Paleobiología De La Asociación Faunística De Caleufú (La Pampa, Formación Cerro Azul, Mioceno Superior – Plioceno Inferior), a Través De Análisis Tafonómicos

Total Page:16

File Type:pdf, Size:1020Kb

Paleobiología De La Asociación Faunística De Caleufú (La Pampa, Formación Cerro Azul, Mioceno Superior – Plioceno Inferior), a Través De Análisis Tafonómicos Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo Tesis Doctoral PALEOBIOLOGÍA DE LA ASOCIACIÓN FAUNÍSTICA DE CALEUFÚ (LA PAMPA, FORMACIÓN CERRO AZUL, MIOCENO SUPERIOR – PLIOCENO INFERIOR), A TRAVÉS DE ANÁLISIS TAFONÓMICOS Por Claudia Inés Montalvo Directora Dra. María Guiomar Vucetich Codirector Dr. Silvio A. Casadío 2004 Paleobiología de la asociación faunística de Caleufú (La Pampa, Formación Cerro Azul, Mioceno superior – Plioceno inferior), a través de análisis tafonómicos Indice Índice...................................................................................................................................... iii Resumen................................................................................................................................ v Agradecimientos..................................................................................................................... viii Capítulo 1 Introducción....................................................................................................... 1 Introducción............................................................................................................................ 2 Marco teórico............................................................................................................. 5 Antecedentes estratigráficos y paleontológicos........................................................ 8 Objetivos, hipótesis y estructuración del trabajo....................................................... 14 Materiales y métodos................................................................................................ 17 Capítulo 2 Asociación faunística de la Formación Cerro Azul en Caleufú..................... 22 Antecedentes............................................................................................................. 23 Situación geográfica del área de estudio.................................................................. 24 Contexto geomorfológico del afloramiento de la Formación Cerro Azul en Caleufú. 24 Estratigrafía............................................................................................................... 25 Análisis taxonómico................................................................................................... 30 Comparación de la asociación faunística de Caleufú con otras de la Formación Cerro Azul........................................................................................................ 71 Capítulo 3 Representación anatómica y taxonómica de los restos recuperados.......... 81 Cálculo del número de restos (NR)............................................................................ 82 Cálculo del número de especímenes identificados por taxón (NEIT)........................ 83 Cálculo del número mínimo de elementos esqueléticos (NME) y número mínimo de individuos (NMI).......................................................................................... 94 NMI y masa corporal estimada.................................................................................. 101 Diversidad y abundancia relativa de los componentes anatómicos representados en la asociación y en cada taxón..................................................................... 104 Análisis de la representación anatómica y taxonómica de los microvertebrados...... 110 Representación taxonómica............................................................... 110 Espectro de edad................................................................................ 111 Masa corporal y hábitos de vida......................................................... 115 Abundancia relativa............................................................................ 116 Índices................................................................................................ 118 Consideraciones acerca de la asociación de microvertebrados............................... 120 Capítulo 4 Otros atributos tafonómicos............................................................................. 122 Grado de biodegradación.......................................................................................... 123 Asociación de microvertebrados......................................................... 126 Coprolitos............................................................................................ 131 Coprolitos enteros..................................................................... 131 Fragmentos de coprolitos.......................................................... 134 Fragmentos óseos asociados con muy fuerte grado de digestión que indicaría que estuvieron incluidos en un coprolito................................................................................. 135 Grado de bioerosión.................................................................................................. 139 Atributos bioerosivos relacionados con la actividad de los depredadores sobre los elementos esqueléticos en el momento de la muerte de la presa............................................................... 139 Marcas de dientes..................................................................... 139 Marcas de arañazos y roído...................................................... 