<<

TIAKINAKIAORA–PROTECTINGOURFRESHWATERMUSSELS

by

HANNAH JANE RAINFORTH AthesissubmittedtoVictoriaUniversityofinfulfilmentofthe requirementsforthedegreeofMastersinEcologicalRestoration

VICTORIA UNIVERSITYOF WELLINGTON

2008

ACKNOWLEDGEMENTS Toallthosekaumātuawhogavetheirtimeandopenedtheirketetome:KevinAmohia, WahiTeki,TeWheturerePoopeGray,MikePotaka,CharliePotakaOsborne,BenPotaka, Wiremu(Bill)PotakaOsborne,PetePotakaOsborne,andPikiandGeorgeWaretini,tēnā rawaatukoutou,ngāpuketukukōrero. Tomyeverpatientsupervisors,MurrayWilliamsandRussellDeath,thankyoufor allyourencouragement,admonishments,ideasandfreelunches.Thanksforbelievingin me.Murray,nexttimeI’llstudyducks. ThankyoutotheFoundationforResearch,ScienceandTechnologyfortheir provisionofaTeTipuPūtaiaoFellowship,andtoVictoriaUniversityforsupportthrough theTūHoromatascholarship. Totheriverrats,fieldassistantsandholdersofthewisdom:WaiWiariSouthen, MikePoa,HemiGray,NicolaAtkinson,RacquelMcKenzie,NyreeNikora,ConerGawith, LoganBrown,KaseyGordon,andNatashaPetrove.Especiallytothosewhohave encouragedmethroughthehardertimes,andbeenarockinturbulentwaters,neitemihi! ThankstomyfantasticbrotherBenandhisquickerthanaspeedingbullet, sharperthanathumbtackillustrationservices.ThankstootoJetLawrencewholentme thekākahiinhisstream,toNgairePhillipswhoansweredmyoddquestions,andoffered muchappreciatedadvice,andtothetechniciansatMassey,PaulBarrettandCleland Wallace,whoputupwithendlessrequestsfromthisVictoriainterloper.Alsotothe workersatHorizons,KateMcArthur,MareeClarkandBrentWatson,whoprovideddata andenoughbookstomakemybackpackextraheavy. Andlastbutcertainlynotleast,AuntyMaureen–providerofaplacetoroostand write,supplierofeverythingfromflashdrivestoflashmeals–thankyoutimesinfinity billion(asCheyoncesaid). Etikaanatekōrero,eharatakutoaitetoatakitahi,engarihetoatakatini.

2 CONTENTS Acknowledgements 2 Contents 3 Listoffigures 4 Abstract 6 1.Ngāpuketukukōrero–thehillsthattalk.knowledgeofkākahi (Echyridellamenziesii )intheRiver 7 2.Kākahi( Echyridellamenziesii )intheWhanganuiRiver–going,going,gone? 31 3.Effectofsuspendedsedimentonkākahi( Echyridellamenziesii )feeding physiologyandbehaviour 60 4.Bringingthemback–restorationofkākahi( Echyridellamenziesii )inthe WhanganuiRiver 88 Glossary 106 Appendix1:Suggestedproceduresforcontactingiwiandhapū 107 Appendix2:Propagationofjuvenilekākahiincaptivity 109 Appendix3:Supportavailableforrestoration 114

3 LISTOFTABLESANDFIGURES

1–NGĀ PUKE TUKU KŌRERO –THEHILLSTHATTALK .IWIKNOWLEDGEOFKĀKAHI (ECHYRIDELLAMENZIESII )INTHE WHANGANUI RIVER Fig.1. MapoftheWhanganuiRivercatchment. 9 Fig.2. IwimemberandriveruserMikePoakneedeepinmudnearPūtiki. 16 Fig.3. Thewhakapapaofrocks,seaweed,gravelandsand,theguardiansand companionsofmussels. 21

2–KĀKAHI (ECHYRIDELLAMENZIESII )INTHE WHANGANUI RIVER–GOING ,GOING ,GONE ? Table1. CharacteristicsofsitesintheWhanganuiRivercatchmentsearched forkākahi. 34 Fig.1. Delineationandexamplesofshellerosioncategories. 36 Fig.2. Catchperuniteffort. 39 Table2. Linearrelationshipsbetweensitevariablesandcatchperuniteffort (CPUE),medianshelllengthandmedianshellerosionextent. 40 Fig.3. LengthfrequencydistributionsofkākahiatsitesintheWhanganui Rivercatchment. 41 Fig.4. BrayCurtissimilarityforsizeclassdistributionsofkākahiatsites intheWhanganuiRiverwheren≥10. 42 Table3. Linearrelationshipsbetweenhabitatvariablesandaxisscoresfrom BrayCurtisanalysisofresemblanceoflengthclassfrequencydistribution ofkākahiatsitesintheWhanganuiRiverwheren≥10. 42 Table4. AbundanceandstatusofkākahiatsitesintheWhanganuiRiver catchment. 43 Table5. Shelllength(mm)forsiteswheren<20. 44 Table6. MedianshelllengthandmedianerosionextentintheWhanganui Rivercatchmentatsiteswheren≥10,andmeanshelllengthat siteswheren≥20. 44 Fig.5. Extentofshellerosion. 45 Table7. HealthofkākahipopulationsintheWhanganuiRiver. 46

4

3–EFFECTOFSUSPENDEDSEDIMENTONKĀKAHI (ECHYRIDELLAMENZIESII )FEEDING PHYSIOLOGYANDBEHAVIOUR Fig.1. Experimentalsystem. 62 Table1. Compositionoftreatmentwatersuppliedtokākahi. 66 Fig.2. Physiologicalandbehaviouralresponsesofkākahiasafunctionof totalparticulatematterconcentration. 67 Table2. Equations,f,pandr 2valuesforregressionanalyses. 68 Fig.3. Clearancerateasafunctionofparticulateorganicmatter(POM); filtrationrate(FR)asafunctionofPOM;andFRasafunctionof organicfraction(%). 70 Fig.4. Kākahirejectionrateasafunctionoffiltrationrate. 71 Fig.5. Organiccontent(%)oftreatmentwater,pseudofaecesandfaecesand organiccontent(%)asafunctionoftotalparticulatematter. 72 Fig.6. Kākahiselectionefficiency. 73

4–BRINGINGTHEMBACK –RESTORATIONOFKĀKAHI (ECHYRIDELLAMENZIESII )INTHE WHANGANUI RIVER Fig.1. Amodelofadaptivemanagement. 90 Fig.2. Fig.2.Anexampleofhowadaptivemanagementmightbeusedto facilitaterestorationofkākahiintheWhanganuiRiver. 94 Fig.3. Anexampleofhowresultsfrommanagementexperimentscouldbefed backintofurtheradaptivemanagementresponses. 96

5 ABSTRACT Mātauranga(traditionalecologicalknowledge)builtupbyWhanganuiiwiduringtheirlong associationwiththeWhanganuiRiverprovidesinformationonlocalbiotaand anthropologicalchangestotheriver.Thismātaurangarecordsadeclineinonelocal ,thekākahi( Echyridellamenziesii (Gray,1843)).Reasonssuggestedforthisdecline includealterationstoflowanddesiccationfollowingahydropowerscheme,sedimentation, domesticandagriculturalpollution,gravelextractionandchannelmodification. Declinewasconfirmedbyasurveyofhistorickākahibeds:declinewasevidentat 16(73%)of22sites.Ofthose16sites,therewere7siteswheredeclinewassoseverethat thepopulationhadbeenextirpated.Ofthe15historicbedswherekākahiarestillextant, four(27%)wereremnantpopulations.Evidenceofrecruitmentwasfoundatonlyfour (27%)ofthe15extantpopulations,or18%ofthetotalnumberofsitessearched. Effectofsuspendedsedimentconcentrationsrangingfrom5.5to1212mg.L 1on kākahifeedingbehaviourandphysiologywasexplored.Bothfiltrationrateandrejection rateincreasedwithincreasedsedimentload(from1.62mg.h 1to190.88mg.h 1andfrom 0.62to201.53mg.h 1respectively)butclearanceratedecreasedwithsedimentincrease (from0.42to0.20L.h 1).Behaviourwasunaffected,withkākahifilteringonaverage78% ofthetime.Asparticulateorganicmatterincreased,clearanceratedecreasedandfiltration rateincreased.Filtrationratedeclinedwithincreasing%organicmatter.Kākahican continuefeedingunderveryhighsedimentloadsforshortperiods. Muchremainsuncertainaboutkākahi,fromtheirearlybiologytoreasonsfor decline.Restorationoptionswereexploredusinganadaptivemanagementframework withinwhichdifferenthypothesescanbetrialledinanexperimentalmanner.Thisproved difficultduetoconfoundingfactors.However,giventheestablishedlinkbetween vegetationclearanceandsedimentation,aninitialrestorationfocuswhichevaluates catchmentrevegetationanditsimpactonkakahisurvivalandgrowthissuggested.

6

1. NGĀPUKETUKUKŌRERO–THEHILLSTHATTALK. 1 IWIKNOWLEDGEOFKĀKAHI(ECHYRIDELLAMENZIESII)INTHEWHANGANUIRIVER1

INTRODUCTION

PERSONALPOSITIONSTATEMENT “ErerekauanateawamaiitekāhuimaungakiTangaroa. Koauteawa,koteawakoau.” Theriverflowsfromthemountainstothesea. Iamtheriver,theriverisme. IamofTeĀtiHaunuiaPāpārangiandNgātiHauitidescent.Ihailfromtworiverswhich traversethecentralregionoftheNorthIslandofAotearoaNewZealand:theWhanganui (Fig.1)andtheRangitīkei.OnmyWhanganuiside,IamfromNgāPaerangi,ahapūwhich hasitshomeat,about25kilometresupstreamoftherivermouth.Whanganui iwihaveinhabitedtheriversincePaerangicamefromHawaiiki,wellbeforeTuriand Rongorongoarrived750yearsagoontheAoteawaka.Thesayingquotedabovecomes frommyWhanganuipeople.Itisanoftenusedphraseandspeaksofourconnectionwith ourriver;webelongtoit,itbelongstous,itisus. Theresearchpresentedinthissectionarisesoutofadesiretodocumentthe knowledgeofmypeopleregardingourriverandoneofitsspecies,thekākahi( Echyridella menziesii (Gray,1843)).Interestinthisspecieswassparkedbyoneofourkaumātua,Phil Firmin,whospokeofitsdeclineinanoralarchivehousedintheWhanganuiRegional Museum(seeFirmin1994). Toachievethisaim,Iinterviewedkaumātuaandiwiriverusersaboutkākahi,and abouttheriveringeneral.Somewereformallyinterviewedandrecorded,otherspreferred forinformationtoberetainedonlybymemory.Writtenrecordsinarchives,court documentsandpublishedworkswerealsoaccessed.Aswellasdiscussingspecificaspects oftheriver,kaumātuaoftentalkedaboutvaluesregardingtheriverandwhatitmeantto

1 Notesonstyle:Asmuchaspossible,thisthesiswaswrittenasstandalonepapers.Iaskthereadertoexcuse anyrepetitionbetweenpapersnecessitatedbythisformat.ThereareanumberofMāoritermsusedinthe text.Aglossaryisprovidedattheendofthethesisforthoseunfamiliarwiththesewords.

7 them.Themainelementsregardingkākahi,theriverandMāorivaluesarediscussedinthis section,andconstitutesomeoftheknowledgeheldbyWhanganuiiwi.

INDIGENOUSKNOWLEDGE ,MĀTAURANGA MĀORI ,ANDTRADITIONALECOLOGICAL KNOWLEDGE Traditionally,Westernsciencehasnotrecognisedknowledgethatisnotrepeatable, empirical,andevidencebased(Durie2004).However,inmorerecenttimes,thevalueof indigenousknowledgeisincreasinglybeingrecognisedbyWesternscientists(Berkes1999). InAotearoaNewZealand,indigenousknowledgeisknownasmātauranga(ormore recentlyasmātaurangaMāori,‘Māoriknowledge’(Royal1999)).Eachiwihasitsownsetof knowledge,heldinitsownwānangaandhandeddownfromgenerationtogeneration (Williams2001).Mātaurangaisbasediniwiworldviews,beliefsandparadigms,andcovers allaspectsoftheMāoriexperience,fromknowledgeoftheenvironment,tothe mathematicsofconstruction,tothemetaphorsofsong,totheintricaciesofnavigation,to theprotocolsofritualceremonies(Kapua1997,Royal1998,Mead2003,Waikato2005). OnekeyconceptthatdiffersfromWesternideasonknowledgeisthatiwi mātaurangaisnotopentoeverybody–thereismātaurangathatremainstheselectdomain ofcertaintohunga,certainhapū,orcertainiwi(Waikato2005).Mātaurangais intergenerational–itisbuiltupbypastgenerations,caredforbythepresentgeneration, andistobehandedontothecominggenerations–ngāuriwhakatupu–anditis constantlybeingcreated(Mead2003).ManyMāoriseetheprotectionofthismātaurangaas crucial(Williams2001,Johansen2003,Waikato2005),andtheyarenotalone–indigenous peoplesacrosstheworldareanxioustoprotecttheirintellectualproperty(Dutfield2000, Usher2000,VanOverwalle2005).Theknowledgepresentedhereisdeliveredwitha recognitionthatitcomeswithresponsibilitiesattached–responsibilitytouseitwith respect,toshareonlywhatisopentobeshared,topassitontothosetocome,andtonot divorcetheMāorivaluesinherentinmātaurangafromthepracticalaspectsofthat knowledge. Internationally,inWesternscientificliterature,indigenousknowledgeisoften referredtoastraditionalecologicalknowledge,orTEK(Berkes1999).Berkesdefines traditionalecologicalknowledgeas: acumulativebodyofknowledge,practice,andbelief,evolvingbyadaptive processesandhandeddownthroughgenerationsbyculturaltransmission,about therelationshipoflivingbeings(includinghumans)withoneanotherandtheir environment(Berkes1999).

8 Fig.1.MapoftheWhanganuiRivercatchment.

9 ThosetakingthetimetoengagewithTEK,whetherinAotearoaNewZealandor overseas,havecometorecognisethatindigenouspeoplesholdnotonlyagreatdealof knowledgeabouttheirlocalenvironments,butalsoofferanopportunitytoWesterners, andespeciallyWesternsciencepractitioners,tolearnanewwayofinteractingwiththe environment(Berkes1999,PierottiandWildcat2000,DudgeonandBerkes2003).Modern WesternscienceisgroundedonmainstreamWesternthinkingandphilosophies.This thinkingdevelopedsincetheEnlightenmentandisbasedonCartesiandualism;itvalues reductionism,andplacesmanasautonomousfromanddominantovernature,ratherthan asapartofit(Berkes1999,PierottiandWildcat2000).Itstemsfromawider anthropocentricthinkingthatreducesnatureintoeitheraresourceforconsumeruse,or somethingseparatefrommanwhichisinneedofourprotectionandmustnotbetouched (Sessions1995,PierottiandWildcat2000).Māori,likemanyindigenousgroupsworldwide, tendtoviewthemselvesasconnectedtoandapartofthenaturalworld(Kapua1997, Durie2004,SelbyandMoore2006).Wearerelatedtoallthingsthroughwhakapapa (genealogicallinks)(Williams2001).AholisticapproachtendstodominateMāorithinking –wedonotseparatethespiritual,intellectualandphysicalintocompartmentalisedrealms (Kapua1997,Durie2004,Waikato2005).AswiththeTEKofotherindigenouspeoples, thevaluesandculturalpracticesfoundwithinmātaurangaofferWesternscientistsan alternativeapproachtothinkingaboutandinteractingwiththenaturalworld(Cruikshank 2001,Kimmerer2002)–amoveawayfromreductionistthinkingwithmanasdominant, andintoanintegratedapproachwithhumanityasacommunitymemberinnature(Berkes 1999,PierottiandWildcat2000). ThoseworkingwithTEKalsorecognisethatindigenouspeoplesacrosstheworld haveinhabitedtheirlandsforthousandsofyears,andhavespentgenerationsinteracting withitsgeographyandbiota(Drew2005,ParleeandManseau2005).Assuchtheybuildup avastamountofknowledgeabouttheirregionalenvironment.Aswellasalternativevalue systems,holdersofTEKcanprovidevaluablepracticalinformationabouthumanimpacts onlocalbiotaandecosystems,andareoftenthefirsttonoticethedetrimentaleffectsof anthropologicalchangesintheirlocalarea.ManyTEKresearcheshavepointedoutthe needforWesternsciencepractitionersandresourcesmanagerstopaymoreheedto informationprovidedbylocalTEK(RoueandNakashima2002,Drew2005,Gilchristet al.2005,ParleeandManseau2005).Therefore,aswellasdiscussingMāorivalues, informationonkākahiandabouttheriver,thefollowingsectionalsodocuments

10 Whanganuimātaurangaontheanthropologicalchangestotheriverwhichmayhave affectedkākahi. WhileTEKisoftendiscussedinjuxtapositiontoWesternscience,itmustbe rememberedthattherearemanyWesternelderswhohavemuchtraditionalknowledgeto offer.Berkes’definition(Berkes1999,Berkesetal.2000)isinclusiveofsuchWestern elders,andrightlyso.Whenmātaurangaisdiscussedinthispaperinappositionto ‘Westernvalues’,or‘Westernscience’,itisreferringnottoWesternelderswhoposses knowledgeandvaluesconsistentwithmātauranga(orvaluesfoundinTEKworldwide), buttomainstreamWesternthinkingwhichviewshumanityasseparatefromandincontrol ofnature(PierottiandWildcat2000).

MĀTAURANGA WHANGANUI

KĀKAHIHABITATPREFERENCES Kaumātuanotedthatkākahipreferslowmovingwaterinmuddyareas.Therewasno differentiationmadebetweensandyandmuddyareas,withonekaumātuacommentingthat “mud’smud!”(B.Potakapers.comm.2007).Kākahiwerenotusuallyfoundingravelly areas,primarilybecausethewaterinthesespotsisfasterflowing.Norweretheyfoundin areaswithpaparockonthebottom,asthekākahidonot“sticklikeaseamussel”(C. Osbornepers.comm.2007).Itwasalsonotedthatkākahiwereoftenfoundattheedgesof theriver,butonekaumātuacommentedthatthiswas“probablybecausethat’swherewe werelookingforthem”,withthedeeperareasbeinglessaccessible.Tributarystreamsand mouthswerealsopopularspots,andthisprobablyrelatestothetypeofhabitatinthese areas,whichareoftensandyormuddyspotswithslowmovingwater.Onekaumātua notedyoucouldfindthelittleones,“smallerthanyourfingernail”,attachedtologs(K. Amohiapers.comm.2008).

KĀKAHIASSOCIATIONSWITHOTHERSPECIES Kākahiareoftenfoundinassociationwith( Anguillaaustralis and A.dieffenbachii ). PungarehukaumātuaBenPotaka,MikePotakaandCharlieOsborneusedthesignsof kākahipresenceasanindicationofagoodeelingspot.Charliecommentsthateelsalways “seemedtobehangingaroundtheplacewherekākahiwere”.Asfishermen,theywould lookforkākahishellsorthesiphonholesinamongstthemud,notethatspot,thenreturn therewhentheywantedtofish.

11 Birdswereusedasanindicationofboththepresenceofkākahiandthetimingfor kākahicollection.KaumātuainthemiddlereachesoftheWhanganuiRiverwaitedforthe returnofseabirds(possiblythepiedstilt( Himantopushimantopusleucocephalus )oroyster catcher( Haematopusunicolour ))tosignalthebeginningofthekākahicollectionseason(W. WiariSouthenpers.comm.2008).Thiscoincidedwiththewarmertimesoftheyear,when theriverwaslow,andthebirdswouldcomeinlandtofeedonthekākahi.

KĀKAHIUSEFORKAI Althoughmostpeopleexpressedtheopinionthatkākahiweresomewhat“tasteless”,a numberofdifferentmodernandtraditionalcookingmethodswereidentified.These includedcurryingthem,makingthemintoastew,creatingatypeofchowderwithalittle milkandmakingaboilupwiththem.Onetraditionalmethodwastothreadthemonto muka(flaxfibre)stringsandhangthemtodry(Firmin1994,W.WiariSouthenpers. comm.2008).Thisprovidedastoreforwinter,whenfoodwaslessplentiful. Noonetalkedofeatingkākahionitsowninmoderntimes,probablyduetothe disagreeabletaste.InpreEuropeantimes,however,theywereconsideredadelicacy(Hiroa 1921,Firmin1994).InRotorua,therewerethreeseparatewordsforthevarioustraditional waysofconsumingthem:tioka,whentheyaresplitopenandeatenraw;whakakōpupu, whentheyweredippedinboilingwaterforafewsecondstoopentheshellveryslightly; andkōwha,tocookandopenthem(Hiroa1921).Onekuiastatedthatimmersinglive kākahiinslightlysaltywaterovernightimprovestheflavour.Thishelpsthemtoexpel someofthesedimentfromtheirsystem,andalsoaddsasaltytang.

USEOFKĀKAHISHELLS Inhistoricalwritingsfromotherareas,kākahishellsweresaidtobeusedtocuthairandto severtheumbilicalchordofanewbornchild(Hiroa1921).InWhanganui,shellswere oftenreturnedtotheriverasawayofgivingbacktotheriver(W.WiariSouthenpers. comm.2008).Itwasconsideredthatbecausetheriverhadnourishedyou,youneededto offeritsomethinginreturn.ThispracticefollowsageneralMāoritikangaofrespectingand caringfortheenvironmentwhichnourishesyou,andofreciprocityingeneral.Itisseenas unacceptabletotakewithoutgivingback,whetherthisisfromtheland,thewaterwaysor otherpeople.Thekākahishellwasalsoratherusefulasapotatopeeler(TeWheturereGray pers.comm.2007).

12 DECLINEOFAQUATICSPECIESIN WHANGANUI InWhanganui,itwastheiwiwhofirstnoticedanddrewattentiontodeclineoflocal aquaticspecies(PlanningTribunal1990,Firmin1994).KāingaontheWhanganuifollow theriverlikearibbonandWhanganuiiwidependedonthewatersforsurvival(Waitangi Tribunal1999).Theriverwasthelifebloodofourpeople,ourancestor.Inthewordsof oneofourkuia,theriverwasatonceawatersupply,afoodbasket,abaptismalfont,a placeofcleansingandahighway(W.Tekipers.comm.2007).Apartfromseasonaltripsto fishinggroundsatthe,kāingadependedonfoodfoundintheriversuchpiharau (Geotriaaustralis ),aWhanganuidelicacy,tuna( A.australis and A.dieffenbachii ),ngaore (Galaxiasmaculatus andother Galaxiasspp .),kōura( planifrons ),and,ofcourse, thekākahi(WaitangiTribunal1999). ThearrivalofEuropeansobviouslybroughtmanychanges,bothinlifestyleandin diet.Anumberoftraditionalfoods,includingkākahi,droppedoutofthediet.Somemight saythiswasmerelyabyproductofurbanisationandchangingpalates:thecoastand kaimoanabecamefarmoreaccessible,thesupermarketwaseasiertogettothantheriver, andmarinemusselsweretastierthanfreshwaterones.Somekaumātua,however,contend thatthechangeindietresultednotfromdifferencesinlifestyle,butfromagrowing scarcityoftraditionalfoodsavailableintheriver(WaitangiTribunal1999,Environment Court2004).Wearelosingthekaithatsustainedus.

DECLINEOFTHEKĀKAHI KākahideclinewasformallynotedbyWhanganuiiwiwithintheEuropeanlegalsystem almosttwodecadesagowhen,in198990,submissionsregardingminimumflowswere givenataPlanningTribunalhearing(PlanningTribunal1990).Aspartofthishearing,a groupofscientistscontractedbyElectricorp(theElectricityCorporationofNewZealand) spentfivedayscombingtheriverlookingforkākahi,butfoundnone(Firmin1994).In frustration,theycontactedPhilFirmin,aniwifishermannotedforhisskillsinboth traditionalandmodernmethods.Firminmanagedtolocatethreespecimensforthem,and thenlateranothertwo(Firmin1994).PhilFirmincommentedonthedecline,sayingthat wheretherewereonceextensivekākahibedsnearhishome,thekākahihadnow disappeared(Firmin1994).Likewisetheiwiagainexpressedconcernforthekākahiwhen theWhanganuiRiverClaim(Wai167)washeardbytheWaitangiTribunalinthe1990s (WaitangiTribunal1999),andmorerecentlywhensubmissionsonminimumflowswere takentotheEnvironmentCourt(2004).

