animal
    [Show full text]
  • A Prolonged Multispecies Outbreak of IMP-6 Carbapenemase-Producing
    www.nature.com/scientificreports OPEN A prolonged multispecies outbreak of IMP-6 carbapenemase-producing Enterobacterales due to horizontal transmission of the IncN plasmid Takuya Yamagishi1,11, Mari Matsui2,11, Tsuyoshi Sekizuka3,11, Hiroaki Ito4, Munehisa Fukusumi1,4, Tomoko Uehira5, Miyuki Tsubokura6, Yoshihiko Ogawa5, Atsushi Miyamoto7, Shoji Nakamori7, Akio Tawa8, Takahisa Yoshimura9, Hideki Yoshida9, Hidetetsu Hirokawa9, Satowa Suzuki2, Tamano Matsui1, Keigo Shibayama10, Makoto Kuroda3 & Kazunori Oishi1* A multispecies outbreak of IMP-6 carbapenemase-producing Enterobacterales (IMP-6-CPE) occurred at an acute care hospital in Japan. This study was conducted to understand the mechanisms of IMP-6-CPE transmission by pulsed-feld gel electrophoresis (PFGE), multilocus sequence typing and whole-genome sequencing (WGS), and identify risk factors for IMP-6-CPE acquisition in patients who underwent abdominal surgery. Between July 2013 and March 2014, 22 hospitalized patients infected or colonized with IMP-6-CPE (Escherichia coli [n = 8], Klebsiella oxytoca [n = 5], Enterobacter cloacae [n = 5], Klebsiella pneumoniae [n = 3] and Klebsiella aerogenes [n = 1]) were identifed. There were diverse PFGE profles and sequence types (STs) in most of the species except for K. oxytoca. All isolates of K. oxytoca belonged to ST29 with similar PFGE profles, suggesting their clonal transmission. Plasmid analysis by WGS revealed that all 22 isolates but one shared a ca. 50-kb IncN plasmid backbone with blaIMP-6 suggesting interspecies gene transmission, and typing of plasmids explained epidemiological links among cases. A case-control study showed pancreatoduodenectomy, changing drains in fuoroscopy room, continuous peritoneal lavage and enteric fstula were associated with IMP-6-CPE acquisition among the patients.
    [Show full text]
  • Microbiota and Drug Response in Inflammatory Bowel Disease
    pathogens Review Microbiota and Drug Response in Inflammatory Bowel Disease Martina Franzin 1,† , Katja Stefanˇciˇc 2,† , Marianna Lucafò 3, Giuliana Decorti 1,3,* and Gabriele Stocco 2 1 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] 2 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (K.S.); [email protected] (G.S.) 3 Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-3785362 † The authors contributed equally to the manuscript. Abstract: A mutualistic relationship between the composition, function and activity of the gut microbiota (GM) and the host exists, and the alteration of GM, sometimes referred as dysbiosis, is involved in various immune-mediated diseases, including inflammatory bowel disease (IBD). Accumulating evidence suggests that the GM is able to influence the efficacy of the pharmacological therapy of IBD and to predict whether individuals will respond to treatment. Additionally, the drugs used to treat IBD can modualate the microbial composition. The review aims to investigate the impact of the GM on the pharmacological therapy of IBD and vice versa. The GM resulted in an increase or decrease in therapeutic responses to treatment, but also to biotransform drugs to toxic metabolites. In particular, the baseline GM composition can help to predict if patients will respond to the IBD treatment with biologic drugs. On the other hand, drugs can affect the GM by incrementing or reducing its diversity and richness. Therefore, the relationship between the GM and drugs used in Citation: Franzin, M.; Stefanˇciˇc,K.; the treatment of IBD can be either beneficial or disadvantageous.
    [Show full text]
  • The Structural Complexity of the Gammaproteobacteria Flagellar Motor Is Related to the 2 Type of Its Torque-Generating Stators 3
    bioRxiv preprint doi: https://doi.org/10.1101/369397; this version posted July 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The structural complexity of the Gammaproteobacteria flagellar motor is related to the 2 type of its torque-generating stators 3 4 Mohammed Kaplan1, Debnath Ghosal1, Poorna Subramanian1, Catherine M. Oikonomou1, Andreas Kjær1*, Sahand 5 Pirbadian2, Davi R. Ortega1, Mohamed Y. El-Naggar2 and Grant J. Jensen1,3,4 6 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125. 7 2Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los 8 Angeles, CA 90089. 9 3Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125. 10 *Present address: Rex Richards Building, South Parks Road, Oxford OX1 3QU 11 4Corresponding author: [email protected]. 12 Abstract: 13 14 The bacterial flagellar motor is a cell-envelope-embedded macromolecular machine that functions as a propeller to 15 move the cell. Rather than being an invariant machine, the flagellar motor exhibits significant variability between 16 species, allowing bacteria to adapt to, and thrive in, a wide range of environments. For instance, different torque- 17 generating stator modules allow motors to operate in conditions with different pH and sodium concentrations and 18 some motors are adapted to drive motility in high-viscosity environments. How such diversity evolved is unknown.
    [Show full text]