144 Corrosión sobre los restos.................................................................. 145 Señales producidas por el crecimiento de raíces..................... 146 Corrosiones provocadas por hongos y bacterias y ácidos propios del sustrato................................................................ 150 Corrosiones producidas por el desarrollo de líquenes sobre la superficie................................................................................ 154 Grado de distorsión mecánica................................................................................... 158 Tipos de rotura y de fracturas............................................................. 158 iii Paleobiología de la asociación faunística de Caleufú (La Pampa, Formación Cerro Azul, Mioceno superior – Plioceno inferior), a través de análisis tafonómicos Elementos esqueléticos enteros............................................... 159 Elementos del postcráneo rotos................................................ 160 Rotura de elementos postcraneanos en la asociación de microvertebrados................................................................... 162 Tipo de rotura de hemimandíbulas............................................ 163 Tipo de rotura de cráneos......................................................... 167 Índice de fragmentación............................................................ 167 Pérdida de dientes y dientes aislados....................................... 169 Coprolitos............................................................................................ 170 Grado de meteorización...................................................................... 171 Fragmentos indeterminables.............................................................. 178 Señales de pisoteo............................................................................. 181 Grado de desarticulación........................................................................................... 184 Grado de abrasión..................................................................................................... 186 Atributos relacionados con el desarrollo y evolución del paleosuelo........................ 187 Grados de encostramiento, desarrollo de concreciones calcáreas y relleno sedimentario..................................................................... 188 Impregnaciones por óxidos de manganeso........................................ 197 Grado de dispersión................................................................................................... 200 Grado de reagrupamiento.......................................................................................... 202 Grado de remoción.................................................................................................... 204 Capítulo 5 Discusión............................................................................................................ 205 Asociación de microvertebrados............................................................................... 206 Consideraciones acerca de los depredadores.................................... 208 Mamíferos candidatos a ocupar el papel de depredador.................... 213 Otros atributos de la etapa bioestratinómica....................................... 215 Asociación de mamíferos de mayor talla corporal..................................................... 218 Desarrollo del suelo e interpretación de los atributos adquiridos después del enterramiento...................................................................................................... 221 Historia tafonómica de la asociación faunística de Caleufú....................................... 224 Capítulo 6 Conclusiones..................................................................................................... 227 Bibliografía............................................................................................................................ 239 iv Paleobiología de la asociación faunística de Caleufú (La Pampa, Formación Cerro Azul, Mioceno superior – Plioceno inferior), a través de análisis tafonómicos Resumen Se realizaron estudios detallados de la asociación faunística proveniente de niveles de la Formación Cerro Azul (Mioceno superior – Plioceno
Recommended publications
  • 500 Natural Sciences and Mathematics
    500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681.
    [Show full text]
  • Volume 4 Issue 1B
    Captive & Field Herpetology Volume 4 Issue 1 2020 Volume 4 Issue 1 2020 ISSN - 2515-5725 Published by Captive & Field Herpetology Captive & Field Herpetology Volume 4 Issue1 2020 The Captive and Field Herpetological journal is an open access peer-reviewed online journal which aims to better understand herpetology by publishing observational notes both in and ex-situ. Natural history notes, breeding observations, husbandry notes and literature reviews are all examples of the articles featured within C&F Herpetological journals. Each issue will feature literature or book reviews in an effort to resurface past literature and ignite new research ideas. For upcoming issues we are particularly interested in [but also accept other] articles demonstrating: • Conflict and interactions between herpetofauna and humans, specifically venomous snakes • Herpetofauna behaviour in human-disturbed habitats • Unusual behaviour of captive animals • Predator - prey interactions • Species range expansions • Species documented in new locations • Field reports • Literature reviews of books and scientific literature For submission guidelines visit: www.captiveandfieldherpetology.com Or contact us via: [email protected] Front cover image: Timon lepidus, Portugal 2019, John Benjamin Owens Captive & Field Herpetology Volume 4 Issue1 2020 Editorial Team Editor John Benjamin Owens Bangor University [email protected] [email protected] Reviewers Dr James Hicks Berkshire College of Agriculture [email protected] JP Dunbar