13 TalkofkākahideclinewasacommonthemeindiscussionsIhadwithkaumātua andriverusers,withmostpeopleinterviewednotingaseverelossofkākahipopulations. Manyonceabundantpopulationsarenoweitherextirpated,orverylowinnumbers(K. Amohia,T.Ranginui,W.WiariSouthenpers.comm.2008,E.Mahu,B.Potaka,C. Osborne,P.PotakaOsborne,W.PotakaOsborne,M.Potaka,T.W.Gray,G.andP. Waretinipers.comm.2007).BenPotakaandCharlieOsbornetellastoryofonce collectinganentirecanoeloadfromabedinordertostartanewbedclosertotheirhouse. Theywantedanearbypopulationsotheywouldnothavetopaddleasfartogetakai(pers. comm.2007).Thatsamesourcesitecannotnowprovideenoughkākahitohalffilla bucket,letaloneacanoe.TerrenceRanginuisaystheyusedtofillupabucketinhalfan hourathislocalbeds(pers.comm.2008);nowittakesoveranhourtofindjust10. GeorgeWaretinipointsoutthatkākahiwereonlyeverfoundin“pockets”alongtheriver, butthateventhesehavegonenow(pers.comm,2007). Kaumātuacontendtheriverhaslostitsabilitytosustaintheiwiandtosupportthe kākahi.Asapeopleconnectedtoourawaanditsbiota,thislossaffectsnotonlythe kākahi,butourveryselves.NikoTangaroa(senior)pointedoutthat,“Theriverandthe landanditspeopleareinseparable.Andsoifoneisaffected,theotherisaffectedalso,” (WaitangiTribunal1999).WaiWiariSouthencommentsfurtherthatthehealthofthe kākahishowsthehealthoftheriverandthehealthofthepeople,andthehealthofthe peopleshowsthehealthofthekākahi(pers.comm.2008).Thisviewofthehealthofthe peoplebeingconnectedtothewellbeingoftheenvironmentisnotuniquetoWhanganui– itisaviewedsharedbyMāoriaroundthecountry(Durie2004). Timingofthedecline GeorgeWaretinistatesthatdeclineinkākahinumbersbeganinthe1950s(pers.comm. 2007).Thisisinagreementwithreportsfromotherkaumātuaontheriver,mostofwhom statethatinthe1940skākahiwerestillabundant.Exacttimingofwhendeclineinkākahi numbersbeganisdifficulttoascertain–kākahicanliveforover50years(Grimmond 1968)andareslowgrowing,likemostunionids(Sethietal.2004).Declineinunionids throughsteadyadultdieoffsandfailuretoreproducemaynotbenoticedforlongperiods (Sethietal.2004).Lossesinkākahipopulationsarelikelytohavebegunsomeyearsbefore thefullextentbecameapparent. Possiblefactorsindecline Kaumātuaindentifiedanumberoffactorspossiblyinfluencingkākahidecline.Mostof thesefactorswereascertainedthroughobservingchangesintheriverwithintheirlifetimes.

14 Landclearance,siltationandtemperature EarlyEuropeansettlementbroughtwithitanethicofconverting‘unproductive’landinto greenpastures(Park1995),andWhanganuiwasbynomeansimmune.Aslandpassedinto Pākehāhandsandtheriverwasopenedup,moreandmoreforestwasturnedtofarmland (Young1998).Theriverbecameunpredictable:lackofbushcovermeantlowerlevelsin dryperiodsandrapidfloodingwhenitrained(Young1998).Theeffectsarestillnotedby riveruserstoday,whosaythewatersrisewithoutwarning,quicklyfoulwithsilt,andtake weekstoclear. FurtherbushclearancecamewiththeallocationoflandtoreturnedWorldWarI andIIsoldiersthroughthegovernment’s‘rehabilitationscheme’(McLintock1966,Bates 1994).Whanganui’ssteephillcountryiscomprisedofhighlyerodiblesoftpapastone;soil lossofftheselandsisapproximatelytentimeshigherfromclearedpastoralareasthanin forestedlands(Phillips2001).GeorgeWaretininoticedtheriverbegantosiltupcoinciding withmorelandbeingclearedforfarmingthroughtherehabilitationscheme(pers.comm. 2007).Inrainyconditionsnowadays,manysidestreamsandtributariesrunbrownwithsilt. “Theonlywatercomingintotheriver,”saysCharlieOsborne,“isthemuddystufffrom thefarmsupinthesubsidiaries”(pers.comm.2007). ConsequentlytheWhanganuinowcarriesfarmoresiltthanitdidinpreEuropean times.In1881,theriverwasdescribedbyEuropeansasa“paradiseforsalmonandtrout” with“gravellyreachesinterspersedwithrapidsanddeepdarkpools”(Young1998).One kuiastatedthatwhenshewasachild,Pūtikihadasubstrateoflargestonesandthat“you couldn’tpossiblygodowntheriverandbeuptoyourkneesinsilt,”(Young1998).Now, thisareaiscoveredwithalayerofmudkneedeep,asthisphotographofonelocaliwi memberaptlyillustrates(Fig.2).Thisvastincreaseinsiltlevelmayhavecontributedto kākahidecline.CharlieOsbornestateshishypothesisthatsuchsilt“wouldhavechoked [kākahi]”(pers.comm.2007). ClearingthelandalsoremovedshadecoverfromstreamsintheWhanganuiarea, leadingtohigherwatertemperatures.InJanuary2008,temperaturesinthemainstemofthe WhanganuiRiverroseabove24ºCformorethanaweekrunning(datasuppliedby HorizonsRegionalCouncil).Duringthistimeiwiandotherriverusersobservedanumber ofandfishdeaths,anditislikelythesedeathsaretemperaturerelated(iwiobservation, K.McArthur,N.Peetpers.comm.2008).

15 Fig.2.IwimemberandriveruserMikePoakneedeepinmudnearPūtiki.

16 Generalwaterqualityhasalsobeenaffectedwiththeadventoffarminginthe region.TeWheturereGraydiscussesthechangestotheriver: Whenwewereyoungandinourprime,weusedtodrinkthewaterfromtheriverjust anytime.Nowwe’regettingoldandgreywedarenoteatit,drinkitatallanyday.[…] Now,onewouldn’twanttodrinkitatall.It’sbadenoughswimminginit.Butdrinking,no no.Youcan’tdoitanymore.Atonetime,whenwewereshortofwateratourhouses, we’dgodownwithourbigdrumsonsledgestofillupwithwaterandcomeback.We’d usethatwaterfordrinking,cooking,washing,andcleaning.Nowadayswedon’tevenuseit forcleaning.Butwe’renotgoingtogetanychangetothat,simplybecauseit’scalled ‘progress’.Farmshavebeendevelopedupriverandroundhere...there’smorerunoff fromfarms...thepollutionishuge. Waterdiversions WhanganuiiwiseetheTongariroPowerDevelopmentscheme(TPD)asaprimecauseof kākahidecline(B.Potakapers.comm.2007),andhavelongnoteditsnegative environmentalimpactsontheriver(egPlanningTribunal1990,Firmin1994).Onesection oftheTPD,theWesternDiversion,takeswaterfromtheWhanganuiheadwatersandits tributaries,theWhakapapa,Okupata,Taurewa,TawhitikuriandMangatepopo(Chapple 1987,GenesisPowerLimited2000). Thediversionsledtodirectkākahimortalities.KākahibedsatPaetawawereonce over100mlong.However,theywereonlyabout18incheswide,indicatingthatnatural kākahihabitatintheareawaslimitedtoathinstrip.Afterthediversions,waterlevelinthe areadroppedabout6inches(observationbylocalkaumātuaM.PotakanotedinWaitangi Tribunal1999).Thedropwasenoughtoexposethisentirestrip,removinghabitatinthe area,anddesiccatingkākahi.SaysMikePotaka,“Thatmudgotlefthighanddry,”(pers. comm.2007)and“thekākahihavedriedoutanddied,”(EnvironmentCourt2004).Kuia JulieRanginuidescribesotherpartsoftheriver:“Thebedsarehighanddry,andholesin thebanksoftheriver,oncehomeforkākahi,arenowexposedforlongperiodsand containnothingbutemptyshells,”(Ranginui1990). Whilekākahiarehighlymotileandcanmovetowardswaterwhenlevelsdrop, reachingthewaterrequiresanobstaclefreepath.KākahiintheWhanganuiareoften foundamongstlogjams(personalobservation)–thechancesofbecomingstrandedaftera suddendropinwaterlevelareratherhigh.Dewateringoverseashascausedmussellosses of95%(Sethietal.2004).AlthoughexactnumbersofkākahimortalitiesatPaetawaarenot known,kaumātuaaccountsindicatealmostacompletelossofthepopulationthereafter theareawasdewateredbycommissioningoftheTPD.

17 IwinotedanincreaseinfinesiltloadundertheTPD.AsTeWheturereGrayputs it,“it’sallmuddiedup”(pers.comm.2007).Oneriveruserdiscussedhowthereduced flowlefttheriverwithlesscapacitytoflushthesiltoutofitssystem.TeWheturereGray concurs:“ourriverjustleavessiltlyingaround.Itdoesn’tleavesandslyingaround,”(pers. comm.2007).Indeed,theWesternDiversionoftheTPDdiverts25,900m 3ofsediment awayfromtheWhanganuieveryyear(GenesisPowerLimited2000).Mostofthisdiverted matteriscoarsesediment,whichsettlesinLakeTeWhaiauandOtamangākauCanal.Some ofthefinersedimentswhichdonotsettleoutinLakeTeWhaiaucarryonthroughtothe WhanganuiRiver(GenesisPowerLimited2000),resultinginadisproportionateamountof finestocoarsesedimententeringtheWhanganuithanwouldbethecaseinnatural conditions. RiverusersalsobelievethatfluctuationinflowfromactivityintheTPDresultsin destabilisedbanks,whichinturnexacerbatesproblemswithsilt,aslargechunksof sedimentarewashedfrombanksandtransporteddownstream: Ialwaysbelievedthatwhentheyreleasedthewaterfromthedam,[that]helpedtoloosen thebanks,becausetheygougedallthebanksfromwayuptheriverrightdowntohere.[I]t wasnoticeablethatallthebankswerecleanedrightout(P.PotakaOsbornepers.comm. 2007). Freshwatermusselsoftenonlyhavelimitedavailablehabitatinrivers,asthey generallyrequirelowflowvelocityandstablesubstrate(Moralesetal.2006).The destabilisedbanksmayhavecontributedtolossinkākahipopulations.Downstream kaumātuahavelinkedkākahisurvivaltobankstability,statingthatthefewkākahileftin theirareaonlyremainedwherethebankswereheldtogetherbywillows.PetePotaka Osbornecontinues:“therootsofthetreeshelpedtoholdthesoilthathelpedtoretainthe kākahiinthere,inthebeds.” Sewageandpollution From1956,townshipdepositedmunicipalsewageintotheWhanganuiRiver, andfrom1993onwardsithasdischargedtertiarytreatedeffluentintotheriver.Similarly, formanyyearsWhanganuitownshipdischargeditssewagestraightintotheWhanganui River.PikiWaretiniidentifiedpollutionasoneofthepotentialfactorsleadingtokākahi decline(pers.comm.2007),asdidotherkaumātua(EnvironmentCourt2004).Shealso notedothersourcesofpollution,suchasmeatworksdischargeandrunofffromfarms, andsawtheseascontributingtokākahidecline,andageneraldropinthehealthofthe river.Hercommentsweresupportedbyotherkaumātuawhopresentedevidencetoboth theWaitangiTribunal(1999)andtheEnvironmentCourt(2004),withoneofourkuia

18 commentingthatthedischargeofsewagemeansthatourriver“looksdead”–“there’s beenadeteriorationintheriver.Itsspiritisdying,”(D.MetekingiinWaitangiTribunal WaitangiTribunal1999). Channelmodification InlowerWhanganui,withinthetownshipitself,channelmodificationmayalsohave affectedkākahi(P.Waretinipers.comm.2007).Stopbanksandfloodprotectionwork meansomebanksintheareaareconcretedandchannelised.Thiscanmakelifedifficultfor aburrowingshellfish. Gravelextraction Likemanyrivers,theWhanganuihasbeenusedasasourceofgravel(WaitangiTribunal 1999).WaiWiariSouthennotedgravelextractionasafurtherimpactonkākahiinthe Whanganuiarea(pers.comm.2008).Metalextractionalterschannelmorphologyandflow, reducesstabilityandcoarsensthebed(Kondolf1994).Foraburrowingspecieslikethe kākahi,bedcoarseningreducesavailablehabitatinthearea.Atoneparticularareaonthe Whanganuisubjecttometalextraction,thesiteofthepreviouskākahibedisnowpapa rock,withnosuitablesubstrateforkākahitoburrowinto(pers.obs.onsitewithW.Wiari Southen,2008).KākahiintheWhanganuihavebeencaughtupintheextractedmaterial andremovedtoland,leadingtodirectmortalitiesandmachineryenteringtheriverhas addedpollutantstothearea(W.WiariSouthenpers.comm.2008). Pesticides,herbicides,andfarmsprays WaiWiariSouthenexpressedaparticularconcernaboutsprays,dipsandtoxicchemicals whichwerepartofeverydayuseonfarmsinAotearoaNewZealandinthepast(pers. comm.2008,Boul1995),mostnotablyDDTand2.4.5.T.Sheconsiderssuchsubstancesto havehadthegreatestimpactonkākahiintheriver.Shetellsastoryofoneparticular stationwherethedipstructurewasbuiltdirectlyoveratributarycreektotheWhanganui, andallexcessdipwentdirectlyintothewater. TeWheturereGrayconcurs: “Alltheotherkindsofpollutionfromfertiliserandchemicalsusedtosprayplantsand pasturesandtoinjectandallthosesortsofthingsjustaddstopollutionofthe river.OnedaytheWhanganuiRiverwillbeasdeadasanyotherofthoseNorthAmerican riverswherethey’vejustpollutedeverydarnthing.” Overall,kaumātuahaveidentifiedanumberoffactorsthatmayhavecontributedtokākahi declineintheWhanganuiRiver.Landclearancehasincreasedtotalparticulatematterinthe river.TheTPDhasmodifiedflows,habitatandbankstability,andpossiblyexacerbatesthe finesedimentload,whilesomebedsweredesiccatedatitscommissioning.Thewaterhas

19 beenpollutedwithhumansewage,farmrunoffandchemicals,andsomebedshavebeen affectedbygravelextraction,withdirectmortalitiesfromdesiccationresulting.

KĀKAHI ,WHAKAPAPAANDECOLOGICALVALUES WithintheMāoriworld,whakapapaactsasadefiningmechanism.Itclassifiesthe relationalplaceofanobject,organismorpersonintheworld.Māoridefinitionsoffamily groupsandgenuscanbefoundwithinwhakapapa;whakapapaisournomenclature (Williams2001,HaamiandRoberts2002).Itprovidesinformationintotheecological connectionsweobservewithintheenvironment. Itisdifficulttofindinformationonthewhakapapaofthekākahi;manyofthose whopossessedithavepassedon,takingitwiththem.Best(1982,1986)recordstheMāori nomenclatureofshellfishingeneral,butdoesnotdifferentiatebetweenfreshwaterand marinemussels.InoneversionrecordedbyBest,themusselfamilyaretheoffspringof Kaukau(thepersonificationofswimming)andTeRōpūwai(thegatheringofwaters)(Best 1986).Hinemoana(theocean)gavebirthtoshellfishingeneral(Best1982)anditseems Hinemoana’sdescendantHungaterewaiproducedvariousunivalves,somewhelksand limpets,andoysters,whileTeArawaruandKaumaihiweretheprogenitorsofthepipi (cockle)family. Best(1982,1986)doesnotgivethefullwhakapapaofKaukauandTeRōpūwaiand howtheyconnecttoHinemoana,butdoesilluminatethewhakapapaofrocks,gravel, sandandseaweed(Fig.3).Theconnectioninwhakapapabetweenrocks,gravel,sand, seaweedandmusselscomesthroughastoryoffosteringandcare.Hinemoanaproduced seaweedinallitsforms(Wharerimu).ShethentookWharerimuandplacedthisfamilywith RakahoreandTuamatua(personificationsofrockandstones).Shedidthissothather offspring,themusselfamily,mighthaveshelterandprotectionamongstboththeseaweed andtherocks.ThemusselswerealsosaidtobeplacedtheretobecompanionsforHine tūākiri(gravel)andHineone(sand).Soweseethatwhakapapaprovidesinformationon thehabitatneedsofmusselsandshellfish,andtheinterconnectionsbetweendifferent elementsintheenvironment. Whakapapaalsoremindsusofourownhumanconnectionstootherspecies.While Māoriideasandbeliefsareasdiverseasthosefoundwithinanysociety,andthereisno suchthingas‘aMāoriworldview’(Durie1995),therearemanyMāoriwhobelievethat

20 Hine tupari maunga(hills,rangesandmountains) =Tāne matua

Takaaho=TePutoto Tuamatua Parawhenuamea =Kiwa (originatorofwater)(guardianofthe ocean)

Tuarangaranga Tū te āhuru=HinePeke Takoto wai= Hinemoana =Kiwa (theocean) (guardianofthe ocean) taniwha lizardsandinsects Wharerimu (seaweed)

Hine māukuuku = Rakahore = Hi ne waip ipi = Makatiti Makatata=Hinewai Rangahua=Tūmaunga

stones,rock rocksand HineoneHinetuakirikiri stones HinetuahoangaHinekiritarataraHinemaheni reefsinocean (sand) (gravel) (sandstone)

Fig.3.Thewhakapapaofrocks,seaweed,gravelandsand,theguardiansandcompanionsofmussels.Namesdiscussedinthetextareinbold.AdaptedfromBest(1982,1986). =denotesmarriageorunion. 21 whakapapashowsthathumansarenotonlyintimatelyrelatedtocreaturesandfeaturesof thenaturalworld,butthatwearetheirteina,oryoungersiblings.Theconceptofteinaand tuakana(oldersibling)relationshipsdenotesthatteinahaveadutytorespecttheirtuakana, andthattuakanahaveaformofprimacy(aswellascareandresponsibility)overtheirteina (Mead2003).Withintheseconceptsofconnectionandrelationshipbetweenhumansand theworld,therearealsoconnectionsbetweenallspecies(includinghumans)andatua,or gods,whohadbotharoleincreationandanongoingroleinensuringthesafetyand protectionoftheiroffspring. TheresultisthatmanyMāoriviewtheworldaroundthemdifferentlyfromhow manyWesterners,andparticularlyWesternsciencepractitioners,viewtheworld.Tomany Māori,humansareneitherthepinnacleofcreationnortheultimateinevolutionary success;wearenotheretodominateovernature(Durie2004).Ratherweareoneofmany entities,animateandinanimate,thatareinterconnected(EnvironmentCourt2004).Wedo nothavearighttotakemorethanweneed,tokillwithoutgivingthankstotheatuawhose offspringweareharvesting,ortodisrespectourtuakanainanyway(seeforexamplethe famousstoryofRata,recordedinAlpers1996).Ifanyplantmatteristobetaken,respect andacknowledgmentmustbegiventotheappropriateatua,oftenTāne,Rongo,Maruor Haumietiketike.Likewiseforaquaticspecies,permissionfromTangaroamustbesought beforefishingorcollectionbegins. ThiscanbechallengingforthosewalkinginboththeWesternscientificandthe Māoriworlds.Holdingontothevaluesourkaumātuateachwhiledesigningexperimentsis notalwayseasy.AttimesitmeansstandardWesternmethodsarenotanoptionforus.An exampleofthiscanbefoundinmyownwork.ThequestionsIexploreinlaterchapters includetheeffectofsedimentonkākahi,andthestatusofkākahiintheWhanganuiRiver. AsIdidnotbelieveitethicaltosacrificeantosatisfyaquestforknowledge, standarddeterminationsofconditionsuchastheratioofashfreedryweighttoshell weightwereoutofthequestionforme,asweretestsforlethalconcentrationsofsediment. Irestrictedmymethodstothosethatfittedwithinthevaluesofrespectforour whanaunga.Ibelieveholdingontothesevalueswill,inthefuture,challengeandmotivate ustodevelopnewmethodswhichallowsciencetobepracticedinlinewithMāoriethics, suchasmoreprecisewaysofmeasuringwetweight,orusingbehaviouralresponsesand choiceexperimentstomeasureeffectsofdepositedsediment. However,notallWesternsciencepractitionersutiliseinvasiveorsacrificial methods(seeforexampleRodlandetal.2006)andthereisastrongmovewithinWestern

22 scienceforethicalparadigms(egFarnsworthandRosovsky1993,Rolston2000,Mather andAnderson2007).Similarly,Māoriinturnhavehadanadverseeffectonthe environmentinAotearoaNewZealand(HaradaandGlasby2000).AndnoteveryMāori believesthereisarelationaldutyforhumanstorespectotherspecies.Nevertheless,ata fundamentalvalueslevel,itremainsthatthereareconceptsofconnection,careandrespect containedwithintraditionalMāoriknowledgewhich,ifheeded,couldprovideWestern culturewithamuchneededpathtorestoringournaturalworldtohealth.

VALUESAROUNDWATERANDTHERIVER OnemajorideawithinMāoritikangaistheconceptthatthedeadgathertogetherandthe livinggathertogether.Thisisreflectedintheoftenheardphrase:“Āpitihono,tātaihono rātoutehungamatekiarātou.Āpitihono,tātaihonotātoutehungaorakiatātouanō.” Literallythistranslatesas:“Maythosewhohavepassedongathertothemselves.Letus wholivegathertoourselves.”ItillustratesoneofthemaintenetsofkawaMāori:that everythingtodowithdeathremainsintheareadesignatedforthedead,andthatthingsin thelivingworldaretobekeptseparate,andinthelivingrealm.Thisincludesmattresses andlinenthatareusedattangihanga;oftenmaraehaveaseparatesetofthesetobeused forthetūpāpaku(corpse)andthesearenotsleptonbytheliving.Food,belonginginthe livingrealm,isnoteatennearthetūpāpaku.Uponleavingthetūpāpaku,waterisutilisedto cleanseoneselftoallowtheshiftfromthetapuareaofthedeadtothenoaareaofthe living. Water,then,isconsideredtobeintherealmoftheliving.ForMāori,theideaof discharginganythingtodowithdeath,orbodilywastes,towaterisabhorrent(Waitangi Tribunal1999).TheWhanganuiRiverparticularlyhasstrongnotionsoflifeattachedtoit. Thiscanbeviewedinthestatementsusedabouttheriverinourwaiata,karangaand whaikōrero,forexampletheseexcerptsfromawaiatabyMorvinSimon: “tewaikaukau ourbathingwaters hepunaroimatatapu… awellspringoftears hewaiū,waioranui” awaterofsustenance,awaterofmuchlife. TheWhanganuiisalsoconsideredabeinginitself,andassuchhasalifeessenceof itsown.Inwaiata,karangaandwhaikōrero,theawaisoftenaddressedinthefirstperson, forexample,“ihaeremairākoeirungaiTongariro”(youcamedownfromTongariro),or asalivingbeing,asinteawatupua,theancestralriver.Whanganuiiwispeakoftalkingto ourriver,notaboutit,andverymuchhaveasenseofitbeingalive,ofitbeingpartofus.

23 Bodilydischargesare,ontheotherhand,consideredtobedeadmatterand thereforepartoftherealmofthedead.Theideaofdischargingthesewastesintoaliving forcesuchastherivergoesagainsttheveryfundamentalsofMāoritikanga.WaiWiari Southensummeditupbysaying,“Theriverisalive.Youkeepthelivingstuffwiththe livingandthatdeadstuffstayswiththedead.Youdon’tputitintothelivingriver,”(pers. comm.2008). Furthermore,theriverisamahingakai,aplacetogatherfood.Bothonlandandin thewater,thereareconceptsthatprotectmahingakaifromcontamination.Forexample,a menstruatingwomanisconsideredtapuandisrestrictedfromenteringmahingakaiin ordertosafeguardboththefoodandherstateoftapu.Theideaofdischargingbodily wastestotheriveralsoviolatestheprinciplessafeguardingourmahingakai. SewagedischargesandfarmrunofftotheWhanganuihavemeantthatformany yearstheriverhashadproblemswithbacterialcontamination(Phillips2001).Whilemajor pointsourcedischargesofrawhumanwastehaveceased,faecalmatterfromstockstill enterstheriverthroughfarmrunoff(Phillips2001),asdodischargesfromseptictanks andtertiarytreatedhumanwastes(Ausseiletal.2005,HorizonsRegionalCouncillistof resourceconsents2008).Suchcontaminationhasledtoadegradedwaterwayonallfronts –fromculturalandamenityvaluestolifesupportingability–andthreatenstheriverand itscommunities,bothhumanandnonhuman. Māoriculturalvaluesaroundtheneedtokeepwatercleanandprotectedfrom degradingsubstancessuchashumandischargeshaveoftenbeenwrittenoffanddismissed asunimportantortooetherealwhenconsideringmanagementdecisions.Yetsuchvalues couldhaveoffered,andindeeddostilloffer,analternativerouteforthosemaking decisionsaboutresourceuseandhowtodisposeofhumanproducedwaste.Perhaps heedingsuchvaluescouldhavepreventeddifficult,lengthy,andcostlyrestoration measuresnowbeingundertakeninmanywaterways.

INTERCONNECTEDNESSOFLANDANDWATER Asdifferentaspectsoftheenvironmentareconnectedbywhakapapa,solandandwater areconnected.Thisisepitomisedinthewhakataukī,“EkoreaParawhenuaehaere,kite koreaRakahore,”whichcanbetranslatedas“Parawhenua(water)wouldnotflowifit werenotforRakahore(rock),”(MeadandGrove2003).ForWhanganui,thisismanifestin howweviewtheriver–itisnotaseparateentityfromthelandaroundit,orthepeople whobelongtoit(WaitangiTribunal1999).Whathappenstothelandaffectstheriver,and whathappenstotheriveraffectstheland,anditspeople.

24 ThisideaisnotuniquetoWhanganuiandcanbefoundinotherindigenous cultures(Burger1990,Berkes1999,Johansen2003,Durie2004),aswellasinWestern literatureonlandscapeecology,integratedcatchmentmanagement,deepecology,andland ethics(egNavehandLieberman1984,Sessions1995,Forbesetal.1999,Manceetal.2002, PayneandNewman2005,DiadovskiandAtanassova2007,Warner2007).However,itisa centraltenetofWhanganuibeliefs,andformstheimpetusforrestorationefforts–weneed torestoretherivernotjustforthesakeofabetteraesthetic,orsaferswimmingholes,or cleanerstockwater,butbecauseitaffectsourlands,ourhealth,ourselves,becauseitisour veryself.

IMPORTANCEOFRESTORINGKĀKAHIINORDERTORESTORETHERIVER Iniwiterms,thehealthoftheriverislinkedtoitsbiota(WaitangiTribunal1999,W.Wiari Southenpers.comm.2008).RestoringthekākahitoabundanceintheWhanganuiRiver stemsfromawiderdesiretorestoretheriver(WhanganuiRiverMāoriTrustBoard2002). Furthermore,kaumātuafromPungarehubelieveitisimportanttorestorekākahitothe riverasafoodsourceforeels.Eelshavebecomescarceontheriver(WaitangiTribunal 1999);whānauatPungarehuarecurrentlydevelopingmethodsofrestockingtheriverwith eels,andbelievethereturnofkākahitobeimportanttothesuccessofthisproject(M. Potakapers.comm.2007).

SUMMARY Kaumātuahavenoticedadeclineinkākahinumbersinthepastcentury,andhaveoffered ideasastowhatmayhavecontributedtothisdecline,basedonobservationsofthe WhanganuiRiverintheirownlifetimes.Thesefactorsinclude:reducedflow,desiccation, increasedsedimentation,domesticandagriculturalpollution,gravelextractionandchannel modification.Restoringkākahitoabundanceinthecatchmentisseenasanecessarypartof theoverallrestorationoftheriver,askākahihealthislinkedtobothriverhealth,and humanhealth.Māorivaluesregardingfreshwaterandtherelatednessofallthingsthrough whakapapaofferanalternativeframeworkofrespectandinterconnectednesstoWestern sciencepractitionersandresourcemanagers.

REFERENCES Alpers,A.1996.Maorimythsandtriballegends.Secondedition.AddisonWesleyLongman NewZealandLimited.

25 Ausseil,O.,H.Barnett,A.Beveridge,L.Fung,B.Gilliland,F.Gordon,H.Janssen,C. McCarron,J.Roygard,M.Todd,andH.Zarour.2005.Stateoftheenvironment reportoftheManawatuWanganuiregion2005.HorizonsRegionalCouncil, PalmerstonNorth. Bates,A.P.1994.TheWhanganuiRivertoday...Apersonalphotographicjourney. FootprintsPress,Wanganui. Berkes,F.1999.Sacredecology:traditionalecologicalknowledgeandresource management.Taylor&Francis,Philadelphia. Berkes,F.,J.Colding,andC.Folke.2000.Rediscoveryoftraditionalecologicalknowledge asadaptivemanagement.EcologicalApplications 10 :12511262. Best,E.1982.Maorireligionandmythology:beinganaccountofthecosmology, anthropogeny,religiousbeliefsandrites,andfolkloreoftheMaorifolkof NewZealandPart2.GovernmentPrinter,Wellington. Best,E.1986.FishingmethodsanddevicesoftheMaori.GovernmentPrinter,Wellington. Boul,H.L.1995.DDTresiduesintheenvironment–areviewwithaNewZealand perspective.NewZealandJournalofAgriculturalResearch 38 :257277. Burger,J.1990.TheGaiaatlasoffirstpeoples:afuturefortheindigenousworld.Gaia BooksLtd,London. Chapple,K.1987.TherapeoftheWhanganuiRiver.C&SPublications,Taumarunui. Cruikshank,J.2001.Glaciersandclimatechange:perspectivesfromoraltradition.Arctic 54 :377393. Diadovski,I.K.,andM.P.Atanassova.2007.Waterqualitymanagementbasedonthe integralapproach.ChemicalandBiochemicalEngineeringQuarterly 21 :189194. Drew,J.A.2005.Useoftraditionalecologicalknowledgeinmarineconservation. ConservationBiology 19 :12861293. Dudgeon,R.,andF.Berkes.2003.Localunderstandingsoftheland:traditionalecological knowledgeandindigenousknowledge.Pages7596 in H.Selin,editor.Nature acrosscultures:viewsofnatureandtheenvironmentinnonWesterncultures. KluwerAcademicPublishers,GreatBritain. Durie,M.1995.NgāmatatiniMāori:diverseMāorirealities.Thewānangapūrongo kōrerorero:Māorihealthframeworkseminar,TūrangawaewaeMarae,Ngāruawahia. Durie,M.2004.Understandinghealthandillness:researchattheinterfacebetweenscience andindigenousknowledge.InternationlJournalofEpidemiology 33 :11381143.

26 Dutfield,G.2000.Thepublicandprivatedomains–intellectualpropertyrightsin traditionalknowledge.ScienceCommunication 21 :274295. EnvironmentCourt.2004.NgatiRangiTrust(RMA874/01),TamahakiIncSociety(RMA 875/01),WhanganuiRiverMaoriTrustBoard,HinengakauDevelopmentTrust, NgatiHikairoHapuForum,NgatiTamaoNgatiHauaTrust,PungarehuMarae IncorporatedSocietyonbehalfofNgatiTueraHapuandNgatiRangiTrust(RMA 877/01)AppellentsvTheManawatuWanganuiRegionalCouncilRespondentand GenesisPowerLimitedApplicant.Decisionno:A067/2004.EnvironmentCourt. Farnsworth,E.J.,andJ.Rosovsky.1993.Theethicsofecologicalfieldexperimentation. ConservationBiology 7:463472. Firmin,P.1994.Oralarchives.WhanganuiRegionalMuseum,Whanganui Forbes,P.,A.A.Forbes,andH.Whybrow,editors.1999.Ourland,ourselves:readingson peopleandplace.Secondedition.TheTrustforPublicLand,SanFrancisco. GenesisPowerLimited.2000.TongariroPowerDevelopment:resourceconsent applicationsandassessmentofenvironmentaleffects.GenesisPowerLimited. Gilchrist,G.,M.Mallory,andF.Merkel.2005.Canlocalecologicalknowledgecontribute towildlifemanagement?Casestudiesofmigratorybirds.EcologyandSociety 10 :20. Grimmond,N.M.1968.Observationsongrowthandagein Hyridellamenziesi (, Bivalva)inafreshwatertidallake.UnpublishedMasterofSciencethesis,University ofOtago,Dunedin. Haami,B.,andM.Roberts.2002.Genealogyas.InternationalSocialScience Journal 54 :403412. Harada,K.,andG.P.Glasby.2000.HumanimpactontheenvironmentinJapanandNew Zealand:acomparison.ScienceoftheTotalEnvironment 263 :7990. Hiroa,T.R.1921.MaorifoodsuppliesofLakeRotorua,withmethodsofobtainingthem, andusagesandcustomsappertainingthereto.TransactionsoftheRoyalSocietyof NewZealand 53 :433451. Johansen,B.E.2003.Indigenouspeoplesandenvironmentalissues:anencyclopedia. GreenwoodPress,Westport,Connecticut. Kapua,T.1997.DefiningMaoriscience.Historicalreview 45 :9198. Kimmerer,R.W.2002.Weavingtraditionalecologicalknowledgeintobiologicaleducation: acalltoaction.Bioscience 52 :432438.

27 Kondolf,G.M.1994.Geomorphicandenvironmentaleffectsofinstreamgravelmining. LandscapeandUrbanPlanning 28 :225243. Mance,G.,P.J.Raven,andM.E.Bramley.2002.Integratedriverbasinmanagementin EnglandandWales:apolicyperspective.AquaticConservation:Marineand FreshwaterEcosystems 12 :339346. Mather,J.A.,andR.C.Anderson.2007.Ethicsandinvertebrates:acephalopod perspective.DiseasesofAquaticOrganisms 75 :119129. McLintock,A.H.1966.Landsettlement.in A.H.McLintock,editor.AnEncyclopaediaof NewZealand.GovernmentPrinter,Wellington. Mead,H.M.2003.TikangaMāori.HuiaPublishers,Wellington. Mead,H.M.,andN.Grove.2003.Ngāpēpehaangātīpuna.Secondedition.Victoria UniversityPress,Wellington. Morales,Y.,L.J.Weber,A.E.Mynett,andT.J.Newton.2006.Musseldynamicsmodel:a hydroinformaticstoolforanalyzingtheeffectsofdifferentstressorsonthe dynamicsoffreshwatermusselcommunities.EcologicalModelling 197 :448460. Naveh,Z.,andA.Lieberman.1984.Landscapeecology:theoryandapplication.Second edition.SpringerVerlag,NewYork. Park,G.1995.Ngāuruora(thegrovesoflife):ecologyandhistoryinaNewZealand landscape.VictoriaUniversityPress,Wellington. Parlee,B.,andM.Manseau.2005.Usingtraditionalknowledgetoadapttoecological change:DenesolinemonitoringofCariboumovements.Arctic 58 :2637. Payne,D.G.,andR.S.Newman.2005.ThePalgraveenvironmentalreader.Palgrave Macmillan,NewYork. Phillips,J.2001.Whanganuicatchmentwaterquality:astudyonclarityandmicrobiological waterqualityintheWhanganuiRiveranditstributaries.HorizonsRegional Council,PalmerstonNorth. Pierotti,R.,andD.Wildcat.2000.Traditionalecologicalknowledge:thethirdalternative (commentary).EcologicalApplications 10 :13331340. PlanningTribunal.1990.InthematteroftheWaterandSoilConservationAct1967andin thematteroftwoappealsundersection25oftheActbetweenElectricity CorporationofNewZealandLimited(Appeal781/88)andWhanganuiRiver MaoriTrustBoard(Appeal840/88)AppelantsandtheManawatuWanganui RegionalCouncil(assuccessortotheRangitikeiWanganuiCatchmentBoard) Respondent.DecisionnoW.70/90.PlanningTribunal.

28 Ranginui,J.1990."Thefishwewereabletocatchformedthemajorpartofourdiet". Pages3435WhanganuiRiverAnnual.FriendsoftheWhanganuiRiver,Wanganui. Rodland,D.L.,B.R.Schone,S.Helama,J.K.Nielsen,andS.Baier.2006.Aclockwork mollusc:ultradianrhythmsinbivalveactivityrevealedbydigitalphotography. JournalofExperimentalMarineBiologyandEcology334 :316323. Rolston,H.2000.Thelandethicattheturnofthemillennium.Biodiversityand Conservation 9:10451058. Roue,M.,andD.Nakashima.2002.Knowledgeandforesight:thepredictivecapacityof traditionalknowledgeappliedtoenvironmentalassessment.InternationalSocial ScienceJournal 54 :337347. Royal,C.1998.MātaurangaMāori:paradigmsandpolitics–apaperpresentedtothe MinistryforResearch,ScienceandTechnology,13January1998.www.charles royal.com/assets/mm,paradigms%20politics.pdf.Dateaccessed:23June2008. Royal,C.1999.HewhakaaromōtemātaurangaMāori.www.charles royal.com/assets/matauranga.pdf.Dateaccessed:23June2008. Selby,R.,andP.Moore.2006.Guardiansoftheland:aMāoricommunity'senvironmental battles.in S.H.Washington,P.C.Rosier,andH.Goodall,editors.Echoesfrom thepoisonedwell:globalmemoriesofenvironmentalinjustice.LexingtonBooks, Oxford. Sessions,G.,editor.1995.Deepecologyforthe21stcentury:readingsonthephilosophy andpracticeofthenewenvironmentalism.ShambhalaPublicationsInc.,Boston. Sethi,S.A.,A.R.Selle,M.W.Doyle,E.H.Stanley,andH.E.Kitchel.2004.Responseof unionidmusselstodamremovalinKoshkonongCreek,Wisconsin(USA). Hydrobiologia 525 :157165. Usher,P.J.2000.Traditionalecologicalknowledgeinenvironmentalassessmentand management.Arctic 53 :183193. VanOverwalle,G.2005.Protectingandsharingbiodiversityandtraditionalknowledge: holderandusertools.EcologicalEconomics 53 :585607. Waikato,T.2005.Hekaitiakimātauranga:buildingaprotectionregimeforMāori traditionalknowledge.YearbookofNewZealandjurisprudence 8:344410. WaitangiTribunal.1999.TheWhanganuiRiverReport.WaitangiTribunal,Wellington. Warner,J.,editor.2007.Multistakeholderplatformsforintegratedcatchment management.AshgatePublishingLimited,Aldershot,Hampshire.

29 WhanganuiRiverMāoriTrustBoard.2002.DraftMissionStatement.WhanganuiRiver MāoriTrustBoard. Williams,D.2001.MātaurangaMāoriandtaonga:thenatureandextentofTreatyrights heldbyiwiandhapūinindigenousforaandfauna,culturalheritageobjects,valued traditionalknowledge.WaitangiTribunal,Wellington. Young,D.1998.Wovenbywater:historiesfromtheWhanganuiRiver.HuiaPublishers, Wellington.

30 2. KĀKAHI(ECHYRIDELLAMENZIESII)INTHEWHANGANUI RIVER–GOING,GOING,GONE?

INTRODUCTION Freshwatermusselsareamongtheworld’smostthreatenedtaxa(Lydeardetal.2004).In theUnitedStates72%offreshwatermusselsarelistedasendangered,threatenedorof specialconcern(Williamsetal.1993),Europe’saquaticmolluscsaredeclining(Frankand Gerstmann2007),andspecieslosseshavebeenrecordedinplacessuchasCanadaand Australia(MetcalfeSmithetal.1998,Brainwoodetal.2006).Freshwatermusseldecline hasbeenattributedtosedimentation(BrimBoxandMossa1999),eutrophication(Baueret al.1991),exposuretotoxicmetals(Naimo1995),channelmodification(Williamsetal. 1993),introducedmolluscs(Williamsetal.1993),anddeclinenumbersofinhostfish requiredbytheparasiticlarvae,theglochidia,tometamorphoseintojuveniles(Watters 1996). ThefreshwatermusselofAotearoaNewZealand,thekākahi( Echyridellamenziesii (Gray,1843)),isthoughttobeindecline(Firmin1994,WaitangiTribunal1999,McDowall 2004),andhasbeenincludedinthe‘GradualDecline’categoryoftheDepartmentof Conservation’sThreatClassificationSystem(Hitchmoughetal.2005).Reasonsforthis declinehavenotbeenextensivelytested,butitisnotunreasonabletoassumethattheymay besimilartofactorsaffectingfreshwatermolluscsworldwide. InWhanganui,theiwihavelongexpressedconcernoverthestatusofkākahi poplations,withlocalmātaurangaevidencingapronounceddecline(chapterone,Planning Tribunal1990,Firmin1994,WaitangiTribunal1999,EnvironmentCourt2004).Kākahi wereonceabundantenoughthroughouttheWhanganuiRiverastoprovideafoodsource forlocalhapū.Now,numbersaresolowitisdifficulttolocatethem(Firmin1994,Horrox 1998,WaitangiTribunal1999,T.W.Graypers.comm.2007).Iwisuspectthatanumberof factorsmayhavecontributedtokākahideclineinWhanganui,includingalterationstoflow anddesiccationthroughtheimplementationoftheTongariroPowerDevelopmentScheme (TPD),increasederosion,bankinstabilityandsiltloadthroughlandclearanceandthe TPD,andpollutantssuchasdomesticsewage,farmrunoffandpesticides(Planning Tribunal1990,Firmin1994,WaitangiTribunal1999,EnvironmentCourt2004,M.Potaka, P.PotakaOsborne,C.Osbornepers.comm.2007,W.WiariSouthenpers.comm.2008).

31 AspartofawiderdesireforrestorationoftheWhanganuiRiver,iwiwishtosee kākahionceagainabundantandthrivingintheriveranditstributaries.Restorationrequires baselinedatasothatprogrammescanbeeffectivelydesigned.IntheWhanganuiRiver,this requiresasurveyofthecurrentstatusanddistributionofkākahi. Kākahicanliveforover50years(Grimmond1968).Aswithotherlonglived musselspecies,declinethroughsteadyadultdieoffsandfailuretoreproducemaynotbe noticedforlongperiods(Sethietal.2004).DeterminingthestatusofWhanganuikākahi willthereforeneedtoincludeassessmentsofwhetherpopulationsarerecruiting,or whetherthekākahifoundatasiteareallolderindividualsrepresentingaremnant,aging group.Conditionindicescanalsobeusedtoprovideinformationonthestatusof particularpopulations. Theaimofthisstudywastoprovideinformationoncurrentkākahistatusand distributionforuseinrestorationinitiativesbyexaminingthefollowingquestions. 1. HavekākahipopulationsdeclinedintheWhanganuiareainlivingmemory?(See belowfordefinitionsofdecline.) 2. ArekākahiinWhanganui:

 lackingrecruitment(noindividuals<30mm);and/or

 inpoorcondition(>20%ofshellareaeroded)?

METHODS

SITES Searchsiteswereareasidentifiedbykaumātuaandriverusersashavingoncesupported kākahipopulations.SearcheswerealsomadeinareaswherearchivalrecordsinTePapa Tongarewa(theMuseumofNewZealand)andotherliterature(egHorrox1998,Young 1998)notedkākahipresence. Ateachsite,habitatvariableswererecorded(Table1).Percentofriparian vegetationcoverwasassessedvisuallyandvegetationtypenoted.Channelwidthwas measuredwithameasuringtape,thetripodometeronaGarminetrexGPS,orthedistance estimatoronGoogleEarth.Flowwasdefinedasslow(nosurfaceripples,macrophytes upright),medium(somesurfacedisturbance,macrophytesatanangletoriverbed)orrapid (whitewater,periphytonflatagainstsubstrate).Avisualassessmentwasmadeofsediment particlesizeandofthepercentagecoveroffinesedimentonthesubstrate.Whensearches wereconductedbysnorkelling(seebelow),verticalvisibilitywasestimated.Macrophyte

32 presenceorabsencewasnoted.Additionally,geographicalinformationsystem(GIS)data fromHorizonRegionalCouncil’slocaladaptionoftheRiverEnvironmentClassification (REC;SnelderandBiggs2002)foreachsitewasretrievedusingthegeoprocessing extensioninARCVIEW.RelevantvariablesareincludedinTable1. IwiareconcernedthatpublishingnewdataonkākahilocationsintheWhanganui RiveropensthesepopulationsuptoexploitationbyWesternscientists.Divulgingofsite informationin19967ledtoallkākahifoundatsomesitesbeingtakenandsacrificed (Horrox1998).SomeiwisiteswereidentifiedtomeontheconditionthatInotmaketheir locationspubliclyknown.Thereforemapsandinformationonlocationsarenotprovided inthisthesis.ThosewishingtoaccesssitedatamaycontactWhanganuiiwiforpermission. DetailsonhowtodothisaregiveninAppendixOne.

SURVEYMETHODS Eachsitewassearchedbymyselfandoneofanumberoffieldassistantswhoweretrained onsite.Sitesweresearchedbysnorkellingorwadingforatleast1hourbetweenJanuary andMarch2008,whenverticalvisibilitywasupto4mandwaterlevelswerelow(mean flowatthebottomofthecatchment(41.35m 3/sec)wasequaltomeanannuallowflow (41.25m 3/sec;datasuppliedbyHorizonsRegionalCouncil)).Ameasureofcatchperunit effort(CPUE)wastaken,andisdefinedasthenumberofmusselsencounteredperperson hourofsearcheffort. TimedsearcheswerechosenforWhanganuibecauseindicationsfromiwiandan earliersurvey(Horrox1998)indicateddensitieswouldbeverylow.Whendetermining populationstructureorabundanceforfreshwatermusselbedswithdensitiesbelow0.01 perm 2,timedsearchesaremoreeffectivethanquantitativesearches(egaonehourtimed searchhasdetectionprobabilitiesof0.4,whereasa10hoursearchusing148x0.25m 2 quadratshasadetectionprobabilityof<0.05;Strayeretal.1997).

33 Table1.CharacteristicsofsitesintheWhanganuiRivercatchmentsearchedforkākahi.Listedinorderfromrivermouthgoingupstream;siteswith kākahipresentarenumbered,remainingsiteslabelledwithletters.n/a=notapplicable. Site Tributary Area Visibility Channel Flow Substrate %of Macrophytes Distance Catchment % %of %of (T)or searched (m) width description substrate present tosea rainfall riparian catchment catchment mainstem (m 2) (m) coveredby (m) (mm) coverage innative farmed (M) fine forest sediment A M 900 0.2 50 slow sand,mud, 100 no 4219 1773 10 39 39 pebbles 1 T 450 n/a 5 slow mud,sand, 95 yes 9533 1016 60 1 88 gravel 2 M 630 n/a 150 med mud,sand 100 no 10780 1786 100 39 39 slow C T 100 0.3 0.75 med sand,mud 50 yes 11534 1022 100 1 90 slow 3 M 240 0.3 120 slow mud,sand 100 yes 16306 1793 90 40 38

4 M 837 1.5 80 slow mud,sand 100 no 27230 1810 20 41 38

B T 100 0.5 1.5 med sand,mud, 30 yes 32083 1164 80 0 0 slow paparock 5 M 850 1.5 75 slow mud,logs, 100 yes 42411 1819 0 41 38 sand,papa 6 M 320 3.0 80 med clayandmud 100 yes 45458 1821 0 41 38 slow 7 M 1330 3.0 70 med logs,pebbles, 80 yes 55224 1824 20 41 38 slow sand,mud, clay,papa D M 260 2.0 65 med sand,mud 60 yes 69008 1833 30 41 39

E M 1600 1.5 70 med sand,papa, 20 no 76060 1838 50 41 39 slow pebbles F M 800 2.0 70 slow mud,sand, 100 yes 79107 1839 10 42 39 papa,logs

34 Table1(cont).CharacteristicsofsitesintheWhanganuiRivercatchmentsearchedforkākahi.Listedinorderfromrivermouthgoingupstream;sites withkākahipresentarenumbered,remainingsiteslabelledwithletters.n/a=notapplicable. Site Tributary Area Visibility Channel Flow Substrate %of Macrophytes Distance Catchment % %of %of (T)or searched (m) width description substrate present tosea rainfall riparian catchment catchment mainstem (m2) (m) coveredby (m) (mm) coverage innative farmed (M) fine forest sediment 8 M 540 1.5 110 slow mud,sand, 100 yes 83221 1842 0 42 39 rocks, pebbles,logs, papa 9 M 380 1 140 med sand,mud, 100 yes 87063 1843 80 42 39 slow pebbles,papa 10 M 1050 4 70 slow rocks, 70 yes 98122 1851 50 42 39 pebbles,mud, papa,sand 12 T 12 1 7 slow coarsesand, 80 yes 240537 1795 100 15 84 pebbles,mud, papashelves G T 600 1 1.75 slow sand,papa, 40 no 245144 1774 100 20 77 somefine mud 15 T 100 2 25 slow papa,rock, 90 no 249089 1602 40 34 47 sand,mud 11 T 20 1 5 slow rocks,sand, 50 no 268751 1793 100 3 97 mud 14 T 1040 1.5 20 slow sand,mud 80 yes 274534 1636 50 40 35

13 T 210 1 1.5 slow gravel,sand, 30 yes 285998 1921 80 45 50 mud

35 Allmusselsfoundinanareaweremeasuredwithverniercallipers(anteriorto posteriorlength),photographedandreturnedtothesite.Lengthdatawasusedtograph sizeclassdistributions(atsiteswithn≥20)andtocomparebodysizemeansbetweensites (whenn≥10).SimilaritiesbetweenpopulationstructureswerecalculatedusingBray Curtisanalysisofresemblance(ANOSIM)onthesoftwareprogrammePrimer6(Clarke andGorley2006).Nonmetricmultidimensionalscaling(MDS)wasusedtoplot populationsaccordingtosimilarity.AxisscoresfromANOSIMweretestedforlinear relationshipswithhabitatvariablesandmedianlengthusingStatistix8.1(Analytical Software2006).Medianlength(atsiteswithn≥10)wascomparedagainsthabitat variables.