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Titanis Walleri: Bones of Contention
    Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 201-229 201 TITANIS WALLERI: BONES OF CONTENTION Gina C. Gould1 and Irvy R. Quitmyer2 Titanis walleri, one of the largest and possibly the last surviving member of the otherwise South American Phorusrhacidae is re- considered in light of all available data. The only verified phorusrhacid recovered in North America, Titanis was believed to exhibit a forward-extending arm with a flexible claw instead of a traditional bird wing like the other members of this extinct group. Our review of the already described and undescribed Titanis material housed at the Florida Museum of Natural History suggest that Titanis: (1) was like other phorusrhacids in sporting small, ineffectual ratite-like wings; (2) was among the tallest of the known phorusrhacids; and (3) is the last known member of its lineage. Hypotheses of its range extending into the Pleistocene of Texas are challenged, and herein Titanis is presumed to have suffered the same fate of many other Pliocene migrants of the Great American Interchange: extinction prior to the Pleistocene. Key Words: Phorusrhacidae; Great American Biotic Interchange; Florida; Pliocene; Titanis INTRODUCTION men on the tarsometatarsus, these specimens were as- Titanis walleri (Brodkorb 1963), more commonly known signed to the Family Phorusrhacidae (Brodkorb 1963) as the North American ‘Terror Bird’, is one of the larg- and named after both a Titan Goddess from Greek my- est known phorusrhacids, an extinct group of flightless thology and Benjamin Waller, the discoverer of the fos- carnivorous birds from the Tertiary of South America, sils (Zimmer 1997). Since then, isolated Titanis mate- and most likely, the last known member of its lineage rial has been recovered from three other localities in (Brodkorb 1967; Tonni 1980; Marshall 1994; Alvarenga Florida (Table 1; Fig.
    [Show full text]
  • Analysis of Colubroidea Snake Venoms by Liquid Chromatography with Mass Spectrometry: Evolutionary and Toxinological Implications
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2003; 17: 2047–2062 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcm.1148 Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications Bryan G. Fry1,2*, Wolfgang Wu¨ ster3, Sheik Fadil Ryan Ramjan2, Timothy Jackson1, Paolo Martelli4 and R. Manjunatha Kini2 1Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic 3010, Australia 2Department of Biological Sciences, Faculty of Science, National University of Singapore 119260, Singapore 3School of Biological Sciences, University of Wales, Bangor LL57 2UW, Wales, UK 4Veterinary Department, Singapore Zoo, Mandai Rd., Singapore Received 12 June 2003; Revised 7 July 2003; Accepted 9 July 2003 The evolution of the venomous function of snakes and the diversification of the toxins has been of tremendous research interest and considerable debate. It has become recently evident that the evo- lution of the toxins in the advanced snakes (Colubroidea) predated the evolution of the advanced, front-fanged delivery mechanisms. Historically, the venoms of snakes lacking front-fanged venom- delivery systems (conventionally grouped into the paraphyletic family Colubridae) have been lar- gely neglected. In this study we used liquid chromatography with mass spectrometry (LC/MS) to analyze a large number of venoms from a wide array of species representing the major advanced snake clades Atractaspididae,
    [Show full text]
  • The Pliocene Demise of the Giant Volant Birds
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2021 doi:10.20944/preprints202103.0164.v1 Article Into Thinner Air: The Pliocene Demise of the Giant Volant Birds Alan Cannell 1 1 Istituto Italiano Di Paleontologia Umana; [email protected] Simple Summary: All very large flying birds with a mass greater than 20 kg became extinct about 3 million years ago. One possible reason for this is bio-mechanical stress during takeoff in less dense air. This possibility is examined using a bird flight simulation model and a paleo-air density value derived from two different proxies. Takeoff airspeed and power requirements for the three known species at this value are found to be similar to those of large extant birds, but at present air density, takeoff speed is significantly higher. The escape of lighter isotopes of nitrogen during long periods of weak geomagnetic fields could be a possible explanation for this loss in atmospheric mass and how this would appear in the geological record and how it would affect the climate in terms of cooling is discussed. Abstract: Three genera of very large volant birds existed for most of the Pliocene: the Pelagornithi- dae seabirds; the large North American Teratornithidae and the stork Leptoptilos falconeri in Africa and Asia. All became extinct around 3 Ma. The reasons for their demise are puzzling, as the Pela- gornithidae had a world-wide evolutionary history of more than 50 Ma, smaller teratorns were still extant in the Holocene and smaller stork species are still globally extant. Extant large birds have a common critical takeoff airspeed suggesting a biomechanical limit in terms of power, risk and launch speed, and simulations of the flight of these extinct species suggest that at 1 bar they would have exceeded this value.