DECLINE ,RECRUITMENTAND CPUE Declinewasconsideredtohaveoccurredwhenkākahihadbeenextirpatedfromasite identifiedbykaumātuaorhistoricalrecordsasoncehousingkākahibeds,orifcatchper uniteffort(CPUE;numbercaughtperhoursearching)waslessthan10.Giventhatsites searchedoncehadenoughkākahitobeconsideredasaregularfoodsourcebylocaliwi,a currentCPUEof<10isassumedtobeasufficientlyconservativeestimateofdecline,as nositewithCPUE<10couldfeasiblybeconsideredtocurrentlysupportharvestable stock. Recruitmenttoapopulationwasconsideredtobeoccurringwhenindividualsof lessthan30mminlengthwererecorded.Kākahi<30mmarelikelytobeyoungerthan twoyears,althoughtheycanbeuptofour(James1985,Payneetal.1997).Populations lackingrecruitmentandwithaCPUEoflessthan4wereconsideredtobe‘remnant’. LargeareascanbesearchedwhenCPUEislow,andgenerallyaCPUEof4wouldequate todensitieswellbelowthe10musselsperm 2requiredbysomeUnionidstofacilitate IIIIIIIVV I II III IV V Fig.1. Delineationandexamplesofshellerosioncategories.Extentofsurfaceareaaffectedby somedegreeofshellerosion:I<1%;II15%;III520%;IV2050%;V>50%.

36 reproduction(Weber2005).CPUEwasexaminedagainstchannelwidthanddistanceto thesea(Table2);comparisonswithotherhabitatvariableswerenotmadeasthe requirementfornormalitywasnotmetandstandardtransformationscouldnotbeapplied. ThedatawastestedforoutliersusingaboxandwhiskerplotusingStatistix8.1;a ‘probableoutlier’wasdefinedasbeingoutsidetheboxboundarybymorethan3timesthe boxsize.

SHELLEROSION Fromphotographstakenonsite,theleftvalveofeachkākahiwasexaminedtodetermine theamountofperiostracum(outerskin)erosion(RoperandHickey1994).Eachkākahi wasassignedtoacategorydependingonthepercentageofshellareaaffectedbysome degreeoferosion:I<1%;II15%;III520%;IV2050%;V>50%(Fig.1).Atsites wheremorethan10kākahiwerefound,medianvalueswereexaminedagainstlongitudinal position,channelwidthandmedianshelllength(Table2).Datacouldnotbeexamined againstotherhabitatvariablesastheydidnotmeettherequirementfornormality.

ASSESSMENTOFTHE ‘HEALTH ’OFAPOPULATION The‘health’ofpopulationswasassessedfollowingclassificationsdevelopedfor Margaritiferamargaritifera (Bauer1988).Populationswereassignedtooneoffourgroups: Groupone: healthy;>25%ofthepopulationarejuveniles.Kākahicanbeconsidered ‘juvenile’iftheyareyoungerthan5years,or≤38mm(RoperandHickey 1994). Grouptwo: decreasedrecruitment;≤25%ofthepopulationarejuveniles. Groupthree: recruitmentceased;populationhasnoindividuals≤38mm. Groupfour: aging;smallestspecimensare55mm(correspondstoaround8yearsor older(James1985)). CategoriesforgroupsoneandtwodifferfromthoseinBauer;histhresholdswere30% and20%respectively.Ihaveused25%becausethe30%and20%thresholdsleaveseveral populationsassignedtonoparticularcategory.Ilabelledthisassessment‘healthmethod one’(HM I).

‘H EALTH ’OFKĀKAHIINTHE WHANGANUI RIVERFROMANIWIPERSPECTIVE Iwiassess‘health’fromadifferentperspective:whethertherearesufficientnumbersof largekākahiatasitetosupplythehapūwithfood.Foriwi,thedecreasedavailabilityof kākahiisanindicationofalossoftheabilityoftherivertosustainlife(WaitangiTribunal

37 1999).Avalueindicatingsufficientsupplyoflargekākahiwascalculatedbyremovingall individualslessthan60mmfromthedatasetandrecalculatingCPUE.Apopulationwas deemed‘healthy’ifCPUEexceeded50.Withtwocollectors,thiswouldfillhalfa20L bucketinanhour,andisaboutwhatyoumightneedtofeedasmallhui.Thishasbeen labelledhealthmethodtwo(HM II ).

RESULTS

SITES ,KĀKAHILOCATEDANDCATCHPERUNITEFFORT Amixoftributaryandmainstemsitesweresearched,withchannelwidthrangingfrom 0.75150mandflowrangingfromslowtomedium(Table1).Atsomesitestherewere isolatedareasoffasterflowwhichwerealsosearched,butkākahiwereneverfoundin theseareas.Definitionofflowatasitewastakenfromareaswherekākahiwere immediatelylocated.Sitesrangedinriparianvegetationcoveragefrom0to100%andfine sedimentcoveringthesubstraterangedfrom30to100%.Kākahiwerefoundinareasof slowflow,whichgenerallyhadmorefinesediment,logsand/ormacrophytes.Kākahiwere oftenfoundintheleeoflogs,rocksorothershelter,andatonesitejuvenileswerefound nestledonthestemsofmacrophytes,ratherthaninthesediment.SiteGwasuniquein thatonlyemptyshellswerefound. Throughouttheriver,CPUErangedfrom0to93,withamediancatchof3anda meanof11(Fig.2).Catchperuniteffortincreasedwithdistancefromthesea(F 1,19 =7.48, P=0.01,r 2=0.28;Table2,Fig.2).Catchperuniteffortwasnotrelatedtochannelwidth 2 (F 1,19 =1.86,P=0.19,r = 0.89;Table2).Site11wasexcludedfromcomparisonwithsite variablesasitwasaprobableoutlier.

DECLINE ,RECRUITMENTANDREMNANTPOPULATIONS Ofthe22sitessurveyed,kākahihavedeclinedat16(73%;Table4).Ofthosesites,there were7siteswheredeclinewassoseverethatthepopulationhadbeenextirpated.Ofthe 15historicbedswherekākahiarestillextant,four(27%)wereremnantpopulations. Evidenceofrecruitment(individualsbelow30mm)wasfoundatonlyfour(27%)ofthe 15extantpopulations,or18%ofthetotalnumberofsitessearched(sites3,4,8and12).

LENGTH Sizeclassdistributions(atsiteswheren≥20)showedtwodifferingpatterns:unimodal withaskewtowardslargersizeclasses;andanevendistributionacrossarangeofsize

38 classes(Fig.3).Juveniles(<38mm)werefoundatfivesites,andatthreeofthesesites(3, 4and8)smallindividualswerefoundinequalproportiontothelargerindividuals.Ofthe siteswithmorethan20individuals,juvenileswereabsentfromthree(1,6and11). Acrossallsites,lengthrangedfrom18to101mm(Fig.3,Table5).Therangein lengthateachsiteextendedfrom23mm(site7)to62mm(site4).Rangeinlengthwas 2 notrelatedtonumberofkākahicollected(F 1,13 =0.79,P=0.39,r =0.06);site11hadthe greatestnumberfound(185),butthesecondsmallestsizerange(26mm).

100 hing)

80

60

40

20 Catchperuniteffort(numbercaughtperhoursearc

0 A 1 2 C 3 4 B 5 6 7 DE F 8 91012G15111413

Site Fig.2.Catchperuniteffort(numbercaughtperhoursearching)forkākahiatsitesalongthe WhanganuiRiver.Siteswherenokākahiwerefoundarelabelledwithletters;siteswithkākahiare numbered.Siteslistedinorderofdistancefromthesea.

39 Table2.Linearrelationshipsbetweensitevariablesandcatchperuniteffort(CPUE),medianshelllengthandmedianshellerosionextent.Site11is excludedfromanalysisofCPUEasitisanoutlier.Relationshipswithnovaluesshownfailedtomeetrequirementsfornormalityorconstantvariance. ns:notsignificant;*significantatα=0.05;**significantatα=0.01. CPUE Medianshelllength Medianshellerosionextent Significanceand F1,19 P r2 Significanceand F1,9 P r2 Significanceand F1,9 P r2 Variable relationshiptype relationshiptype relationshiptype Distancetosea(m) *positive 7.48 0.01 0.28 ns 0.19 0.68 0.02 **positive 17.26 0.00 0.66 %ofcatchmentinnativeforest ns 0.49 0.50 0.05 %ofcatchmentfarmed ns 0.42 0.53 0.05 %ofcatchmenturban ns 1.12 0.32 0.11 %ofcatchmentinexoticforest ns 0.00 0.98 0.00 Channelwidth(m) ns 1.86 0.19 0.09 ns 1.61 0.24 0.15 *inverse 5.37 0.05 0.37 %sedimentonsubstrate ns 1.45 0.26 0.14 Catchmentrainfall(mm/year) ns 0.71 0.42 0.07 Medianshelllength ns 1.60 0.24 0.15

40 0.8 Siteone Sitesix Sitetwelve n=47 n=26 n=96

0.6

0.4

0.2

0.0

0.8 Sitethree Siteeight Sitethirteen n=35 n=29 n=42 0.6

0.4

0.2 Relativeabundance

0.0 0.8 Sitefour Siteeleven Sitefifteen n=31 n=185 n=88 0.6

0.4

0.2

0.0 0 10 20 30 40 50 60 70 80 90 100110 0 10 20 30 40 50 60 70 80 90 100110 0 10 20 30 40 50 60 70 80 90 100110

Shelllength(mm) Fig.3.LengthfrequencydistributionsofkākahiatsitesintheWhanganuiRivercatchment.Dataforsiteswheren<20isnotgraphed,butis presentedinTable5.

41 Medianshelllengthwasnotrelatedtoanyvariabletested(Table2&6).Mean shelllength(Table6)differedbetweensites(testedforthe11siteswheren≥10;F 10,

591 =43.30,P<0.001).AxisscoresfromBrayCurtisanalysisofsimilaritywerenot relatedtoanyhabitatvariables,butwererelatedtomediansize(F 1,9 = 32.56 ,P< 0.00 1, r2= 0.78; Table3).PopulationsfellintotwodistinctgroupsusingBrayCurtisanalysis (R=0.95,P<0.01):thosewithamedianbelow60mmandthosewithamedian above60mm(Fig.4).

thirteen (67) 2D Stress: 0.05

twelve (51)

eight (51) fifteen (68)

four (50) seven (77) six (73)

one (71) three (56)

five (57)

eleven (73)

Fig.4.BrayCurtissimilarityforsizeclassdistributionsofkākahiatsitesintheWhanganui Riverwheren≥10;labeledbysitenumberandmediaging & stable vs recolonising anlength(inbrackets). group1 (medianbelow60mm) group2(medianabove60mm). Table3.LinearrelationshipsbetweenhabitatvariablesandaxisscoresfromBrayCurtis analysisofresemblanceoflengthclassfrequencydistributionofkākahiatsitesinthe WhanganuiRiverwheren≥10. Axis1score(xaxis) Axis2score(yaxis)

Variable F1,9 P r2 F1,9 P r2 Channelwidth(m) 1.97 0.19 0.18 0.27 0.62 0.03 Sedimentcoverageofsubstrate(%) 1.56 0.24 0.15 0.72 0.42 0.07 Distancetosea(m) 0.36 0.56 0.04 1.51 0.25 0.14 Catchmentrainfall(mm) 0.80 0.39 0.08 0.47 0.51 0.05 Ripariancoverage(%) 0.07 0.80 0.01 0.01 0.92 0.00 %catchmentnativevegetation 0.37 0.56 0.04 1.41 0.27 0.14 %catchmentfarmed 0.32 0.59 0.03 0.41 0.54 0.04 Medianlength 32.56 0.00 0.78 0.48 0.51 0.05

42 SHELLEROSION Medianshellerosionatthe11sitescontainingmorethan10kākahirangedfrom categoryI(lessthan1%oftheshellareaeroded)tocategoryIII(upto20%ofshell areaaffected;Table6).Thetwosites(11and13)exhibitingthegreatesterosionhad manyshellswithupto50%oftheirsurfaceaffectedbyerosion(categoriesIIIandIV; 2 Fig.5).Shellerosionincreasedwithdistanceupstream(F 1,9 =17.26,P<0.01,r = 2 0.66)anddecreasedwithchannelwidth(F 1,9 =5.37,P<0.05,r =0.37;Table2).Shell erosionwasnotrelatedtomedianshelllength. Table4.AbundanceandstatusofkākahiatsitesintheWhanganuiRivercatchment.Sitesare listedinorderfromtherivermouthheadingupstream. Site n CPUE Declined Recruitment Remnant Locally (CPUE<10) occurring population extirpated A 0 0 yes yes 1 47 13 no no no no 2 5 3 yes no yes no C 0 0 yes yes 3 35 8 yes yes no no 4 31 5 yes yes no no B 0 0 yes yes 5 13 4 yes no no no 6 26 11 no no no no 7 10 4 yes no no no D 0 0 yes yes E 0 0 yes yes F 0 0 yes yes 8 29 10 yes yes no no 9 1 0 yes yes no 10 2 1 yes no yes no 12 96 32 no yes no no G 0 0 yes yes 15 88 44 no no no no 11 185 93 no no no no 14 3 2 yes no yes no 13 42 21 no no no no total 22 613 16 4 4 7 % 73%(16/22) 27%(4/15) 27%(4/15) 32%(7/22)

43 HEALTHOFPOPULATIONS

UnderHM I,only2(13%)ofthekākahipopulationsencounteredcouldbeclassifiedas ‘healthy’(Table7).Four(26%)sitesevidencedreducedrecruitment(group2),whereas attheremaining9sitestherewerenojuvenilesatall.Ofthoseninesites,sixwere comprisedentirelyoflarge(aging)individuals,withnonesmallerthan55mm.Under

HM II, onlyoneofthe22sitessearched(site11)wouldnowbeconsideredhealthy fromaniwiperspective(Table7). Table5.Shelllength(mm)forsiteswheren<20. Site2 Site5 Site7 Site9 Site10 Site14 74 50 62 55 46 50 82 52 68 75 51 85 53 68 56 86 53 69 101 55 76 55 77 57 78 58 82.5 60 83 61 85 70 72 85 Table6.Medianshelllengthandshellerosionin theWhanganuiRivercatchmentatsiteswherenumberofkākahi caught(n)≥10.Meanshelllengthatsiteswheren≥20. Site n Median Mean Median shell shell erosion length length extent 1 47 71 71 1 3 35 56 56 1 4 31 50 51 1 5 13 57 1 6 26 73 73 1 7 10 77 1 8 29 51 52 1 12 96 51 52 1 15 88 68 68 2 11 185 73 73 3 13 42 67 66 3

44 100 Siteone Sitesix Sitetwelve n=47 n=26 n=96 80

60

40

20

100 Siteeight Sitethirteen Sitethree n=29 n=42 n=35 80

60

40

20

100 Siteeleven Sitefifteen Sitefour n=185 n=88 Percentageofindividualsateachsite n=31 80

60

40

20

i ii iii iv v i ii iii iv v i ii iii iv v

Shellerosioncategory Fig.5.Extentofshellerosionforsiteswheren≥20.Categoriesreflectshellareaaffectedbyerosion.I<1%;II15%;III520%;IV 2050%;V>50%.

45 Table7.HealthofkākahipopulationsintheWhanganuiRiver.HM I:Healthmethod1,HM II : Healthmethod2.Sitesarelistedinorderfromtherivermouthheadingupstream. Site n Group(HM I)a RecalculatedCPUE(all ‘Healthy’accordingtoan individuals>60mm) iwiperspective(HM II )b A0 0 no 1 47 4 13 no 2 5 4 3 no C0 0 no 3 35 2 2 no 4 31 1 2 no B0 0 no 5 13 3 2 no 6 26 3 11 no 7 10 4 5 no D0 0 no E0 0 no F0 0 no 8 29 1 4 no 9 1 4 0 no 10 2 4 1 no 12 96 2 8 no G0 0 no 15 88 2 39 no 11 185 4 92 yes 14 3 3 0 no 13 42 2 19 no aGroups:1–healthy;2–decreasedrecruitment;3–recruitmentceased;4–aging.Seemethods forfurtherdefinitionsofgroups. bSitehasCPUE≥50forindividualslargerthan60mm.

DISCUSSION

STATUSOFKĀKAHIATSITESONTHE WHANGANUI RIVER KākahihavedeclinedintheWhanganuicatchmentinlivingmemory.Declineisongoing: evidenceofrecentrecruitmentwasonlyfoundatfourof22sitessurveyed,andofthe15 populationsfound,27%wereremnantsandlikelytodisappearinthenearfuture.Veryfew populationscanbeconsideredhealthybyeitherWesternorMāorimeasures.Concerns raisedaboutkākahihealth(PlanningTribunal1990,Firmin1994,WaitangiTribunal1999, EnvironmentCourt2004,chapterone)arewelljustified. Thesefindingsareinlinewithtrendsoverseas,wherefreshwatermusselsare declininginbothabundanceandrange(Naimo1995,Lydeardetal.2004). Margaritifera margaritifera declinedinabundanceby90%inEuropelastcentury(Bauer1988),halfof NorthAmerica’s297speciesareindecline(Augspurgeretal.2003),specieslossand changeincommunitycompositiontosedimentandpollutiontolerantspecieshavebeen

46 documentedinCanada(MetcalfeSmithetal.1998),andfreshwatermusselspeciesarenow absentfrommanyhumanmodifiedareasinAustralia(Brainwoodetal.2006).

SKEWEDDISTRIBUTION –INDICATIVEOFDECLINE ? FewjuvenilesweredetectedintheWhanganui,butitisdifficulttodiscernfrompopulation structurealonewhetherthisisindicativeofdecline.Kākahijuvenilenumbersareoftenlow, andindividualsbelow20mmarerarelyfound(Grimmond1968,James1985,Roperand Hickey1994).Thesameisalsotrueforfreshwatermusselpopulationsoverseas,wheresize classdistributionsareoftenunimodal,dominatedbyonesizeclass,andskewedtotheright (Kat1982).Verysmalljuvenilesarerarelyfound,andnumbersinthesmallersizeclasses areoftenlowerthanthoseinlargersizeclasses,whetherornotaspeciesisindecline(Kat 1982,Beasleyetal.1998,JohnsonandBrown1998,StrayerandFetterman1999,Aldridge 2000,AlvarezClaudioetal.2000). Inthisstudyskeweddistributiondidnotnecessarilyindicatelackofrecruitment. However,allthreepopulationslackingjuvenilesbelow38mmwereunimodal,skewedto olderindividualsandlikelytobecomeextirpatedinthenearfuture.Juvenileswerenever foundatsiteswithfewerthan20individuals,againindicatingthesepopulationsarelikelyto beremnants.Thethresholdofpresence/absenceofindividualsbelow38mmisthereforea moreusefulindicatorofdeclinethanaskeweddistribution. ANOSIMshowedpopulationstructuresweresplitintotwogroups:thosewhere thepopulationhadamedianbelow60mm,andthosewithamedianabove60mm. Generally,thepopulationswithamedianbelow60mmhadamoreevendistributionof lengthclassandhighernumbersofsmallspecimensthanpopulationswithamedianabove 60mm.Thiswouldsuggestthatpopulationscanbesplitintorecruitingandnonrecruiting groups,markedbyaging(nonrecruiting)populationshavingmediansabove60mm,and populationswithsomereplacementoccurringhavingmediansbelow60mm.However,as sizestructuredidnotrelatetoanyhabitatvariables,thesefindingsthrowlittlelighton causesofdifferencesinpopulationstructure,orpossiblefactorsinfluencingrecruitment.

JUVENILEHABITAT Agreatmysteryremainsaroundwherethesmallestjuveniles(<20mm)reside.Theymay havedifferenthabitatneedsthantheiroldercounterparts(Kat1982,RoperandHickey 1994)andthereisasuggestionthatthesesmallestindividualsmayliveattachedtohard substrate(K.Amohia,pers.comm.2008).Juvenilesofsomespecieshaveasinglebyssal threadwhichdissolvesasthejuvenilegrowsandisabsentintheadult(Carriker1961,

47 Changetal.1996).Juvenilezebramussels( Dreissenapolymorhpa )areabletodissolvetheir byssalthreadsinordertomovealongthesubstrate(Nichols1996).Photographsofkākahi glochidiashowalongthread(Nobes1980),whichNobesproposedwasusedtoattachto hostfish.Itisnotknownifsuchthreadsalsodevelopinpostglochidialkākahiandcould beusedtoattachtothesubstrate,andthendissolveasthejuveniledevelopsintoits burrowingphase.Ifso,thiswouldmeanverysmalljuvenilesarelikelytobefoundin entirelydifferenthabitatsthanadultsandexplainthelackofdetectionwithcurrent samplingtechniques. James(1985)notedthatjuveniles(largerthan20mm)inLakeTaupōwereonly foundinareaswithcleancoarsesand(6992000mindiameter).Thisdiffersfrommy study,wherejuvenileswerefoundatsiteswithalayeroffinesiltoftenupto15cmdeep.

LACKOFRECRUITMENT Whathascausedlackofrecruitmentinthemajorityofpopulations?Recruitmentisnot limitedtoeitherthelowerorupperreachesandstilloccursinareaswhicharehighin sedimentand/ornutrients,suggestingthatwaterqualitymaynotbetheprimaryinhibiting factor(seePhillips2001,Ausseiletal.2005,McArthurandClark2007fordetailson sedimentandnutrientloads).Perhapsitisthelackofhostfishthatisakeylimitation (HaagandWarren1997,JohnsonandBrown1998,McDowall2004,Brainwoodetal. 2006).Fertilityin M.margaritifera isunaffectedbywaterchemistryfactors(Bauer1987),and musselsinanAustraliancatchmentreproducedeveryyear,butwereunlikelytobeableto completetheirlifecyclesforlackofhosts(Byrne1998).Ifthesameistrueforkākahi, adultsmaystillbeproducingviableglochidiawhichareunabletometamorphoseinto juvenilesthroughlackofhostfish,andwhichthereforesubsequentlyperish. Knownhostsforkākahiglochidiaarekōaro( Galaxiasbrevipinnis ),thegiantand commonbullies( Gobiomorphusgobioides and G.cotidianus ),andeels( Anguillaspp. ;Percival 1931,Hine1978,Phillips2006).Kōaromakeupthesecondgreatestpartofthewhitebait catchinAotearoaNewZealand(McDowall2001).Whanganuiiwiformerlyrecorded shoalsofwhitebaitintheriversolargetheyturnedthewatersblack.Now,however, whitebaitnumbersinWhanganuiareverylow(W.Teki,pers.comm.2007,Waitangi Tribunal1999),andkōarodeclinehasbeennotedinmanyotherwaterwaysinAotearoa NewZealand(Roweetal.2002,McDowall2006). Oftheotherhosts,eelnumbershavealsodroppedintheWhanganuiRiver followingheavypressurefromcommercialeelers(EnvironmentCourt2004).While commonbulliescanstillbefoundhighabundanceinsomelakes(RoweandChisnall1997,

48 Rowe1999,RoweandTaumoepeau2004),informationontheirpresentabundanceinthe WhanganuiRiverislacking.Likewise,giantbulliesareregardedas‘notuncommon’in someareas(Rowe1999),butcurrentabundanceintheWhanganuiRiverisunknown. Giantbullydistributionis,however,generallylimitedtoestuarineareas(McDowall1997), limitingtheirusefulnessasakākahihost.Overall,numbersoffishavailabletohost glochidiaaredownandthisislikelytoaffectkākahirecruitment(seealsoMcDowall2004).

SURVIVALANDPOSSIBLECAUSESOFDECLINE Whilerecruitmentisoccurringthroughouttheriver(atalimitednumberofsites),itisnot certainthatsurvivalisuniformthroughout.CPUEincreasedwithdistanceupstream, suggestingthatsurvivalmaybehigherintheupperregions.AccordingtoHorizons RegionalCouncilassessments,waterqualityis‘excellenttogood’intheupperreaches,but deteriorateswithdistancedownstream,withsedimentbeingthemaincontaminant(Ausseil etal.2005).Solubleinorganicnitrogen(SIN)showedadifferingtrend:itishighinthe upperreaches(atNgāhuinga),oftenbreachingproposed‘OnePlan’waterquality standards,anddecreaseswithdistancedownstreamuntil,increasingagaininthe coastalregions(HorizonsRegionalCouncil2007,McArthurandClark2007).Dissolved reactivephosphorus(DRP)onlyoccasionallybreachedproposedstandardsanywhereinthe river(McArthurandClark2007).Thissuggeststhatsedimentmaybethemainparameter affectingsurvival. However,effectsofnutrientenrichmentcannotberuledoutcompletely:thewater qualityguidelinesforammoniaintheUnitedStatesaresetatlevelswhichdonotprotect freshwatermussels,whicharemoresensitivethanotherspecies(Augspurgeretal.2003). Effectofammoniaonkākahihasnotbeentested;thereforeitremainsunknownwhether ammonialevelsintheWhanganuiRiverhaveinfluenceddecline. Further,currentkākahipopulationsmaybeexhibitinghistoriceffectsnotcaptured byanalyseslinkedtocurrenthabitatvariables.Forexample,iwievidencestatesthatsome populationsweredesiccatedwhentheTongariroPowerDevelopmentschemewas established(EnvironmentCourt2004).Thedropinwaterwasenoughtoexposetheentire bedatPaetawa;thisisonesitewhereCPUEisnowlowandjuvenilesarenotfound. Historicuseofpesticidesmayalsohavecontributedtodecline.Pesticide contaminationinbivalveshasledtoincreasedimmuneresponses,reducedcondition, reducedreproductivefitness,andbrittleshells(Hickeyetal.1997,Binellietal.2001,Oliver etal.2001,Ruessleretal.2006,FrankandGerstmann2007).PesticidessuchasDDTwere widelyusedinAotearoaNewZealanduntil1970(Boul1995)andorganochlorineshave

49 beenfoundinwaterwaysandinkākahitissues(Hickeyetal.1997).Pesticideusemayeven continuetobeafactorindeclineatsomesites.Inareaswherekākahiareextant,itisusual tofindexpendedshellsonthebanksorinthestreamitself;forasearcher,thediscoveryof anemptyshellisusuallyagoodindicationthattherearelivekākahinearby.However,at SiteG,wheresevenemptyshellswerefoundandanextensivesearchwasmadeforlive kākahi,nonewerelocated.Mostoftheexpendedshellswereuprightinthesubstrate, indicatingthatkākahideathswerenotaresultofpredation,andwerelikelytoberecent. Theyweresmall(4758mm),extremelybrittleandhighlyeroded.Itwasnotedthatscrub intheareahadrecentlybeensprayed.Itseemspossiblethatthereisaconnectionbetween thesprayeventandkākahideathsinthestream;thishypothesisneedsfurtherinvestigation. Kākahiatindividualsitesmaybeinfluencedbylocalisedfactors–forexample gravelextractionatsite9,watertrafficdisturbance(andassociatedpollutants)atsite10, andurbanisationatsites1and2.Takingofspecimensforscientificstudymayhavebeen thelast‘nailinthecoffin’forkākahiatsitesnineandten–all11and23foundatthese sitesin19967weretaken(Horrox1998),andnumbersfoundatthesesitesinthecurrent studywerethelowestofallsiteswithkākahipresent,at1and2respectively. Itshouldbenotedthatwhileoverharvestinghascausedfreshwatermusseldeclines overseas(AlvarezClaudioetal.2000),itisunlikelytobeafactorintheWhanganuiarea. Urbanisationhasmeanttherearelessiwimemberslivingbesideandofftheriverthanin thepast,andmostnolongereatkākahi(WaitangiTribunal1999);harvestpressurehas declinedratherthanincreasedinthelastcentury. Overallthereisnooneclearfactorthatstandsoutascontributingtodecline.For anyrestorationmeasurestobeimplementedinWhanganui,researchwillneedtobe conductedtodeterminewhathascaused,andcontinuestocause,kākahitodeclineinthe river.