    [Show full text]
  • (Squamata: Colubroidea: Dipsadidae) from the Cordillera Central of Western Panama, with Comments on Other Species of the Genus in the Area
    Zootaxa 3485: 26–40 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:DF69ABFD-AEAA-4890-899A-176A79C3ABA5 A new species of Sibon (Squamata: Colubroidea: Dipsadidae) from the Cordillera Central of western Panama, with comments on other species of the genus in the area SEBASTIAN LOTZKAT1,2,3, ANDREAS HERTZ1,2 & GUNTHER KÖHLER1 1Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 2Goethe-University, Institute for Ecology, Evolution & Diversity, Max-von-Laue-Straße 13, Biologicum, Building C, 60438 Frankfurt am Main, Germany 3Correspondence: [email protected] Abstract We describe Sibon noalamina sp. nov. from the Caribbean versant of the Cordillera Central, in the Comarca Ngöbe-Buglé and the province of Veraguas of western Panama. Due to its coral snake-like, bicolored pattern, the new species superfi- cially resembles Sibon anthracops, Dipsas articulata, D. bicolor, D. temporalis, and D. viguieri. It differs from these spe- cies, and from all its congeners, by having only five supralabials, by the unique shape of the posterior supralabial, and by a slight keeling on some dorsal rows in adults. We discuss its conservation perspectives, and provide new distributional records for S. annulatus and S. longifrenis, as well as an updated key to the Lower Central American species of Sibon. Key words: snail-eater, Dipsas, Chiriquí, Comarca Ngöbe-Buglé, Bocas del Toro, Veraguas, conservation, distribution extension, morphology Resumen Describimos Sibon noalamina sp. nov. de la vertiente Caribe de la Cordillera Central, Comarca Ngöbe-Buglé y provincia de Veraguas, en el occidente de Panamá.
    [Show full text]
  • The Aerodynamics of Argentavis, the World's Largest Flying Bird from The
    The aerodynamics of Argentavis, the world’s largest flying bird from the Miocene of Argentina Sankar Chatterjee*†, R. Jack Templin‡, and Kenneth E. Campbell, Jr.§ *Department of Geosciences, Museum of Texas Tech University, Box 43191, Lubbock, TX 79409-3191; ‡2212 Aster Street, Ottawa, ON, Canada K1H 6R6; and §Department of Ornithology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 Edited by Steven Vogel, Duke University, Durham, NC, and accepted by the Editorial Board June 6, 2007 (received for review March 5, 2007) We calculate the flight performance of the gigantic volant bird secondary feathers. Its primary feathers (scaled up from those of Argentavis magnificens from the upper Miocene (Ϸ6 million years California Condor) would have been Ϸ140–150 cm long and ago) of Argentina using a computer simulation model. Argentavis 12–14 cm wide (3). Despite its flight adaptation, there is a great was probably too large (mass Ϸ70 kg) to be capable of continuous deal of controversy over how this giant extinct bird could take flapping flight or standing takeoff under its own muscle power. off, fly, and safely land (1–4, 6–9). Like extant condors and vultures, Argentavis would have extracted Flapping flight, although more versatile than gliding, requires energy from the atmosphere for flight, relying on thermals present a constant supply of power derived from the flight muscles. The on the Argentinean pampas to provide power for soaring, and it larger the bird, the greater the amount of power required to probably used slope soaring over the windward slopes of the sustain flapping flight.