SHELLEROSION Shellerosionwasoncethoughttobeachemicalprocess,whereacidicwaterswearaway thecalciumcarbonatelayerofthemusselshell(Cokeretal.1921).However,studieshave nowshownshellerosionismoreattributabletophysicalabrasionthroughturbulence (HinchandGreen1988,Kaehler1999,GriffithsandCyr2006).Bivalveshaveanouter skin,theperiostracum,whichprotectstheinnernacreouslayer.Oncetheperiostracumis damaged,theunderneathlayerisexposedtoerosion.Musselsareabletorepairtheirshells (HinchandGreen1988),buttheprocessisenergeticallycostly(KaehlerandMcQuaid 1999).Musselswitherodedshellsexpendmoreenergyonreplacingtheshell,andputless

50 intoreproduction,leadingtoreducedgonaddevelopment(KaehlerandMcQuaid1999). Furthermore,marinemusselswitherodedperiostracumhadafarhigherrateofendolith infestationthanintactmussels,leadingtoadditionalshellerosionandmortality(Kaehler andMcQuaid1999). Thetwositeswiththemostextensiveshellerosion(11and13)hadcoarser substratethantheothersites,whichprobablycontributedtoshellerosionthrough abrasion.Thepopulationatsite11isconsideredtobeaging(group4ofHM I)andlacked anyindividualsbelow59mm.Itmaybethattheincreasedcostsofshellrepairatthissite areinhibitingreproduction.Site13,exhibitingthesecondhighestamountofshellerosion, wasratedasgrouptwo(reducedrecruitment)underHM I.Itisnotclearifshellerosionat thissitehasledtoreducedreproductiveoutput. Becauseerosionwasnotrelatedtoshelllengthinthisorotherstudies(Hinchand Green1988,Kaehler1999,GriffithsandCyr2006),ageisnotafactorintheextentof visibleshellerosion.Itisnotclearwhydistancetotheseaisafactorinshellerosion, althoughitmaybethatstreamsnearerthecoastinWhanganuihavealowergradient,and kākahiinthelowerreachesarethereforesubjectedtolessturbulence.Inthisstudy,channel widthhadaninverserelationshipwithshellerosion.ThisdiffersfromHorrox(1998)who foundshellerosionincreasedwithchannelwidth.Reasonswhyerosiondecreaseswith channelwidtharenotclear,althoughitmaybebecausemostkākahifoundinwidechannel areaswerealsolocateddownstream,inthelowergradientregions,andusuallyinverysilty spotswhereshellswouldnotbesubjecttomuchabrasionwithcoarsesediment. Overall,however,populationsintheWhanganuiRivercatchmentwerenotratedas beingin‘poor’condition(>20%ofshellareaeroded)usingtheshellerosioncondition index.GiventhatthelowCPUEs,declineinabundanceandgenerallackofrecruitment indicatethatkākahiareindeedinapoorstate,theerosionindexseemsnottoprovidea particularlyreliableassessmentofcondition.

UTILISINGHISTORICANDIWISITEINFORMATION Freshwatermusselsareaggregatedbutgenerallypatchilydistributedinrivers(Moralesetal. 2006).Asaconsequence,searchinginareasonceknowntohousepopulationsofthetarget speciescanbeausefulwaytoappraisehistoricpopulationtrends.However,Strayerand Fetterman(1999)havearguedthatsuchanapproachcanleadtoerroneousconclusions, andthatthedifferencebetweenhistoricandcurrentpresence/absencedataatparticular sitescannotbeusedtocalculatetotaldecline,asspeciesmayhavemigratedtoothersitesor formednewbeds.Theysuggestaddingnewsitestothehistoricdatasetandcomparing

51 totalincreaseordecreaseinpresenceorabsenceacrossanumberofsites.This,however, overlooksonemajorconsideration:historicdatararelyrecordssitessearchedwherea speciesofinterestwasnot found,butwherehabitatwassuitable.Individualspresentin newlydocumentedsitesmayactuallybepartofahistoric,butundocumented,bed.Their discoverydoesnotnecessarilyconstituteanincreaseinspeciespresence–onlyanincrease indetection.Furthermore,otherhistoric,undocumentedbedsmayhavedisappeared unnoticed.Thereforetotaldeclineinpresencecanonlybecomparedatsiteswherethe speciesisknowntohaveoccurred,aswascalculatedinthisstudy.InAotearoaNew Zealand,wherefreshwatermusselsarenotusedcommercially,oftenthefewpeoplewho knowofkākahibedsarelocaliwi.Linkinginwithiwihelpsprovidemoreinformationon previoustopresentkākahidistribution.

DIFFERENCESIN WESTERNAND MĀORIAPPROACHESTOHEALTH WesternandMāoriconclusionsastothehealthofindividualpopulationsvaried dramatically,primarilybecauseWesternapproachesfocusedonrecruitmentandtheability ofapopulationtoreplaceitself,whereasMāoriapproachesfocusedonabundanceoflarger individuals,especiallycomparedwithknownhistoricalabundanceaccordingtotraditional knowledge.Bothapproacheshavelimitationsintermsofkākahiconservation. UsingaWesternapproach,apopulationmightmistakenlybeconsideredsafebecauseitis recruitingatacertainrate,butthismayignoreevidencethattotalabundanceismuchlower thanitoncewas,andthanwhatitprobablyshouldbe.Thisapproachoverlooksevidence thattheriverisnotsupportingtheabundanceoflifeitoncedid.Conversely,Māori methods,whichfocusonlargerindividuals,maynotnoticethelackofreplacement juvenilesuntilabundancedeclines,someyearsafterthepopulationhasbeguntodecline. ThemosteffectivekākahiconservationwouldthereforeutilizebothWesternscienceand Māoriapproaches.

PROTECTINGSITEINFORMATION ItisstandardprotocolwithinWesternsciencetopublishsiteinformation.Thisallows replicationofresults,andensuresscientificrigour.However,inAotearoaNewZealand, therearewiderpoliticalissuestoconsider,onebeingthedisputedownershipofthe WhanganuiRiveritself.In1999,theWaitangiTribunalpublishedfindingsonaTreatyof WaitangiclaimbyWhanganuiiwiontheriver,acceptingthatWhanganuiiwihadnever

52 freelyorwillinglyrelinquishedownership,managementandcontroloftheriver(Waitangi Tribunal1999). Inthispositionofconnectionwithandresponsibilityfortheriver,Whanganuiiwi wishtoprotectboththeriveranditsbiotafromexploitation.ManyMāoribelievethatif sitessuchasfishinggrounds,spawningareasorshellfishbedsaredisclosed,that informationwillbeexploitedbyWesternsciencepractitioners,resourcemanagersor membersofthegeneralpublic.Thisbeliefisoftenwelljustified,andliesinfirsthand experiences,ofwhichHorrox’s(1998)takeofkākahifromtheriverisoneexample. Horroxutilisediwiinformationtodeterminesearchsites.Hesearched50sitesand foundkākahiatonlysixoftheselocations,ofteninlownumbers,notinghimselfthat kākahiare“becomingscarcerintheWhanganuiRiver”(Horrox1998).Thisdidnotdeter himfromtakingthosespecimenstodetermineageandcondition,apracticemanyMāori wouldseeaswastefulanddisrespectfulbutwhichisstandardprotocolinWesternbivalve research(Nobes1980,James1985,RoperandHickey1994,Diggins2001,Maireetal. 2007).ActionssuchasthishaveledtoawidespreadreticenceamongstWhanganuiiwiin sharinginformation,and,formany,ageneralmistrustofsciencepractitioners. IamaWhanganuiiwimember,butevenmyownaccesstosomesiteswasnot alloweduntilassurancewasgiventhatinformationwouldnotbedisclosed.Itisforthese reasons,andoutofmyowndesiretoseekākahiprotectedontheWhanganui,thatsite informationiswithheld.

CONCLUSION SurveyswereconductedtoexaminewhetherkākahiabundanceintheWhanganuiRiverhas declinedinlivingmemory,andifkākahipopulationsareinpoorconditionandlacking recruitment.Resultsshowthatmanysiteswhichonceprovidedaplentifulandsustainable harvestofkākahinowsupportonlyverylowdensities,thatabundancehasdeclined,and thatveryfewpopulationsarerecruiting.Recruitmentislikelytobelimitedbylackofhost fish;populationsareunlikelytoincreaseuntilthisrecruitmentpathwayisrestored.Health ingeneralislow;aninterventiontorestorethekākahitoabundanceintheWhanganui Riverisrequired.Interventionswhichimprovewaterqualityandhabitatforbothkākahi andtheirhostfish(forexample,catchmentandriparianplanting,improvedland managementpracticesandbettercontrolsonwhitebaitfishing)arelikelytobemost effectiveinfacilitatinganincreaseinkākahinumbersinWhanganui.

53 REFERENCES Aldridge,D.C.2000.Theimpactsofdredgingandweedcuttingonapopulationof freshwatermussels(:).BiologicalConservation 95 :247257. AlvarezClaudio,C.,P.GarciaRoves,R.Ocharan,J.A.Cabal,F.J.Ocharan,andM.A. Alvarez.2000.Anewrecordofthefreshwaterpearlmussel Margaritiferamargaritifera L.(Bivalvia,Unionoida)fromtheRiverNarcea(Asturias,northwesternSpain). AquaticConservation:MarineandFreshwaterEcosystems 10 :93102. AnalyticalSoftware.2006.Statistix8userguide,version1.0.Tallahassee. Augspurger,T.,A.E.Keller,M.C.Black,W.G.Cope,andF.J.Dwyer.2003.Water qualityguidanceforprotectionoffreshwatermussels(Unionidae)fromammonia exposure.EnvironmentalToxicologyandChemistry 22 :25692575. Ausseil,O.,H.Barnett,A.Beveridge,L.Fung,B.Gilliland,F.Gordon,H.Janssen,C. McCarron,J.Roygard,M.Todd,andH.Zarour.2005.Stateoftheenvironment reportoftheManawatuWanganuiregion2005.HorizonsRegionalCouncil, PalmerstonNorth. Bauer,G.1987.Reproductivestrategyofthefreshwaterpearlmussel Margaritifera margaritifera .TheJournalofAnimalEcology 56 :691704. Bauer,G.1988.Threatstothefreshwaterpearlmussel Margaritiferamargaritifera LinCentral Europe.BiologicalConservation 45:239253. Bauer,G.,S.Hochwald,andW.Silkenat.1991.Spatialdistributionoffreshwatermussels: theroleofhostfishandmetabolicrate.FreshwaterBiology 26 :377386. Beasley,C.R.,D.Roberts,andT.G.Mackie.1998.Doesthefreshwaterpearlmussel, Margaritiferamargaritifera L.,faceextinctioninNorthern?AquaticConservation: MarineandFreshwaterEcosystems 8:265272. Binelli,A.,R.Bacchetta,G.Vailati,S.Galassi,andA.Provini.2001.DDTcontamination inLakeMaggiore(N.Italy)andeffectsonzebramusselspawning.Chemosphere 45 :409415. Boul,H.L.1995.DDTresiduesintheenvironment–areviewwithaNewZealand perspective.NewZealandJournalofAgriculturalResearch 38 :257277. Brainwood,M.,S.Burgin,andM.Byrne.2006.Isthedeclineoffreshwatermussel populationsinaregulatedcoastalriverinsoutheasternAustralialinkedwith humanmodificationofhabitat?AquaticConservation:MarineandFreshwater Ecosystems 16 :501516.

54 BrimBox,J.B.,andJ.Mossa.1999.Sediment,landuse,andfreshwatermussels:prospects andproblems.JournaloftheNorthAmericanBenthologicalSociety 18 :99117. Byrne,M.1998.Reproductionofriverandlakepopulationsof Hyridelladepressa (Unionacea: Hyriidae)inNewSouthWales:implicationsfortheirconservation.Hydrobiologia 389 :2943. Carriker,M.R.1961.Interrelationoffunctionalmorphology,behavior,andautecologyin earlystagesofthebivalve Mercenariamercenaria .JournaloftheElishaMitchell ScientificSociety 77 :168241. Chang,T.J.,M.A.Hoover,andT.A.Bartrand.1996.Optimizationofavacuumdevicefor zebramusselcontrol.Pages389398 in F.M.D'itri,editor.Zebramusselsandother aquaticnuisancespecies.AnnArborPress,AnnArbor. Clarke,K.,andR.Gorley.2006.PRIMERv6:UserManual/Tutorial.PRIMERE, Plymouth. Coker,R.E.,A.F.Shira,H.W.Clark,andA.D.Howard.1921.Naturalhistoryand propagationoffreshwatermussels.BulletinoftheUnitedStatesBureauof Fisheries 37 :75181. Diggins,T.P.2001.Aseasonalcomparisonofsuspendedsedimentfiltrationbyquagga (Dreissenabugensis )andzebra( D.polymorpha )mussels.JournalofGreatLakes Research 27 :457466. EnvironmentCourt.2004.NgatiRangiTrust(RMA874/01),TamahakiIncSociety(RMA 875/01),WhanganuiRiverMaoriTrustBoard,HinengakauDevelopmentTrust, NgatiHikairoHapuForum,NgatiTamaoNgatiHauaTrust,PungarehuMarae IncorporatedSocietyonbehalfofNgatiTueraHapuandNgatiRangiTrust(RMA 877/01)AppellentsvTheManawatuWanganuiRegionalCouncilRespondentand GenesisPowerLimitedApplicant.Decisionno:A067/2004.EnvironmentCourt. Firmin,P.1994.Oralarchives.WhanganuiRegionalMuseum,Whanganui Frank,H.,andS.Gerstmann.2007.Decliningpopulationsoffreshwaterpearlmussels (Margaritiferamargaritifera )areburdenedwithheavymetalsandDDT/DDE.Ambio 36 :571574. Griffiths,N.A.,andH.Cyr.2006.Aretherehotspotsfor Elliptiocomplanata intheshallow littoralzoneofalargeCanadianShieldlake?CanadianJournalofFisheriesand AquaticSciences 63 :21372147.

55 Grimmond,N.M.1968.Observationsongrowthandagein Hyridellamenziesi (Mollusca, Bivalva)inafreshwatertidallake.UnpublishedMasterofSciencethesis,University ofOtago,Dunedin. Haag,W.R.,andM.L.J.Warren.1997.Hostfishesandreproductivebiologyof6 freshwatermusselspeciesfromtheMobileBasin,USA.JournaloftheNorth AmericanBenthologicalSociety 16 :576585. Hickey,C.W.,S.J.Buckland,D.J.Hannah,D.S.Roper,andK.Stuben.1997. Polychlorinatedbiphenylsandorganochlorinepesticidesinthefreshwatermussel Hyridellamenziesi fromtheWaikatoRiver,NewZealand.BulletinofEnvironmental ContaminationandToxicology 59 :106112. Hinch,S.G.,andR.H.Green.1988.ShelletchingonclamsfromlowalkalinityOntario lakes:aphysicalorchemicalprocess?CanadianJournalofFisheriesandAquatic Sciences 45 :21102113. Hine,P.M.1978.DistributionofsomeparasitesoffreshwatereelsinNewZealand.New ZealandJournalofMarineandFreshwaterResearch 12 :179187. Hitchmough,R.,L.Bull,andP.Cromarty.2005.NewZealandthreatclassificationsystem lists.Science&TechnicalPublishing,DepartmentofConservation,Wellington. HorizonsRegionalCouncil.2007.TheproposedOnePlan–theconsolidatedresource policystatement,regionalplanandregionalcoastalplanfortheManawatu Wanganuiregion.HorizonsRegionalCouncil,PalmerstonNorth. Horrox,J.V.1998.BenthiccommunitiesoftheWhanganuiRivercatchment:theeffectsof landuseandgeology.UnpublishedMasterofSciencethesis,MasseyUniversity, Palmerston. James,M.R.1985.Distribution,biomassandproductionofthefreshwatermussel, Hyridellamenziesi (Gray),inLakeTaupo,NewZealand.FreshwaterBiology 15 :307 314. Johnson,P.D.,andK.M.Brown.1998.Intraspecificlifehistoryvariationinthethreatened Louisianapearlshellmussel, Margaritiferahembeli .FreshwaterBiology 40 :317329. Kaehler,S.1999.Incidenceanddistributionofphototrophicshelldegradingendolithsof thebrownmussel Pernaperna .MarineBiology 135 :505514. Kaehler,S.,andC.D.McQuaid.1999.Lethalandsublethaleffectsofphototrophic endolithsattackingtheshelloftheintertidalmussel Pernaperna .MarineBiology 135 :497503.

56 Kat,P.W.1982.Effectsofpopulationdensityandsubstratumtypeongrowthand migrationof Elliptiocomplanata (Bivalvia:Unionidae).MalacologicalReview 15 :119 127. Lydeard,C.,R.H.Cowie,W.F.Ponder,A.E.Bogan,P.Bouchet,S.A.Clark,K.S. Cummings,T.J.Frest,O.Gargominy,D.G.Herbert,R.Hershler,K.E.Perez,B. Roth,M.Seddon,E.E.Strong,andF.G.Thompson.2004.Theglobaldeclineof nonmarinemollusks.Bioscience 54 :321330. Maire,O.,J.M.Amouroux,J.C.Duchêne,andA.Grémare.2007.Relationshipbetween filtrationactivityandfoodavailabilityintheMediterraneanmussel Mytilus galloprovincialis .MarineBiology 152 :12931307. McArthur,K.,andM.Clark.2007.Nitrogenandphosphorusloadstoriversinthe ManawatuWanganuiRegion:Ananalysisoflowflowstate:Technicalreportto supportpolicydevelopment.HorizonsRegionalCouncil,PalmerstonNorth. McDowall,B.2004.Declineofthekakahi–identifyingcauseandeffect.Waterand Atmosphere 10 :89. McDowall,R.M.1997.Noteontheconservationstatusofthegiantbully, Gobiomorphus gobioides (Teleostei:Eleotridae).JournaloftheRoyalSocietyofNewZealand 27 :163172. McDowall,R.M.2001.FreshwaterfishesofNewZealand.ReedPublishing(NZ)Ltd, Auckland. McDowall,R.M.2006.Cryingwolf,cryingfoul,orcryingshame:aliensalmonidsanda biodiversitycrisisinthesoutherncooltemperategalaxioidfishes?ReviewofFish BiologyFisheries 16 :233422. MetcalfeSmith,J.L.,S.K.Staton,G.L.Mackie,andN.M.Lane.1998.Changesinthe biodiversityoffreshwatermusselsintheCanadianwatersofthelowerGreatLakes drainagebasinoverthepast140years.JournalofGreatLakesResearch 24 :845858. Morales,Y.,L.J.Weber,A.E.Mynett,andT.J.Newton.2006.Musseldynamicsmodel:A hydroinformaticstoolforanalyzingtheeffectsofdifferentstressorsonthe dynamicsoffreshwatermusselcommunities.EcologicalModelling 197 :448460. Naimo,T.J.1995.Areviewoftheeffectsofheavymetalsonfreshwatermussels. Ecotoxicology 4:341362. Nichols,S.J.1996.VariationsinthereproductivecycleofDreissenapolymorphain Europe,Russia,andNorthAmerica.AmericanZoologist 36 :311325.

57 Nobes,R.G.1980.Energeticsofthefreshwatermussel Hyridellamenziesi Gray. UnpublishedMasterofSciencethesis,WaikatoUniversity,Hamilton. Oliver,L.M.,W.S.Fisher,J.T.Winstead,B.L.Hemmer,andE.R.Long.2001. Relationshipsbetweentissuecontaminantsanddefenserelatedcharacteristicsof oysters( Crassostreavirginica )fromfiveFloridabays.AquaticToxicology 55 :203222. Payne,B.S.,A.C.Miller,andR.Whiting.1997.Designingariverinemusselsurvey.Pages 150156 in ConservationandmanagementoffreshwatermusselsII:proceedingsof aUMRCCsymposium.UpperMississippiRiverConservationCommittee. Percival,E.1931.Anoteonthelifehistoryof Diplodonlutulentus Gould.Transactionsand ProceedingsoftheNewZealandInstitute 62 :8691. Phillips,J.2001.Whanganuicatchmentwaterquality:Astudyonclarityand microbiologicalwaterqualityintheWhanganuiRiveranditstributaries.Horizons RegionalCouncil,PalmerstonNorth. Phillips,N.2006.Reviewofthepotentialforbiomanipulationofphytoplanktonabundance byfreshwatermussels(kakahi)intheRotorualakes.NationalInstituteofWater& AtmosphericResearchLtd,Hamilton. PlanningTribunal.1990.InthematteroftheWaterandSoilConservationAct1967andin thematteroftwoappealsundersection25oftheActbetweenElectricity CorporationofNewZealandLimited(Appeal781/88)andWhanganuiRiver MaoriTrustBoard(Appeal840/88)AppelantsandtheManawatuWanganui RegionalCouncil(assuccessortotheRangitikeiWanganuiCatchmentBoard) Respondent.DecisionnoW.70/90.PlanningTribunal. Roper,D.S.,andC.W.Hickey.1994.Populationstructure,shellmorphology,ageand conditionofthefreshwatermussel Hyridellamenziesi (Unionacea:Hyriidae)from sevenlakeandriversitesintheWaikatoRiversystem.Hydrobiologia 284 :205217. Rowe,D.1999.Factorsinfluencingtheabundanceofthecommonbully, Gobiomorphus cotidianus McDowall,insmall,NorthIsland,NewZealand,lakes.Fisheries ManagementandEcology 6:377386. Rowe,D.,andB.Chisnall.1997.Environmentalfactorsassociatedwiththedeclineof dwarfinanga Galaxiasgracilis McDowallinNewZealanddunelakes.Aquatic Conservation:MarineandFreshwaterEcosystems 7:277286. Rowe,D.K.,G.Konui,andK.D.Christie.2002.Populationstructure,distribution, reproduction,diet,andrelativeabundanceofkoaro( Galaxiasbrevipinnis )inaNew Zealandlake.JournaloftheRoyalSocietyofNewZealand 32 :275291.

58 Rowe,D.K.,andA.Taumoepeau.2004.Declineofcommonsmelt( Retropinnaretropinna )in turbid,eutrophiclakesintheNorthIslandofNewZealand.Hydrobiologia 523 :149158. Ruessler,D.S.,N.J.Kernaghan,C.M.Wieser,J.J.Wiebe,andT.S.Gross.2006.An assessmentofpotentialcontaminanteffectsonfreshwatermusselsintheSouth Floridaecosystem.U.S.GeologicalSurvey. Sethi,S.A.,A.R.Selle,M.W.Doyle,E.H.Stanley,andH.E.Kitchel.2004.Responseof unionidmusselstodamremovalinKoshkonongCreek,Wisconsin(USA). Hydrobiologia 525 :157165. Snelder,T.B.,andB.J.F.Biggs.2002.Multiscaleriverenvironmentclassificationfor waterresourcesmanagement.JournaloftheAmericanWaterResources Association 38 :12251239. Strayer,D.L.,S.Claypool,andS.J.Sprague.1997.Assessingunionidpopulationswith quadratsandtimedsearches.Pages163169 in Conservationandmanagementof freshwatermusselsII:proceedingsofaUMRCCsymposium.UpperMississippi RiverConservationCommittee. Strayer,D.L.,andA.R.Fetterman.1999.Changesinthedistributionoffreshwater mussels(Unionidae)intheupperSusquehannaRiverbasin,19551965to1996 1997.AmericanMidlandNaturalist 142 :328339. WaitangiTribunal.1999.TheWhanganuiRiverReport.WaitangiTribunal,Wellington. Watters,G.T.1996.Smalldamsasbarrierstofreshwatermussels(Bivalvia,Unionoida) andtheirhosts.BiologicalConservation 75 :7985. Weber,E.2005.Populationsizeandstructureofthreemusselspecies(Bivalvia:Unionidae) inanortheasternGermanriverwithspecialregardtoinfluencesofenvironmental factors.Hydrobiologia 537 :169183. Williams,J.D.,M.L.Warren,K.S.Cummings,J.L.Harris,andR.J.Neves.1993. ConservationstatusoffreshwatermusselsoftheUnitedStatesandCanada. Fisheries 18 :622. Young,D.1998.Wovenbywater:historiesfromtheWhanganuiRiver.HuiaPublishers, Wellington.

59 3. EFFECTOFSUSPENDEDSEDIMENTONKĀKAHI (ECHYRIDELLAMENZIESII)FEEDINGPHYSIOLOGYAND BEHAVIOUR

INTRODUCTION IwiinWhanganuihavecontendedforalmosttwodecadesthatthefreshwatermussel, kākahi( Echyridellamenziesii (Gray,1843)),hasdeclinedintheregionsinceEuropean settlementbeganinthe19 th century(PlanningTribunal1990,Firmin1994,Waitangi Tribunal1999,EnvironmentCourt2004,chapterone),afactconfirmedbyrecentsurveys (chaptertwo).KākahihavealsoapparentlydeclinedinotherareasofNewZealand (McDowall2004),andfreshwatermusselsareoneofthemostthreatenedtaxaworldwide (Lydeardetal.2004),with72%offreshwatermusselsintheUnitedStateslistedas endangered,threatenedorofspecialconcern(Williamsetal.1993). Onekeyfactorinfreshwatermusseldeclineissedimentation(Bogan1993, Williamsetal.1993,BrimBoxandMossa1999).Sedimentistheprimarypollutantin UnitedStateswaterways,affectingover40%ofrivermiles(Waters1995).Increased sedimentloadraisesturbidity,causingareductioninlightpenetrationandprimary production,increasestheretentionoforganicmatteronthesubstrate,andreduces dissolvedoxygenlevelsatthesedimentwaterinterfaceandininterstitialspaces(Ellis1936, Ryan1991,Quinnetal.1992,Hemmingetal.2006).Higherturbiditylimitsvisualfeeders andreducesinvertebratedensities,andfinematerialsmotheringthestreambottomreduces habitatforbenthicorganisms(Quinnetal.1992,WoodandArmitage1997).Depositionof finematerialinaquaticenvironmentscandefaunateanarea(Norkkoetal.2006),andas littleasaquarterofaninchofsedimentcancausehighmortalityoffreshwatermussels (Ellis1936).Suspendedsedimentcanclogbivalvefilteringmechanisms(Kat1982, Hawkinsetal.1999),haslongtermeffectsonphysiology(Norkkoetal.2006),andcan reducegrowthrates(Briceljetal.1984). LandclearanceinAotearoaNewZealandhillcountryareashasledtoa2.5to7 foldincreaseinsedimentation(QuinnandStroud2002),andsedimenthasbeenidentified asakeypollutantintheWhanganuiRiverbybothlocalkaumātuaandrivermanagers(see

60 chapterone;Phillips2001).Itisthoughtthattheincreaseinsuspendedsedimentloadin theWhanganuiRivercatchmentmayhavecontributedtokākahideclineinthearea. Bivalvesgenerallyincreasetheirfiltrationratesunderincreasingsuspended sedimentconcentrationsuntiltheyreachamaximalfiltrationrate,atwhichpointfiltration ratesdeclineastheparticulateconcentrationcontinuestoincrease.For Cerastodermaedule thispointisaround300mg.L 1 (NavarroandWiddows1997),whilefiltrationratesofa7 cm Mytilusedulis declinedaboveconcentrationsof190mg.L 1(Widdowsetal.1979).In contrast, Pernacanaliculus willkeepfilteringuptoparticulateconcentrationsashighas1000 mg.L 1(Hawkinsetal.1999). Clearanceratestendtoshowtheoppositepattern,decreasingwithincreased particulateload.Forexample,theclearancerateofthehardclam Mercenariamercenaria declinedby0.08L.h 1.g 1forevery1mg.L 1increaseinsediment(BriceljandMalouf1984). Filteringbehaviouralsochangeswithvaryingparticulateconcentrations.Athigher concentrations,siphondiametermaybereduced(BriceljandMalouf1984),andsome bivalvesmayceasefilteringaltogetherandclosetheirvalves. Thepurposeofthisresearchistoexploretheeffectsofsuspendedsediment concentrationonthephysiologicalandbehaviouralresponsesofafreshwatermusselfrom AotearoaNewZealand,thekākahi,todeterminewhetherincreasedsedimentationinthe Whanganuicatchmenthascontributedtokākahideclineinthearea.

METHODS

EXPERIMENTALPROTOCOL Kākahiweretestedunderarangeofrandomlyorderedsedimentloads,rangingintotal particulatematter(TPM)concentrationfrom5.5to1212mg.L 1(Table1).Thelowest concentrationconsistedofpureriverwaterwithnoaddedsedimentandwastheminimum loadtestable.Thehighestconcentrationwasthemaximumtestableloadbeforethe experimentalsystemclogged,andwasconsideredsufficienttotestkākahiwellbeyond concentrationsexperiencedinthenaturalenvironment(forexample,the50 th percentilefor suspendedsedimentatmedianflowatPipirikiontheWhanganuiRiverwas4.5mg.L 1,and the95 th percentileinallflowswas253mg.L 1(Anon.2006)). Riverwater,withpreaddedalgae,flowedintoamixingtankwheresedimentwas addedtomakeuptherequiredturbidityforeachtreatment(Fig.1).Sedimentinthemixing tankwaskeptinsuspensionbyamagneticstirrer.Six1.5Lchamberscontaininga2cm

61 substrateofriversandwashedthrougha1mmsievetoremovefineswereconnectedto themixingtankusing5mmtubing.Threeofthesechamberswereusedascontrolsfor settlingoutrates,andfivekākahiwereplacedintoeachoftheremainingthreechambers. Waterexitingthechambersranouttowaste.

Fig.1.Experimentalsystem. Surficialsedimenttoadepthof2cmwascollectedfromtheWhanganuiRiverat KōwhaiPark(E2685532,N6141307).Particlesizecompositionofcollectedsedimentwas: 64.0%silt/clay(<63mdiameter);35.4%finesand(63–125m);and0.6%mediumsand (0.1250.5mm).Sedimentwashomogenizedbyvigorousstirringwithapaintmixer attachedtoanelectricdrill,wetsievedthrougha250mmeshsieveandaddedtofiltered tapwatertomakeastockslurry.Theslurrywasstoredinthedarkat4ºCuntilrequired, andkeptfornolongerthanfourweeks.Abilgepumpkeptparticlesinsuspensionduring experimentalrunstopreventsettlingout,andtheslurrymixwasfedtothemixingtankata constantrateusingaperistalticpump.

62 WaterfortheexperimentswascollectedfromtheKahuterawaStream,Palmerston North,andstoredinasupplytank.Wildcaughtalgaefromalocalfarmwerecultivatedand addeddirectlytotheriverwater.Algaecellsrangedfrom<5mto12mindiameter,and wereamixof Scenedesmus sp.andotherunidentifiedunicellularspecies.Countswere conductedusingahemocytometerslide.Backgroundalgalconcentrationsintheriverwater weredeterminedusingthehemocytometerslideandcultivatedalgaecellswereaddedto makeupthedesiredconcentrationofroughly63200cells.L 1.

COLLECTIONSITEANDANIMALSUSED Kākahi6580mminanteriortoposteriorlengthwerecollectedfromMangaraupiuStream, (E2735140,N6066117)wherethereisalargepopulation.Mangaraupiudrainsa mixeddairyfarm/bushcatchment;thesubstrateisamixoffinesand,sand,graveland pebbles,witharound15%coveragebyfines.Kākahiwerekeptinaquariainacontrolled temperatureroomat12°Cona12:12hourlightdarkschemeforthedurationofthe experimentsandwerefedthesamecultivatedalgaeasusedintheexperimentalruns. Individualkākahiwereusedonlyonce.AllkākahiwerereturnedtoMangaraupiuStreamat theconclusionoftheexperiment. Priortoexperimentalruns,fifteenvisiblyfilteringkākahiwereselectedfromthe tanksanddepuratedovernightinfilteredwater.Experimentalanimalswerethen transferredtoabucketoftreatmentwaterforonehourtoacclimatisebeforebeingplaced intoexperimentalchambers. Afteracclimatisation,kākahiwerescrubbedclean,measuredandrandomlyassigned totheexperimentalchambers.Emptykākahishellswereplacedinthecontrolchambersto allowforthephysicaleffectoftheshellonsettlingoutrates.Kākahiandcontrolchambers wererandomisedthroughouttreatments.Datacollectionbeganafterkākahihadbeenin thechambersforatleastonehour.Theaveragesizeofkākahiineachchamberranged from7075mm.Allexperimentswereconductedat12ºCandranfor58.5hours.

TURBIDITYMEASUREMENTS Sixwatersamplespertreatmentrunweretakenfromeachchamberandfromtheinflowat intervalsofroughlyanhour.Totalparticulatematterwasdeterminedbyfilteringsamples throughaBuchnerfunnelontoprecombustedandpreweighed47mmWhatmanGF/C glassmicrofibrefilters.Sampleswerethendriedinanovenat95ºCfor24hoursandre weighed.Allequipmentwasrinsedatleastoncewithdeionisedwaterbetweeneachsample measurementtopreventcontamination.

63 FLOW Flowwasmeasuredsixtimesthroughouteachexperimentalrunsimultaneouslywithwater samplesbycollectingandmeasuringtheoutflowfromeachchamberoveraoneminute period.Flowwasdesignedtorunatarateslowenoughtodetectadifferencebetween TPMconcentrationintheinandoutflows.Averageflowacrosstreatmentsrangedfrom 145to235mL.min 1withameanof185mL.min 1.

BEHAVIOUR Behaviourwasassessedvisuallytentimesduringeverytreatmentperiod.Athigh turbidities,whenvisibilitywaspoor,aglassbeakerwasheldoverthemusselsandatorch wasusedtoilluminatethem.Preliminaryworkshowednoeffectofthebeakerorthe spotlightonkākahifilteringbehaviour.Siphonactivitywasassignedintooneoffour categories(OgilvieandMitchell1995):

 valvesopenandfiltering

 valvesopenbutnotfiltering

 valvesclosed

 indeterminable. Indeterminablereadingsresultedwhenmusselsshiftedpositionandsiphonscouldnotbe seen.

COLLECTIONOFFAECESANDPSEUDOFAECES Faeces Kākahifaecalpelletsaresmall,ejectedouttheexhalentsiphon,andgenerallylostinthe flowofwater.Thereforeonlyqualitativesampleswerecollected,usingamicropipette. Thesewereusedtodetermineorganiccontentinthefaeces. Pseudofaeces Pseudofaecesismaterialwhichisfilteredandsortedbythemusselandrejectedbeforeit entersthedigestivesystem.Kākahipseudofaecesareslowlyexpelledouttheinhalant siphonandgenerallyformadiscretepileonthesubstrate,distinguishablebytextureand colour.Attheendofexperimentalruns,flowoftreatmentwaterwasstoppedandkākahi wereleftundisturbedfor30minutes.Thisallowedtimeforthewatertoclearsothat pseudofaecescouldbecollected.Pseudofaeceswerecollectedwithamicropipetteand sievedthrougha1mmsievetoremoveanysubstratethatinadvertentlyenteredthesample. Smalleramountswerefilteredonto47mmWhatmanGF/Cglassmicrofibrefilters;larger amountswereplacedintocrucibles.Samplesweredriedtoconstantweightat95ºCforat

64 least36hours.Rejectionratewascalculatedbydividingtheaverageamountof pseudofaecesproduced/mussel/replicatebythenumberofhourseachtreatmentranfor. ItshouldbenotedthatathighTPMconcentrations,itwasdifficulttodiscern wherethepseudofaecespilesendedandsettledoutsubstratebegan,meaningsettledout particlesmayhavebeencollectedwiththepseudofaeces. Estimatesofrejectionrateat higherturbiditiesmaybeslightlyexaggerated.

CLEARANCERATES Clearancerateistheamountofwaterclearedofparticlesperhour(SobralandWiddows 2000).ClearanceratewascalculatedasperNavarroandWiddows(1997)as:

flowx(C 1–C 2)/C 1 whereC 1istheparticleconcentrationattheoutflowofthecontrolchamberandC 2isthe particleconcentrationattheoutflowofthetreatmentchamber.Sixcalculationsof clearancerateweremadeineachexperimentalrunfromtheTPMwatersamplestaken.

FILTRATIONRATES Filtrationrateistheamountofparticulatematterfilteredfromthewater.Itwascalculated asperNavarroandWiddows(1997)as: clearanceratexparticleconcentration.

ORGANICCONTENTOFSESTON ,FAECESANDPSEUDOFAECES Sestonisdefinedasallparticulatematterinsuspension.Organiccontentoftheseston, faecesandpseudofaeceswasdeterminedbycalculatingthedifferencebetweendryandash freedryweightsaftercombustionat450ºCforthreehours.

SELECTIONEFFICIENCY Selectionefficiencyistheefficiencywithwhichabivalveselectsorganicmatterfromthe inflowingseston.Selectionefficiency(SE 1)wascalculatedaccordingtoBayneandHawkins (1990)as

SE1=1–(OPF/OTW) whereOTWistheorganicportionofthetreatmentwaterandOPFistheorganicportion ofthepseudofaeces.AnSE 1of0=noselection;anSE 1of1=completeselection.Asa comparison,selectionefficiencywasalsocalculatedfollowingHattonetal.(2005):

SE 2=((NOIR/IRTOT)–OTW)/OTW where NOIR=(FRxOCF)–(RRxOPF) IRTOT=totalingestionrate(FR–RR)

65 OTW=organicfractionofthetreatmentwater OPF=organicfractionofpseudofaeces FR=filtrationrate RR=rejectionrate OCF=(organicmatterininflowingtreatmentwater(mg.L 1)–organic matter(mg.L 1)inoutflowingwater)/(TPM(mg.L 1)ininflowingtreatment water–TPM(mg.L 1)inoutflowingwater).

FILTRATIONANDCLEARANCERATESOVERTIME Filtrationandclearanceratesforeachreplicatewereplottedagainsttimetodetermineif rateschangedduringtheexperimentalrun.Dataforsestonconcentrationsof21and928 mg.L1werenotplotted;at21mg.L 1 fiveofthesixsampleswerecontaminatedintheoven, andsamplesfromthe928 mg.L 1 runweretakeninashortertimeperiodthan,andthusare notcomparableto,theotherruns.

RESULTS

CLEARANCERATES

2 ClearanceratesdeclinedwithincreasingTPMconcentration(F 1,31 =7.89,P<0.01,r = 0.20;Fig.2A),from0.42L.h 1 atthelowestTPMconcentrationof5.5mg.L 1to0.20L.h 1 atthehighestTPMconcentrationof1212mg.L 1.Clearanceratewasrelatedtotheamount 1 ofparticulateorganicmatter(POM(mg.L );F 1,31 = Table1.Compositionoftreatment 7.52,P=0.01,r 2=0.20;Fig.3A).Clearanceratewas watersuppliedtokākahi.TPM:total particulatematter;POM:particulate notrelatedtoorganicfraction(%)ofthetreatment organicmatter. 2 water(F 1,31 =1.01,P=0.32,r =0.03;datalog TPM POM Organic (mg.L 1) (mg.L 1) content(%) transformed). 5.5 5.0 90.2 21 7.1 33.8 FILTRATIONRATES 70 15.5 22.1 122 18.1 14.8 FiltrationratesincreasedwithincreasingTPM 208 24.7 11.9 238 33.0 13.9 2 0.95; concentration(F 1,31 =561.15,P<0.0001,r = data 552 62.4 11.3 logtransformed;Fig.2B),from1.62mg.h 1atthelowest 621 78.6 12.7 928 104.9 11.3 1 sestonconcentrationto190.88mg.h atthehighesttested 1121 151.7 13.5 concentration.Variationinfiltrationratesacrossthe 1212 138.6 11.4 replicatesincreasedwithincreasingturbidity,especiallyabove600mg.L 1,howeverthere wasnohighsestonconcentrationatwhichkākahiinallreplicatesbegantoreducetheir 2 filtrationrate.FiltrationrateincreasedwithincreasingPOM(F 1,31 =133.11,P<0.0001,r

66 =0 .81 ),anddecreasedwithincreasingpercentorganiccontent(F 1,31 =238.01,P<0.0001, r2= 0.88 ;datalogtransformed;Fig.3B&C).

0.8 A 0.7

) 0.6 1

0.5

0.4

0.3

Clearancerate(L.h 0.2

0.1

0.0 2.5 B

) 2.0 1

1.5

1.0

Log(filtrationrate)(mg.h 0.5

0.0

110 C 100

90

80

70

60 Timespentfiltering(%)

50

40

250 D 200 )

1 150

100

50

0 Rejectionrate(mg.h

-50

-100 0 200 400 600 800 1000 1200 1400

TPM(mg.L 1 ) Fig.2.Physiologicalandbehaviouralresponsesofkākahiasafunctionoftotalparticulatematter (TPM)concentration(mg.L 1). A:Clearancerate(L.h 1). B:Filtrationrate(mg.h 1). C:Percenttime kākahiwereobservedfiltering. D:Rejectionrate(mg.h 1).SeeTable2forequations,f,pandr 2 values.

67 Table2.Equations,f,pandr2valuesforregressionanalyses.TPM:totalparticulatematter;POM: particulateorganicmatter;CR:clearancerate;FR:filtrationrate;RR:rejectionrate;OTW:organic portiontreatmentwater;OPF:organicportionpseudofaeces;OF:organicportionfaeces;SE 1 selectionefficiencymethod1; SE 2 selectionefficiencymethodtwo. Relationshiptested Degreesof F Pvalue Equation r2 freedom value Clearanceratevs.TPM 1,31 7.89 <0.01 CR=0.42+0.0002x 0.20 x:TPM Filtrationratevs.TPM. 1,31 561.15 <0.0001 FR=0.395ln(x)–0.49 0.95 Datalogtransformed. x:TPM %timefilteringvs.TPM 1,31 0.14 0.71 – 0.00 5 Rejectionratevs.TPM 1,31 98.97 <0.001 RR=41.83ln(x)–118.11 0.78 x:TPM Clearanceratevs.POM 1,31 7.52 0.010 CR=0.43–0.0014x 0.20 x:POM

Filtrationratevs.POM 1.31 133.11 <0.0001 FR=10.84+1.24x 0.81 x:POM Filtrationratevs.organic 1,31 238.01 <0.0001 FR=29.84x 1.07 0.88 fraction(%).Datalog x:organicfraction transformed. Rejectionratevs.filtration 1,31 590.11 <0.0001 RR=2.21(1–e0.05x ) 0.95 rate.Datalogtransformed. x:FR Organiccontent(%)of 1,9 81.57 <0.0001 OTW=2.24x 0.12 0.90 treatmentwatervs.TPM. x:TPM Datalogtransformed. Organiccontent(%)of 1,31 320.33 <0.0001 OPF=2.16x 0.12 0.92 pseudofaecesvs.TPM. x:TPM Datalogtransformed. Organiccontent(%)of 1,8 2.23 0.17 OF=1.88x 0.03 0.22 faecesvs.TPM.Datalog x:TPM transformed. SE 1vs.TPM 1,31 1.96 0.17 – 0.06 SE 1vs.POM 1,31 2.29 0.14 – 0.07 SE 1vs.organiccontent 1,31 1.43 0.24 – 0.04 SE 2vs.TPM 1,31 45.57 <0.0001 SE 2=3.28x 0.62 0.60 x:TPM SE 2vs.POM 1,31 41.31 <0.0001 SE 2 =13.65x 1.58 0.57 x:POM SE 2vs.organiccontent 1,31 46.65 <0.0001 SE 2 =0.09+0.014x 0.60 x:organiccontent(%) FEEDINGBEHAVIOUR Feedingbehaviourwasunaffectedbyincreasingsestonconcentration,withkākahifiltering foranaverageof78.6%ofthetimeacrossallreplicatesandtreatments(F 1,31 =0.14,P= 0.71,r 2=0.01;Fig.2C).Althoughnotdirectlymeasured,observedsiphondiameterwas notablysmallerathigherTPMconcentrations.Atthehighestturbidities,wheneven locatingkākahiinthechamberswasdifficult,plumesofclearwaterwereobservedissuing fromthekākahiexhalentsiphons,confirmingthattheywereindeedstillfiltering.

68 PSEUDOFAECESPRODUCTION Pseudofaecesproduction(rejectionrate)increasedwithTPMfrom0.62to201.53mg.h 1 2 (F 1,31 =107.94,P<0.0001,r =0.78;Fig.2D).Therewasasharpincreasefrom0200 mg.L 1TPMandonlyagradualincreaseafterthispoint.Rejectionrateincreasedas 2 filtrationrateincreased(F 1,31 =101.76,P<0.0001,r =0.95;Fig.4,Table2). ORGANICPORTIONOFPSUEDOFAECES ,SESTONANDFAECES . Theorganicportionofthesestonwashighest(90.2%)whenTPMconcentrationwas lowest(5.5mg.L 1;Table1,Fig.5A&B).Theorganicportionthendecreasedwith 2 increasingTPM( F1,9 =81.57, P<0.0001,r = 0.90 ),levellingoffatapproximately12%at around200mg.L 1TPM.Theorganicportionofthepseudofaecesfollowedthissame 2 pattern( F1,31 =320.33 ,P<0.0001,r = 0.92 ;Fig.5A&B),butwaslowerthantheorganic fractionintheinflowingtreatmentwater(t 32 =3.15,P<0.01;Fig.5A&B),showingthat kākahiwereactivelyselectingoutorganicmatterandrejectingunwantedmatteras pseudofaeces.Theorganicfractionofthefaecesalsodeclinedwithincreasingsestonload, 2 buttherelationshipwasnotsignificant( F1,8 =2 .23,P=0.17,r =0.22).Faeceshada significantlyhigherorganicportionthanboththetreatmentwater(t 9=3.61,P<0.01)and thepseudofaeces(t 9=5.02, P<0.001;Fig.5A&B),againindicatingactiveselectionof organicmatter.

SELECTIONEFFICIENCY

Selectionefficiencyvaluesformethodone(SE 1)rangedfrom0.10to0.36(Fig.6).There 1 wasnorelationshipbetweenSE 1 andTPM,POM(mg.L )ororganicportion(%;Table2).

Selectionefficiencyvaluesfor methodtwo(SE 2)rangedfrom1.59to1.50,decreasingwith 2 increasingTPMandPOMconcentrations(F 1,31 =45.57,P=<0.0001,r =0.60;F 1,31 = 41.31,P=<0.0001,r 2=0.57respectively),andincreasingasorganicportionincreased 2 (F 1,31 =46.65,P=<0.0001,r =0.60;Fig.6,Table2).

69 0.8 A 0.7

0.6 ) 1 0.5

0.4

0.3 Clearancerate(L.h 0.2

0.1

0.0 0 20 40 60 80 100 120 140 160

POM(mg.L 1 ) 250 B

200 )

1 150

100

50 Filtrationrate(mg.h

0

0 20 40 60 80 100 120 140 160

POM(mg.L 1 ) 2.5 C

2.0 ) 1

1.5

1.0 Log(filtrationrate)(mg.h 0.5

0.0 0 20 40 60 80 100 Organicfraction(%) Fig.3. AClearancerate(L.h 1)asafunctionofparticulateorganicmatter(POM;mg.L 1) B Filtrationrate(FR;mg.h 1)asafunctionofPOMand CFRasafunctionoforganicfraction(%; datalogtransformed).SeeTable2forequations,f,pandr 2values.