    [Show full text]
  • Docent Manual
    2018 Docent Manual Suzi Fontaine, Education Curator Montgomery Zoo and Mann Wildlife Learning Museum 7/24/2018 Table of Contents Docent Information ....................................................................................................................................................... 2 Dress Code................................................................................................................................................................. 9 Feeding and Cleaning Procedures ........................................................................................................................... 10 Docent Self-Evaluation ............................................................................................................................................ 16 Mission Statement .................................................................................................................................................. 21 Education Program Evaluation Form ...................................................................................................................... 22 Education Master Plan ............................................................................................................................................ 23 Animal Diets ............................................................................................................................................................ 25 Mammals ....................................................................................................................................................................
    [Show full text]
  • Physical Limits of Flight Performance in the Heaviest Soaring Bird
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cronfa at Swansea University Physical limits of flight performance in the heaviest soaring bird H. J. Williamsa,b,1, E. L. C. Sheparda,1,2, Mark D. Holtonc, P. A. E. Alarcónd, R. P. Wilsona, and S. A. Lambertuccid aDepartment of Biosciences, Swansea University, SA2 8PP Swansea, United Kingdom; bDepartment of Migration, Max Planck Institute of Animal Behaviour, 78315 Radolfzell, Germany; cDepartment of Computing Science, Bay Campus, Swansea University, SA1 8EN Swansea, United Kingdom; and dGrupo de Investigaciones en Biología de la Conservación, Universidad Nacional del Comahue-CONICET, Quintral 1250, R8400FRF Bariloche, Argentina Edited by Robert E. Ricklefs, University of Missouri–St. Louis, St. Louis, MO, and approved June 8, 2020 (received for review May 3, 2019) Flight costs are predicted to vary with environmental conditions, absolutely necessary. Large soaring birds are most likely to flap and this should ultimately determine the movement capacity and to remain airborne or increase speed at times when they are distributions of large soaring birds. Despite this, little is known unable to soar. Knowing the extent to which aerial conditions about how flight effort varies with environmental parameters. We force large birds to use powered flight is key to understanding deployed bio-logging devices on the world’s heaviest soaring bird, how their movements and space-use are constrained by the the Andean condor (Vultur gryphus), to assess the extent to which physical environment (12). these birds can operate without resorting to powered flight. Our Examining when and where obligate soarers resort to flapping records of individual wingbeats in >216 h of flight show that should also provide insight into the particular conditions that condors can sustain soaring across a wide range of wind and ther- might have supported the flight of the largest birds ever to have mal conditions, flapping for only 1% of their flight time.
    [Show full text]
  • PDF Files Before Requesting Examination of Original Lication (Table 2)
    often be ingested at night. A subsequent study on the acceptance of dead prey by snakes was undertaken by curator Edward George Boulenger in 1915 (Proc. Zool. POINTS OF VIEW Soc. London 1915:583–587). The situation at the London Zoo becomes clear when one refers to a quote by Mitchell in 1929: “My rule about no living prey being given except with special and direct authority is faithfully kept, and permission has to be given in only the rarest cases, these generally of very delicate or new- Herpetological Review, 2007, 38(3), 273–278. born snakes which are given new-born mice, creatures still blind and entirely un- © 2007 by Society for the Study of Amphibians and Reptiles conscious of their surroundings.” The Destabilization of North American Colubroid 7 Edward Horatio Girling, head keeper of the snake room in 1852 at the London Zoo, may have been the first zoo snakebite victim. After consuming alcohol in Snake Taxonomy prodigious quantities in the early morning with fellow workers at the Albert Public House on 29 October, he staggered back to the Zoo and announced that he was inspired to grab an Indian cobra a foot behind its head. It bit him on the nose. FRANK T. BURBRINK* Girling was taken to a nearby hospital where current remedies available at the time Biology Department, 2800 Victory Boulevard were tried: artificial respiration and galvanism; he died an hour later. Many re- College of Staten Island/City University of New York spondents to The Times newspaper articles suggested liberal quantities of gin and Staten Island, New York 10314, USA rum for treatment of snakebite but this had already been accomplished in Girling’s *Author for correspondence; e-mail: [email protected] case.
    [Show full text]