70 FILTRATIONANDCLEARANCERATESOVERTIME Timedidnotaffectfiltrationrate:therewasnosignificantrelationshipbetweentimeand filtrationrateinanyreplicateacrossalltreatments.Likewise,clearanceratesshowedno strongpatternacrossthereplicateswhenplottedagainsttime.Onlythree(11%)ofthe27 replicatesshowedasignificantrelationship(clearancerateincreasedovertimeintwo 1 replicatesatTPMof208mg.L (F 1,31

2 3.0 =28.05,P<0.01,r =0.69andF 1,31 = 26.65,P<0.01,r 2=0.64)andinone 2.5

) 2.0

1 1 replicateatTPMof70mg.L (F 1,31 = 1.5 50.01,P<0.01,r 2=0.53)). 1.0

0.5

Log(rejectionrate)(mg.h 0.0 DISCUSSION -0.5

-1.0 CLEARANCERATES 0 50 100 150 200 250 Filtrationrate(mg.h 1 ) Theclearanceratesofkākahideclined Fig.4.Kākahirejectionrateasafunctionoffiltration significantlywithincreasingseston rate(mg.h 1;datalogtransformed).SeeTable2for equations,f,pandr 2values. concentrations.Thisisconsistentwith therecordedresponsesofothermarineandfreshwaterbivalveseg, Ruditapesdecussatus (SobralandWiddows2000), M.mercenaria (BriceljandMalouf1984), M.edulis (Widdowset al.1979), Quadrulapustolosa,Fusconaiacerina and Pleurobemabeadlenum (Aldridgeetal.1987). Reductioninclearancerateisacopingstrategyusedbysomefilterfeedingbivalves inresponsetohighsestonlevels(BriceljandMalouf1984).However,areducedclearance ratelowerswaterflowacrossthegillsandconsequentlylowersoxygenavailability.Oxygen extractionmustbeincreasedtocompensate(Widdowsetal.1979). Mytilusedulis hasbeen showntoincreaseitsoxygenextractionefficiencyfrom6%at0mg.L 1to25%at 280mg.L 1;afterthispointextractionefficiencywouldneedtoincreaseexponentiallywith increasingTPMinordertomaintainaconstantmetabolicrate(Widdowsetal.1979).Itis notknown,however,whethersuchexponentialincreasesarepossible.Ifnot,acontinued reductioninclearanceratewouldresultinareductionofoxygensuppliedtothebody, leadingtodetrimentaleffectsonthemussel.Clearancerateisthereforeanimportant considerationintherelationshipbetweensuspendedsedimentconcentrationandbivalve survival.

71 100 A treatmentwater pseudofaeces 80 faeces

60

40 Organicfraction(%)

20

0 5 21 70 122 208 238 552 621 928 1121 1212 TPM(mg.L 1 )

2.2 B 2.0

1.8

1.6

1.4

Log(organiccontent(%)) 1.2

1.0

0.8 0 200 400 600 800 1000 1200 1400

1 TPM(mg.L ) Fig.5. AOrganiccontent(%)oftreatmentwater,pseudofaecsscvslog%org esandfaeces.Errorbarsarestandard error.Faecesshowsnoerrorbarsasonlyonesamplewastakenperrun.Therewasnosample takenfromthetreatmentof928mg.L 1. BOrganiccontent(%)asafunctionoftotalparticulate matter(TPM;mg.L 1)concentration.SeeTable2forequations,f,pandr 2values.Datalog transformed.

72

0.4 2.0 A D 0.3 1.5

0.2 1.0 )(fraction) )(fraction) 1 2

0.1 0.5

0.0 0.0

Selectionefficiency(SE -0.1 Selectionefficiency(SE -0.5

-0.2 -1.0 5 70 208 621 928 1212 5 70 208 621 928 1212

TPM(mg.L 1 ) TPM(mg.L 1 ) 0.4 2.0 B E 0.3 1.5

0.2 1.0 )(fraction) )(fraction) 1 2

0.1 0.5

0.0 0.0

Selectionefficiency(SE -0.1 Selectionefficiency(SE -0.5

-0.2 -1.0 5 15 25 33 62 79 105139 152 5 15 25 33 62 79 105139 152

POM(mg.L 1 ) POM(mg.L 1 ) 0.4 2.0 C F 0.3 1.5

0.2 1.0 )(fraction) )(fraction) 2 1

0.1 0.5

0.0 0.0 Selectionefficiency(SE Selectionefficiency(SE -0.1 -0.5

-0.2 -1.0 0 20 40 60 80 100 0 20 40 60 80 100 Organiccontent(%) Organiccontent(%) Fig.6.Kākahiselectionefficiency.Selectionefficiency(methodone)asafunctionof Atotal particulatematter(TPM;mg.L 1)concentration, Bparticulateorganicmatter(POM;mg.L 1)and C organiccontent(%).For A, Band C,1=totalselection,0=noselection.Selectionefficiency (methodtwo)asafunctionof DTPMconcentration, EPOMand Forganicfraction(%).See Table2forequations,f,pandr 2values. Inwildconditions,settlingoutofsuspendedsedimentmayalsoaffectoxygen availabilityontheriverbottom.Finematerialblanketingthesubstratetrapsorganicmatter, which,asitdecomposes,createsahigheroxygendemandatthesedimentwaterinterface

73 (Ellis1936,Norkkoetal.2006).Furthermore,asitsettles,sedimentdragsorganicmatterto theriverbottom,increasingtheorganicfractionofthesubstrateandsubsequentoxygen demandattheriverbottom(Ellis1936).Inturbidconditions,lowdissolvedoxygen coupledwithalowclearanceratecouldmakerespirationverydifficultforburrowing bivalves. Clearanceratechangeswithfoodavailability(RoperandHickey1995,Iglesiasetal. 1996).Respirationratesofkākahiinlowsilttreatmentsincreasedwithincreasingfood concentrations,andrespirationratesofthosekeptinlowfoodtreatmentsincreasedwith increasingsiltconcentration(RoperandHickey1995;‘respirationrate’inRoperand Hickey’sstudy(1995)canbeconsideredanalogouswithclearanceratesinmystudy).Food dependentfiltrationandclearancerateshavebeenobservedinanumberofotherspecies, suchas Mytilusgalloprovincialis (Maireetal.2007), P.canaliculus (Hattonetal.2005),and Paphiarhomboïdes (SavinaandPouvreau2004).Furthermore,thetypeoffoodsuppliedcan affectclearancerates.Kākahifedon Gymnodinium sp. filteredatonlyabout35%therateat whichtheyfiltered Choricystiscoccoides (OgilvieandMitchell1995) andmonoculturesof differentalgaespeciessignificantlyalteredclearanceratesin M.margaritifera and Pyganodon cataracta ,withmusselsfedonthecyanobacterium Microcystisaeruginosa havingsignificantly higherclearanceratesthanwhenfedonotherdiets(BakerandLevinton2003). Foodlevelsintheambientwaterinthecurrentexperimentwerekeptataconstant level.However,organicmatterwaspresentinthesediment.Consequently,eventhough percentorganicmatterdeclinedwithincreasingTPM,theamountofPOMincreasedassilt loadincreased.Thisamountstoanincreaseintheamountofpotentialfoodavailableper litre.TheobserveddeclineinclearanceratewithPOMmaybelinkedtomusselsreactingto foodcontentinthewater.

FILTRATIONRATES Kākahifiltrationrateincreasedsignificantlywithincreasingsestonconcentration.Roper andHickey(1995)testedkākahifiltrationratesunderTPMconcentrationsof035mg.L 1 butdidnotfindanyrelationship.However,therangeofturbiditiestestedwasconsiderably smallerthanthosetestedinmystudy,andmayhavebeentoolimitedtodetecteffects. Alternatively,asRoperandHickey(1995)themselvesnote,itmaybeduetothelarge variabilitybetweenindividualfiltrationrates.Highindividualvariabilityinfeedingprocesses iscommonamongstbivalves(Widdowsetal.1979,BakerandLevinton2003,Hattonetal. 2005)andkākahifiltrationrateshavelikewisebeenshowntobevariable(Nobes1980,this study).

74 Theincreaseinkākahifiltrationratewithincreasedsiltloadisconsistentwithother recordedresponsesforbivalves–Spisulasubtruncata,C.edule ,and P.canaliculus filtrationrates increasedwithincreasingsestonconcentrationsupto30,300and1000mg.L 1 respectively (NavarroandWiddows1997,Hawkinsetal.1999,RuedaandSmaal2002).Unlikekākahi inthisstudy,mostotherbivalvesreachamaximalfiltrationrateatacertainseston concentration,afterwhichpointtheirfiltrationratesdropoffagain;forexample Mytilus chilensis and Muliniaedulis filtrationratesdecreasedaftersestonconcentrationsreached665 mg.L 1inthewild(VelascoandNavarro2005).Thisupperlimitvariesfromspeciesto species,withsomespecieshavingafargreatertolerancetohighparticulateloadthan others.Variabilityinfiltrationratebetweenreplicatesinmystudyincreasedabove600 mg.L 1;thismaybeduetoindividualsdisplayingdifferentresponsestothestressofhigh sedimentload,withlesstolerantindividualsbeginningtodecreasefiltrationrates. AreductioninfiltrationrateathighTPMconcentrationswouldbeanexpected responseasthebivalveattemptstopreventitsgillsfromclogging(Iglesiasetal.1996). However,thiswasnotobservedinmystudy–kākahicontinuedtofilterataveryhigh sestonloadofbeyond1200mg.L 1(aconcentrationthreetimeshigherthanthe95 th percentileofallflowsin1996intheWhanganuiRiver(Anon.2006),oneofthemore turbidriversinAotearoaNewZealand).Nomaximumtolerancewasdetermined,asthe tubingintheexperimentalsystembegancloggingathighTPMconcentrations,beforeany consistentdropinkākahifiltrationratewasrecorded.Filtrationactivityathighsestonloads wasconfirmedbyboththebehaviouraldataandthepseudofaecesproductiondata. NavarroandWiddows(1997)foundthatwhenfiltrationratesof C.edule begantodropoff, pseudofaecesproductionalsodeclined.However,largeamountsofpseudofaeceswerestill beingproducedbykākahiatthehighestsestonconcentrationstested.Similarly,open exhalentsiphonsandplumesofclearwateremittingfromthekākahialsoprovided confirmationthatthekākahiwerestillfilteringattheseveryhighturbidities.Itseemsthat kākahiareabletocontinuefilteringatTPMconcentrationshigherthananysofarrecorded intheliteratureregardingbivalvefiltrationrates. However,twopointsareworthyofconsideration.Firstly,thetestedkākahiwere onlysubjectedtohighTPMconcentrationsforeighthours.Lengthoftheexperimental periodcanbecrucial: Austrovenusstutchburyi and Paphiesaustralis showednochangein conditionwhensubjectedtoshortterm(14day)increasesinsuspendedsediment,butwere affectedbylongterm(3months)increases(Norkkoetal.2006).Inwildconditions,floods createconditionsofhighsiltloadforperiodsofdaysorweeks,andlandclearancebringsa

75 permanentchangeinsiltload.InWhanganuibetween1999and2001,suspendedsediment wasconsistentlyabove100mg.L 1formorethanaweekoneightseparateoccasions(data suppliedbyHorizonsRegionalCouncil2008).Althoughkākahimaybeabletocontinue filteringat1200mg.L 1intheshortterm,thelongtermeffectsoflivinginsuchconditions remainunknown. Secondly,theeffectsonjuvenilesareunknown.Filtrationratevarieswithsize (Hattonetal.2005),withlargermusselsexhibitinghigherfiltrationratesacrossarangeof TPMconcentrations.Forexample,thefiltrationrateofa3cm M.edulisdeclinedataTPM concentrationofapproximately125mg.L 1,whereasthefiltrationrateofa7cm M.edulis didnotbegintodeclineuntil190mg.L 1(Widdowsetal.1979).Itmaybethatwhileadult kākahiinthesizeclass6580mmareabletocontinuefilteringdespitehighseston concentrations,juvenileslackthisability.Indeed,aTPMofonly44mg.L 1hadanegative effecton M.mercenaria juveniles,reducinggrowthby16%comparedwithcontrols(Bricelj etal.1984) .Suspendedsedimentmaythereforeaffectjuvenilegrowth,survivaland recruitmentintoapopulation. Aswithclearancerate,filtrationrateisinfluencedbyfoodcontentinthediet (Bayneetal.1993,Hattonetal.2005).However,thenatureoftheinfluenceseemstobe variable.Kākahifiltrationratesinmystudydeclinedwithincreasingorganiccontent(%), butincreasedwiththetotalamountoforganicmatter(mg.L 1). Pernacanaliculus and M.edulis filtrationratesshowvaryingresponsestofoodcontent,attimesdecliningwithincreased organicfraction(Bayneetal.1993,Hawkinsetal.1999),andattimesincreasing(Hawkins etal.1998,Hattonetal.2005).Filtrationratesof C.edule declinedwithincreasingorganic fraction,whilethoseof Crassostreagigas rateswereunaffected(Hawkinsetal.1998).Given suchavariableresponsetofoodcontent,andtherelationshipbetweenfood(organic) contentandTPM,itislikelythattheresponseobservedinmystudywasmoreaneffectof TPMthanfoodcontent.

FEEDINGBEHAVIOUR Feedingbehaviourwasbasedonobservationsofsiphonactivityandvalvestate,and thereforeincludesbothclearanceandfiltrationactivities.Feedingbehaviourremained uniformacrosstherangeofsestonconcentrationstested.Musselsmaykeepvalvesslightly openinordertomaintainaminimumwaterflowovertheirgillsand,therefore,an adequateoxygensupply(Widdowsetal.1979).Kākahiinmystudymayhavecontinued feedingbehaviourinordertomeetoxygendemands.Thealternativewouldbetoswitchto

76 anaerobicmetabolism,whichthendrawsonlipidsandcarbohydratestoredinthebody (Aldridgeetal.1987).Suchashiftis,obviously,notmaintainableonalongtermbasis. Siphondiameterofkākahiathigherturbiditieswasnoticeablylessthaninclearer waters.Reductioninclearanceratesofthehardclam M.mercenaria isaccompaniedbya reductioninthediameteroftheexhalentsiphon(BriceljandMalouf1984).Theobserved reductioninkākahisiphondiameterisconsistentwiththedecreasedclearancerate recordedinthisexperiment.

PSEUDOFAECESPRODUCTION Pseudofaecesproductionrosewithincreasingsestonloads,withnosubstantialdecreasein pseudofaecesproductionatanystage,unlikerejectionratesofotherbivalvessubjectedto increasingTPMconcentrations(eg,Widdowsetal.1979,NavarroandWiddows1997). Thisisnotsurprisinggiventhatrejectionrateandfiltrationratearerelated,andthat filtrationratesalsoshowednodecreasewithincreasingTPM. Overall,rejectionratesforkākahiseemcomparablewithotherbivalves:atTPM concentrationsof1090mg.L 1, C.gigas hadrejectionratesof0130mg.hr 1(Hawkinsetal. 1998);atTPMof30mg.L 1,rejectionratesof S.subtruncata wereroughly38mg.hr 1, dependingonorganiccontent(RuedaandSmaal2002),and C. edule rejectionratesranged from0toaround230mg.hr 1underTPMconcentrationsof0200mg.L 1 (Widdowsetal. 1979). Somebivalvesutiliseastrategyofincreasedpseudofaecesproductiontocopewith highsestonloads(BriceljandMalouf1984).Ithasbeensuggestedthatspeciesutilisingthis strategymaybebettersuitedtosurvivinginturbidenvironmentsthanspecieswhich respondbyloweringtheirclearancerates(BriceljandMalouf1984).Althoughkākahidid alsolowertheirclearancerates,theycontinuedtopumpwaterandtofilter,andthecopious amountsofpseudofaecestheyproducedsuggeststhattheymaybeabletowithstandhighly turbidconditions,ahypothesisinagreementwiththatsuggestedbyRoperandHickey (1995). Pseudofaecesproductionrequiresthemusseltomanufacturemucous.Thismucous isusedtobindunwantedparticlestogetherbeforetheyarerejectedouttheinhalentsiphon. Anincreaseinpseudofaecesproductionnecessitatesanincreaseinmucousproduction. SobralandWiddows(2000)havesuggestedthatexcessivemucousproductionmaybe detrimental,andhavenotedthatitisaccompaniedbyalowclearancerate.Similarly, cocklessubjectedtoextremeorganicdilutiondemonstratedanenergeticcosttohigh pseudofaecesproduction,withnegativeabsorptionrates(PrinsandSmaal1989).While

77 kākahimayhavebeenabletomaintainhighpseudofaecesproductionandalowclearance ratefortheshortexperimentalperiod(58hrs),theirabilitytodosooveralongerperiod oftimeisuntested,andthelongtermeffectsareunknown.Highpseudofaecesproduction couldhavealongterm,sublethaleffect. Evidencethattherecordedrateofpseudofaecesproductionmaybeslightlyhigher thanactualratescomesfromacomparisonoffiltrationratetorejectionratewithineach replicate.Attimes,therejectionrateishigherthefiltrationrate,aphysicalimpossibility,as musselsareunabletorejectmorematerialthantheyareactuallyfiltering.Mucousincluded inthepseudofaecesweightisunlikelytohavecontributedsubstantiallytothetotalweight (KiørboeandMøhlenberg1981,Urrutiaetal.2001).Themostlikelyexplanationisthat settledoutmaterialwasinadvertentlyincludedinthepseudofaecessamples. Thishighlightstheimportanceofprecisecollectionmethodsandgood experimentaldesign.Pipetteshavebeensuccessfullyusedtocollectpseudofaecesinother studies(eg,KiørboeandMøhlenberg1981,RuedaandSmaal2002),butitseemsinthis study,whenothersubstratewaspresentandlongexperimentalperiods(>1hr)allowed suspendedmattertosettleintothepsuedofaecespile,themethodmayhavebeenlessthan perfect.Itmayhavebeenmoreeffectivetomeasurepseudofaecesproductionovera shortertimeperiod,perhapsatthebeginningoftheexperimentalruns,toseparatethe substratewithacovering,ortoremovesubstratealtogetherandcollectpseudofaecesinto containersbeneaththemussel.Itisstillunclearhowotherstudiesusingsimilarmethods, formulasandTPMconcentrations(egHawkinsetal.1999)successfullycollected pseudofaeceswithoutcontaminationfromsettledoutmaterial.

ORGANICPORTIONOFTREATMENTWATER ,PSUEDOFAECESANDFAECES . Organiccontentwasgenerallylowerinthepseudofaecesthaninthesurroundingtreatment water,showingactiveselectionoforganicmaterialbykākahi.Theabilitytoactivelyselect organicmatterandenrichtheingesteddietisastrategyusedbyanumberofbivalvesto compensateforareductioninfoodqualityofthefilteredseston(VaughnandHakenkamp 2001). Degradationoffoodqualityoccurswithincreasedsiltload,withshadingby suspendedsedimentreducingprimaryproductivitybyupto50%(Ryan1991).Ithasalso beensuggestedthatincreasedsiltloadsacttoreducethequalityoffoodavailabletofilter feedersthrough‘dilution’oftheorganiccontent(Widdowsetal.1979).Whilethisholds trueforspecieslackingtheabilitytoactivelyselectoutorganicmaterial,thisdilutioneffect maynotbesoimportantforspeciesthatactivelyenrichtheirdiets(Kiørboeand

78 Møhlenberg1981,Iglesiasetal.1996,NavarroandWiddows1997,Hawkinsetal.1999).It remainstobeseenifincreasedsiltloadintheWhanganuicatchmenthasaffectedkākahi throughdegradationinfoodquality. AnenergybudgetcalculatedforkākahiintheWaikatoRiverfoundthatinwinter algalcellconcentrationsfellbelowmaintenancerequirementsforallbutthesmallest individuals(<0.5gdryweight;Nobes1980).However,thiscalculationdoesnottakeother foodsources,suchasdetritusandbacteria,intoaccount.Giventhaterosionsiltcan contributeterrestrialorganicdetritusintotheriversystem,andthatkākahicanactively selectoutediblematerial,itmaybethatdecreasesinprimaryproductionanddilutionof algalcontentarecompensatedthroughincreasedorganicmaterialfromterrestrialsources. However,thecostofsortingthismaterialmayoutweighthebenefits.Overall,thereare manyfactorsinteractingintheprovisionoffoodtokākahiandtheimplicationsofsiltload ontheirdietremainunknown. Therewereafewoccasionswhenorganiccontentinthepseudofaeceswashigher thaninthetreatmentwater.Thismaybeduetoorganicinputfromthepseudofaecal mucous.Mucouswaspreviouslythoughttoconstituteanegligibleamountoftheorganic contentofpseudofaeces(Urrutiaetal.2001).Itnowseemsthatastheorganicportionof thesestondecreases,theorganiccontentcontributedbythemucousbecomesincreasingly important(Urrutiaetal.2001).Whenorganiccontentoftheinflowingwaterislow,the organicfractioncontributedbythemucouscanbeover40%(Urrutiaetal.2001).Itis likelythatmucousfromthekākahicontributedtotheorganiccontentinthepseudofaeces, againillustratingapotentialcosttothekākahiofhighpseudofaecesproduction.

SELECTIONEFFICIENCY Asnotedabove,whenthesestonhasaloworganiccontent,thefractioncontributedby pseudofaecalmucousincreases;thisaffectsselectionefficiencyvaluesthatarebasedon organiccontent.Valuesareparticularlyaffectedwhentheorganicportionofthesestion dropsbelow15%(Urrutiaetal.2001),whichisthecasehere.Insuchinstances,selection efficienciesmaybeunderestimated,andacorrectionfactorisneeded(Urrutiaetal.2001). Ifnocorrectionfactoriscalculable,valuesshouldbeconsiderednetvalues,ratherthan grossvalues(Iglesiasetal.1992).Nocorrectionvaluefortheorganiccontributionfrom mucouswasabletobecalculatedinmystudy,soselectionefficienciesforbothmethods shouldbeconsiderednetvalues. Attimes,kākahiselectionefficiencyvaluesdroppedbelow0.Negativeselection efficiencyvalueshavebeenobservedinanumberofotherstudies(Iglesiasetal.1996,

79 Urrutiaetal.1996,Suplicyetal.2003,Hattonetal.2005)andprobablyindicatethe contributionoforganicmatterfrommucous,andthereforenegativeenergycoststothe bivalve. SelectionefficienciesvaluesformethodtwodeclinedwithincreasingTPMand POM,andincreasedwithincreasingorganicportion(%).Adeclineinselectionefficiency withincreasingTPMmayindicateanoverloadingofsortingmechanisms;thedeclineat highPOMloadsislikelyareflectionoftheaccompanyinghightotalsestonload.However, giventhesevaluesarenetvaluesandmayunderestimategrossselectionefficiency,we cannotconcludethatatruereductioninselectionefficiencyhasoccurred.Thepalpsmay stillbesortingtoahighcapacityeventhoughnetvaluesdonotindicatethis(Iglesiasetal. 1992). Selectionefficiencydoesnotseemtofollowoneparticularpatternacrossall bivalves:somespecies’selectionefficiencyvaluesincreasedwithincreasingTPM(Hawkins etal.1998),somedeclined(Hawkinsetal.1998),someincreasedwithorganicfraction (Urrutiaetal.1996,RuedaandSmaal2002),othersdeclined(Hattonetal.2005);still othersincreasedwhenorganicfractionwaslow,reachedamaximalpoint,thendeclined againasthefractionrose(Iglesiasetal.1992,Iglesiasetal.1996,Urrutiaetal.2001). Othersshowednorelationshipatall(VelascoandNavarro2005).Overall,thetrueeffect ofhighsiltloadonselectionefficiencyremainsunknown. Kākahiselectionefficiencyvaluesarecomparablewithotherspecies,withreported valuesrangingfrom00.8(Iglesiasetal.1996)and0.170.5(RuedaandSmaal2002)for methodoneandfrom2to>0(Hattonetal.2005)and0.20.35(Hawkinsetal.1998)for methodtwo.Againstmethodone,kākahivaluesseemalittlelow,butagainstmethodtwo, kākahivaluesaresomewhathigher.

LOCALADAPTATIONSTOSILTLEVELS Musselscanadapttosedimentloadsintheirlocalenvironmentthroughchangingthesize oftheirpalpsrelativetotheirgills(KiørboeandMøhlenberg1981,Payneetal.1995). Musselsinthisexperimentweretakenfromonlyonesourcepopulation,andthesewould havebeenadaptedtolocalsiltlevels.Therefore,somecareneedstobetakenin extrapolatingfindingsfromthisexperimenttokākahiinallrivers.However,thesiltloadin thesourceriverwasfarlessthanintheWhanganui,soexperimentalmusselscanbetaken tobelesssiltadaptedthanthoseintheWhanganui,andthehightoleranceofexperimental

80 musselstoTPMcanbereadasindicativethatWhanganuikākahiwouldbeatleastassilt tolerant,ifnotmoreso.

FILTRATIONANDCLEARANCERATESOVERTIME Filtrationandclearanceratesoverthetimeperiodtestedremainedconsistent.However, comparedwiththenaturalenvironmentwhenperiodsofincreasedturbiditymaylastdays orweeks,thecurrentexperimentsaresomewhatlimitedandalmostcertainlymissany effectsofexposuretimeonfiltrationandclearancerate.Whenexposedtosedimentover anelevendayperiod,thehorsemussel Atrinazelandica showedadeclineinclearancerate, withsometreatmentsresultinginanalmost50%reduction(Ellisetal.2002).Thissuggests alongertimeperiodforthecurrentexperimentswouldhavebeenpreferable.However, timewasconstrainedbytheavailabilityofwaterforeachrunasthereislimitedcapacityin thestoragetank.

CONCLUSIONS Thekākahitestedinthisstudyincreasedtheirfiltrationratesassedimentloadincreased, demonstratinganabilitytoadjusttolocalenvironmentalconditions,andcontinuedfiltering evenatveryhighsedimentloads.Thissuggeststhat,relativetootherfreshwaterbivalves, kākahiarebetterabletocopewithhighsedimentconcentrationsintheshortterm,and adultsmaybeconsidered‘sedimenttolerant’. ClearanceratedroppedasTPMincreased,probablytopreventanoverloadingof gillsandpalps.Asoxygensupplytothegillsisdependentonwaterflow,adropin clearanceratewillresultinadecreaseofoxygensupply,andmaymakerespirationdifficult athighsedimentloads.Thereforethelongtermeffectsofthehighsedimentloadstestedin thisstudyremainunknown. Timespentfilteringwasunaffectedbysestonconcentration.Manyotherbivalves ceasefilteringassestonincreasesbeyondabilitytocopewiththeparticleloadinthewater. Thisagainsuggestskākahiaretolerantofhighsedimentloadsintheshorttermrelativeto otherfreshwaterbivalve.Furtherresearchmaybeneededtouncoverboththeupper toleranceofkākahitosuspendedsedimentloadintheshortterm,andtheirlongterm reactiontohighsedimentloads. Furthertestamenttokākahitolerancetohighsestonconcentrationintheshort termistheincreaseinpseudofaecesproductionwithincreasingTPM.Specieswhich

81 increasepseudofaecesproductioninresponsetoincreasesinsestonarethoughttobe bettersuitedtoturbidenvironmentsthanspecieswhichrespondsolelywithareductionin clearancerate.Overallthisstudyhasshownthatadultkākahiaretolerantofshortterm exposuretohighsedimentloadsrelativetootherfreshwaterbivalves,butfurtherresearch isneededtoexplorethelongtermeffectsandtheimpactofTPMonjuvenilekākahi.

82 REFERENCES Aldridge,D.W.,B.S.Payne,andA.C.Miller.1987.Theeffectsofintermittentexposure tosuspendedsolidsandturbulenceonthreespeciesoffreshwatermussels. EnvironmentalPollution 45 :1728. Anon.2006.Waterqualitydata:percentilesbasedonflow. in horizons.mw,editor. HorizonsRegionalCouncil. Baker,S.M.,andJ.S.Levinton.2003.SelectivefeedingbythreenativeNorthAmerican freshwatermusselsimpliesfoodcompetitionwithzebramussels.Hydrobiologia 505 :97105. Bayne,B.L.,andA.J.S.Hawkins.1990.Filterfeedinginbivavlemolluscs:controlson energybalance.Pages7083 in J.Mellinger,J.P.Truchot,andB.Lahlou,editors. Animalnutritionandtransportprocesses.Karger,Basel. Bayne,B.L.,J.I.P.Iglesias,A.J.S.Hawkins,E.Navarro,M.Heral,andJ.M. Deslouspaoli.1993.Feedingbehaviorofthemussel, Mytilusedulis :responsesto variationsinquantityandorganiccontentoftheseston.JournaloftheMarine BiologicalAssociationoftheUnitedKingdom 73 :813829. Bogan,A.E.1993.Freshwaterbivalveextinctions.AmericanZoologist 33 :599609. Bricelj,V.M.,andR.E.Malouf.1984.Influenceofalgalandsuspendedsediment concentrationsonthefeedingphysiologyofthehardclam Mercenariamercenaria . MarineBiology 84 :155165. Bricelj,V.M.,R.E.Malouf,andC.deQuilfeldt.1984.Growthofjuvenile Mercenaria mercenaria andtheeffectofresuspendedbottomsediments.MarineBiology 84 :167 173. BrimBox,J.B.,andJ.Mossa.1999.Sediment,landuse,andfreshwatermussels:prospects andproblems.JournaloftheNorthAmericanBenthologicalSociety 18 :99117. Ellis,J.,V.Cummings,J.Hewitt,S.Thrush,andA.Norkko.2002.Determiningeffectsof suspendedsedimentonconditionofasuspensionfeedingbivalve( Atrinazelandica ): resultsfromasurvey,alaboratoryexperimentandafieldtransplantexperiment. JournalofExperimentalMarineBiologyandEcology267 :147174. Ellis,M.M.1936.Erosionsiltasafactorinaquaticenvironments.Ecology 17 :2942. EnvironmentCourt.2004.NgatiRangiTrust(RMA874/01),TamahakiIncSociety(RMA 875/01),WhanganuiRiverMaoriTrustBoard,HinengakauDevelopmentTrust, NgatiHikairoHapuForum,NgatiTamaoNgatiHauaTrust,PungarehuMarae IncorporatedSocietyonbehalfofNgatiTueraHapuandNgatiRangiTrust(RMA

83 877/01)AppellentsvTheManawatuWanganuiRegionalCouncilRespondentand GenesisPowerLimitedApplicant.Decisionno:A067/2004.EnvironmentCourt. Firmin,P.1994. in oralarchives.WhanganuiRegionalMuseum,Whanganui Hatton,S.,B.J.Hayden,andM.R.James.2005.Theeffectsoffoodconcentrationand qualityonthefeedingratesofthreesizeclassesoftheGreenshell TM mussel, Perna canaliculus .Hydrobiologia 548 :2332. Hawkins,A.J.S.,B.L.Bayne,S.Bougrier,M.Heral,J.I.P.Iglesias,E.Navarro,R.F.M. Smith,andM.B.Urrutia.1998.Somegeneralrelationshipsincomparingthe feedingphysiologyofsuspensionfeedingbivalvemolluscs.Journalof ExperimentalMarineBiologyandEcology 219 :87103. Hawkins,A.J.S.,M.R.James,R.W.Hickman,S.Hatton,andM.Weatherhead.1999. Modellingofsuspensionfeedingandgrowthinthegreenlippedmussel Perna canaliculus exposedtonaturalandexperimentalvariationsofsestonavailabilityin theMarlboroughSounds,NewZealand.MarineEcologyProgressSeries 191 :217 232. Hemming,J.M.,P.V.Winger,S.J.Herrington,W.Gierhart,H.Herod,andJ.Ziewitz. 2006.Waterandsedimentqualityatmussel(Unionidae)habitatsinthe OchlockoneeRiverofFloridaandGeorgia.EndangeredSpeciesResearch 2:3749. Iglesias,J.I.P.,E.Navarro,P.AlvarezJorna,andI.Armentina.1992.Feeding,particle selectionandabsorptionincockles Cerastodermaedule(L.)exposedtovariable conditionsoffoodconcentrationandquality.JournalofExperimentalMarine BiologyandEcology 162 :177198. Iglesias,J.I.P.,M.B.Urrutia,E.Navarro,P.AlvarezJorna,X.Larretxea,S.Bougrier,and M.Heral.1996.Variabilityoffeedingprocessesinthecockle Cerastodermaedule (L.) inresponsetochangesinsestonconcentrationandcomposition.Journalof ExperimentalMarineBiologyandEcology 197 :121143. Kat,P.W.1982.Effectsofpopulationdensityandsubstratumtypeongrowthand migrationof Elliptiocomplanata (Bivalvia:Unionidae).MalacologicalReview 15 :119 127. Kiørboe,T.,andF.Møhlenberg.1981.Particleselectioninsuspensionfeedingbivalves. MarineEcologyProgressSeries 5:291296. Lydeard,C.,R.H.Cowie,W.F.Ponder,A.E.Bogan,P.Bouchet,S.A.Clark,K.S. Cummings,T.J.Frest,O.Gargominy,D.G.Herbert,R.Hershler,K.E.Perez,B.

84 Roth,M.Seddon,E.E.Strong,andF.G.Thompson.2004.Theglobaldeclineof nonmarinemollusks.Bioscience 54 :321330. Maire,O.,J.M.Amouroux,J.C.Duchêne,andA.Grémare.2007.Relationshipbetween filtrationactivityandfoodavailabilityintheMediterraneanmussel Mytilus galloprovincialis .MarineBiology 152 :12931307. McDowall,B.2004.Declineofthekakahi–identifyingcauseandeffect.Waterand Atmosphere 10 :89. Navarro,J.M.,andJ.Widdows.1997.Feedingphysiologyof Cerastodermaedule inresponse toawiderangeofsestonconcentrations.MarineEcologyProgressSeries 152 :175 186. Nobes,R.G.1980.Energeticsofthefreshwatermussel Hyridellamenziesi Gray. UnpublishedMasterofSciencethesis,WaikatoUniversity,Hamilton. Norkko,J.,J.E.Hewitt,andS.F.Thrush.2006.Effectsofincreasedsedimentationonthe physiologyoftwoestuarinesoftsedimentbivalves, Austrovenusstutchburyi and Paphiesaustralis .JournalofExperimentalMarineBiologyandEcology 333 :1226. Ogilvie,S.C.,andS.F.Mitchell.1995.AmodelofmusselfiltrationinashallowNew Zealandlake,withreferencetoeutrophicationcontrol.Archivfurhydrobiologie 133 :471482. Payne,B.S.,J.Lei,A.C.Miller,andE.D.Hubertz.1995.Adaptivevariationinpalpand gillsizeofthezebramussel( Dreissenapolymorpha )andAsianclam( Corbiculafluminea ). CanadianJournalofFisheriesandAquaticSciences52 :11301134. Phillips,J.2001.Whanganuicatchmentwaterquality:astudyonclarityandmicrobiological waterqualityintheWhanganuiRiveranditstributaries.HorizonsRegional Council,PalmerstonNorth. PlanningTribunal.1990.InthematteroftheWaterandSoilConservationAct1967andin thematteroftwoappealsundersection25oftheActbetweenElectricity CorporationofNewZealandLimited(Appeal781/88)andWhanganuiRiver MaoriTrustBoard(Appeal840/88)AppelantsandtheManawatuWanganui RegionalCouncil(assuccessortotheRangitikeiWanganuiCatchmentBoard) Respondent.DecisionnoW.70/90.PlanningTribunal. Prins,T.C.,andA.C.Smaal.1989.Carbonandnitrogenbudgetsofthemussel Mytilus edulis L.andthecockle Cerastodermaedule (L.).ScientiaMarina 53 :477482. Quinn,J.M.,R.J.Daviescolley,C.W.Hickey,M.L.Vickers,andP.A.Ryan.1992.Effects ofclaydischargesonstreams.2.benthicinvertebrates.Hydrobiologia 248 :235247.

85 Quinn,J.M.,andM.J.Stroud.2002.Waterqualityandsedimentandnutrientexportfrom NewZealandhilllandcatchmentsofcontrastinglanduse.NewZealandJournalof MarineandFreshwaterResearch 36 :409429. Roper,D.S.,andC.W.Hickey.1995.Effectsoffoodandsiltonfiltration,respirationand conditionofthefreshwatermussel Hyridellamenziesi (Unionacea:Hyriidae): implicationsforbioaccumulation.Hydrobiologia 312 :1725. Rueda,J.L.,andA.C.Smaal.2002.Physiologicalresponseof Spisulasubtruncata (daCosta, 1778)todifferentsestonquantityandquality.Hydrobiologia 475 :505511. Ryan,P.A.1991.EnvironmentaleffectsofsedimentonNewZealandstreams:areview. NewZealandJournalofMarineandFreshwaterResearch 25 :207221. Savina,M.,andS.Pouvreau.2004.Acomparativeecophysiologicalstudyoftwoinfaunal filterfeedingbivalves: Paphiarhomboides and Glycymerisglycymeris .Aquaculture 239 :289306. Sobral,P.,andJ.Widdows.2000.Effectsofincreasingcurrentvelocity,turbidityand particlesizeselectiononthefeedingactivityandscopeforgrowthof Ruditapes decussatus fromRiaFormosa,southernPortugal.JournalofExperimentalMarine BiologyandEcology 245 :111125. Suplicy,F.M.,J.F.Schmitt,N.A.Moltschaniwskyj,andJ.F.Ferreira.2003.Modelingof filterfeedingbehaviorinthebrownmussel, Pernaperna (L.),exposedtonatural variationsofsestonavailabilityinSantaCatarina,Brazil.JournalofShellfish Research 22 :125134. Urrutia,M.B.,J.I.P.Iglesias,E.Navarro,andJ.Prou.1996.Feedingandabsorptionin Cerastodermaedule underenvironmentalconditionsintheBayofMarennesOleron (westernFrance).JournaloftheMarineBiologicalAssociationoftheUnited Kingdom 76 :431450. Urrutia,M.B.,E.Navarro,I.Ibarrola,andI.P.Iglesias.2001.Preingestiveselection processesinthecockle Cerastodermaedule :mucusproductionrelatedtorejectionof pseudofaeces.MarineEcologyProgressSeries 209 :177187. Vaughn,C.C.,andC.C.Hakenkamp.2001.Thefunctionalroleofburrowingbivalvesin freshwaterecosystems.FreshwaterBiology 46 :14311446. Velasco,L.A.,andJ.M.Navarro.2005.Feedingphysiologyoftwobivalvesunder laboratoryandfieldconditionsinresponsetovariablefoodconcentrations.Marine EcologyProgressSeries 291 :115–124. WaitangiTribunal.1999.TheWhanganuiRiverReport.WaitangiTribunal,Wellington.

86 Waters,T.F.1995.Sedimentinstreams:sources,biologicaleffectsandcontrol.American FisheriesMonograph7.AmericanFisheriesSociety,Bethesda,Maryland. Widdows,J.,P.Fieth,andC.M.Worrall.1979.Relationshipsbetweenseston,available foodandfeedingactivityinthecommonmussel Mytilusedulis .MarineBiology 50 :195207. Williams,J.D.,M.L.Warren,K.S.Cummings,J.L.Harris,andR.J.Neves.1993. ConservationstatusoffreshwatermusselsoftheUnitedStatesandCanada. Fisheries 18 :622. Wood,P.J.,andP.D.Armitage.1997.Biologicaleffectsoffinesedimentinthelotic environment.EnvironmentalManagement 21 :203217.

87 4. BRINGINGTHEMBACK–RESTORATIONOFKĀKAHI

(ECHYRIDELLAMENZIESII)INTHEWHANGANUIRIVER

INTRODUCTION Kākahi( Echyridellamenziesii (Gray,1843)) intheWhanganuiRiverareinapoorstate:of22 historicbedssurveyedin2008,16(73%)hadbeenextirpatedorshowedadeclinein abundance(chapter2).Recruitmentislow,havingoccurredrecentlyatonly4(27%)of15 sitesatwhichkākahiremain(chapter2). Kākahiisaculturallysignificantspecies,anditsdeclineisofconcerntoWhanganui iwi(Firmin1994,WaitangiTribunal1999,EnvironmentCourt2004,chapter1). RestorationoftheWhanganuiRiverisagoaloftheWhanganuiRiverMāoriTrustBoard, whoseek,“ahealthyfreshwaterhabitatthatenablesthetribetoexercisecustomaryuse accordingtongātikangaoWhanganui,”(WhanganuiRiverMāoriTrustBoard2002).The healthoftheriver,itsbiota,itsland,anditspeopleareinterconnected(WaitangiTribunal 1999).RestoringkākahitobeabundantandselfsustainingintheWhanganuiRiverisone aspectoftherestorationoftheriveranditspeople.Inthiscontext,arestorationgoalfor kākahiis:‘TorestorekākahitoabundanceandwidedistributionintheWhanganuiRiver.’ However,theecologyofkākahiispoorlyunderstood,particularlythatoftheearly lifestages.Forexample,wheredothesmallestjuvenilesreside?Whataretheirhabitatand foodneeds?Whataretheirrisksofpredation?Aboveall,whyarekākahiindecline? Restorationrequiresananswertothesequestions,andmanyothersbesides. Threatstofreshwatermusselspeciesingeneralincludesedimentation(BrimBox andMossa1999),eutrophication(Baueretal.1991),pollution(Naimo1995),channel modification(Williamsetal.1993),introducedmolluscs(Williamsetal.1993),anddecline innumbersofhostfishrequiredbytheparasiticlarvae,theglochidia,tometamorphose intojuveniles(Watters1996).Whichofthesefactorshascontributedmosttothedeclineof kākahiintheWhanganuiRiver?Amethodisneededtoproceedinthefaceofvast uncertainty.

ADAPTIVEMANAGEMENT –AWAYFORWARDFORRESTORATIONIN WHANGANUI Adaptivemanagement(AM)isaformalisedprocessthatpermitsmanagementintheface ofuncertaintyandtheopportunityof‘learningbydoing’(WaltersandHolling1990). Hypothesesregarding‘bestpractice’aretestedbyimplementing,monitoringandevaluating eitheroneorseveralmanagementstrategiesinanexperimentalmanner(Gehrke2003,

88 AllanandCurtis2005).Scientificprinciplesofreplicationareappliedandcontrolsareused (Fig.1). ThestrengthofAMisthatitisaniterativeprocess.Ifthehypothesistesteddoes notachievethedesiredoutcome,thehypothesisismodifiedandthenretesteduntilthe managementimplementedproducesthedesiredoutcome(Gehrke2003). Thedifferencebetweensimplemanagementandadaptivemanagementisthe deliberatetestingofahypothesis(McNab1983,Wilhere2002,AllanandCurtis2005). Simplemanagementwillimplementwhatisbelievedtobethebestoption(Wilhere2002). If,however,thestrategyfailstodeliverthedesiredoutcome,managersarenonethewiser (McNab1983).Anotherguessatanothermethodfollows.Adaptivemanagementallows theuseofmanagementstrategieswhiletestingtheireffectiveness.Thedifferencebetween adaptivemanagementand‘pureresearch’isthatthefindingsarefedbackintoonthe groundmanagementpractices,ratherthanbeingstudiedsimplytoenhanceknowledge (Gehrke2003).

CHOOSINGAHYPOTHESIS Manyhypothesestoexplainfreshwatermusseldeclinehavebeensuggestedinthe literature.TwolikelytobeofspecialrelevanceintheWhanganuiRiveraresedimentation andlackofhostfish.HighsedimentloadingisakeyissueinWhanganuiRiver management(Ausseiletal.2005),andfishhavedeclinedinthecatchment(Waitangi Tribunal1999).Twohypothesescanbeformulated. Hypothesis1:Sedimentreduceskākahigrowthandsurvival. CatchperuniteffortwashigherintheupperreachesoftheWhanganuiRiver(chapter two),wheresedimentlevelswerelower(Ausseiletal.2005).However,recruitmentstill occurredinthelowerreaches(chaptertwo).Survival(butnotrecruitment)inthelower rivermaybereducedbysedimentload.Adultkākahicancontinuefeedingforshortperiods underhigh(>1200mg.L 1)sedimentloads(chapterthree),butmaynotwithstandlonger periodsofincreasedsedimentation(Ellisetal.2002,Norkkoetal.2006).Juvenilesare likelytohavealowertolerancetosedimentthanadults(Widdowsetal.1979).Overall, sedimentmaybereducinggrowthandsurvival. Hypothesis2:Lackofhostfishpreventsrecruitment Thefailureofjuvenilestorecruitintoexistingpopulationshasbeenidentifiedasalikely contributortokākahidecline(chapter2).Kākahilarvae(glochidia)arebroodedinthe female’sgills,releasedintothewaterandmustthenattachtoahostfish,usuallyonthe gills,mouthorfins.Onceattached,theglochidiametamorphosesintoajuvenilemussel.

89 Afteraperiod,thejuveniledropsoffitshostanddevelopmentsindependently.Hostfish, therefore,areanessentialelementofthekākahilifecycle;declineoffishnumbersin Whanganuimayhaveinfluencedkākahirecruitmentrates.

Fig.1.Amodelofadaptivemanagement(Wilhere2002).Causeandeffectareestablishedthrough anactiveexperimentalapproach.Treatments(T1andT2)andthecontrol(C)arereplicatedand assignedrandomly.NaturaldisturbancesaffectT1,T2,andC.Monitoringandevaluationarefed backintodecisionsonmanagementstrategies.Treatmentsnotonlydeliveroutputs,butalso provideinformationformonitoring;likewise,theactualoutputprovidesinformationforevaluation.

IMPLEMENTATION Actualimplementationofanadaptivemanagementprojectneedstobeworkedoutby groupsofstakeholders,managersandscientiststogether(WaltersandHolling1990). Hypothesis1isusedhereasanexampletodepicttheuseoftheadaptivemanagement frameworkforadvancingkākahirestoration(Fig.2).Hypothesis2isnotdevelopedinthis thesis,butremainsanequallyvalidhypothesistotest,andcouldbeexploredbygroupsof stakeholdersusingtheadaptivemanagementmodeldevelopedforhypothesis1. Sedimentcanaffectmolluscsandtheirhabitatinnumerousways–throughclogging feedingmechanisms,dilutingfood,reducingprimaryproduction,buryingthem,reducing dissolvedoxygen(DO)inporewaterandatthesedimentwaterinterfaceandcarrying pollutants(Ellis1936,Widdowsetal.1979,Kat1982,Belanger1991,Ryan1991,Quinnet

90 al.1992,MinistryfortheEnvironment2001,Weber2005).Asthesefactorsallinteractin thenaturalenvironment,itisdifficulttotesttheirseparateeffectswithAM.Thegreatest resolutionpossibleisonlybetweenturbidandclearstreams. Further,clearstreamsarelikelytohavemorevegetation,assoillossisgreateroffnon vegetatedland(QuinnandStroud2002).Streamswithmorecatchmentandriparian vegetationhavelowertemperatures,fewernutrients,higherdissolvedoxygenandless faecalmatterthanstreamswithoutvegetation(MinistryfortheEnvironment2001,Quinn andStroud2002).Thesefactorsarenotseparableusingadaptivemanagement.Thetrue experimentthenisbetweenvegetatedandnonvegetatedstreamsandthehypothesismust berewrittenas: Streamvegetationpositivelyinfluenceskākahigrowthandsurvival .Here,two approachesareapplicable,withtwoslightlydifferenthypotheses: Approach1:Vegetationrestoration(longtermoption)Hypothesis:Vegetationplanted forerosioncontrolincreaseskākahigrowthandsurvival. Approach2:Directtranslocations(shorttermoption)Hypothesis: Kākahigrowthand survivalishigherinvegetatedcatchments. Approach1:Vegetationrestoration Restoringvegetationisencouragedinrestorationliteratureasitisthoughttoreduce sedimentationbyincreasingsoilstabilityandtrappingrunoff(MinistryofAgricultureand Fisheries,MinistryfortheEnvironment2001).Streamtemperaturesarelowered,dissolved oxygenisraisedandnutrientsarepreventedfromenteringthewaterway(Ministryforthe Environment2001). Amanagementexperimentforrevegetationwouldtakestreamswithextantkākahi populations,determineinitiallengthandcurrentsurvivalratesthroughmarkandrecapture, andrevegetatesomeofthosestreams,leavingothersascontrols.Pretreatmentmonitoring ofhabitatvariables(egturbidity,trophicstatus,DOintheporewater,atthesediment interface,andinthewatercolumn,substratecomposition,temperatureandpH)wouldbe required.Otherhabitatvariables(catchmentvegetation,geology,catchmentrainfall)could beobtainedthroughexistinggeographicalinformationsystemfiles. Oncevegetationhasbecomeestablished,growthandsurvivalratesintreatedand untreatedgroupsofstreamswouldbeassessed,andchangebetweenpreandpost treatmentgrowthandsurvivalrateintreatmentandcontrolstreamswouldbedetermined. Ifthereisnodifferenceinkākahigrowthandsurvivalbetweentreatmentandcontrol streams,someotherfactorwouldneedtesting.Monitoringofturbidity,trophicstatus,DO,

91 substratecomposition,andtemperaturewouldrevealifrevegetationasamanagement strategyachievestheoutcomessuggestedinliterature(eglesssediment,fewernutrients). Becauseofthelargenumberofcomplicatingfactors,ahighnumberofsitesare neededtoprovidestatisticalpower.Siteschosenascontrolsneedtobeassimilarto treatmentsitesaspossible,andextantdifferencesneedtobeunderstood(Roni2005). Attheendoftheexperiment,wewillnotknowwhichaspectsofvegetationhelp kākahisurvive(eg,higherDO,lowertemperatures,lowernutrients),butwewillknow whetherrevegetatingstreamsincreasessurvivalandisausefulrestorationtoolforkākahi. Becausevegetationneedstimetoestablishandsedimentstoredinstreamwilltaketimeto clear,itmaybeatleast10yearsbeforeresultsfromthisexperimentareknown. Approach2:Directtranslocations Translocationintostreamsprovidesamoreimmediateansweronkākahisurvivaland growthconstraintsandhastheaddedbenefitofsimultaneouslyincreasingkākahinumbers inthewild.Amanagementexperimentwiththisapproachwouldlocatestreamsinthe WhanganuiRivercatchmentwithvegetatedandclearedcatchmentsandreintroduce kākahi.Apercentagethresholdfor‘vegetated’and‘cleared’catchmentswouldneedtobe determined.Growthandsurvivalintranslocatedgroupswouldbecomparedbetween streamtypes. 2 Cohortsofjuvenilesandadultscouldbetranslocatedtodifferentiateeffectsof streamtypeondifferentagegroups.Individualswouldneedtobemarked.Adultscanbe individuallymarkedtodeterminegrowth,butjuvenilesarelikelytobetoosmallandfragile forindividualtags–growthwouldbemeasuredbycohort.Sometypeofshellstainwould beneededtodistinguishtranslocatedjuvenilesfromnaturallyoccurringjuveniles. Again,alargenumberofreplicateswouldbeneeded.Recaptureratesarelikelyto below,andmusselsmayhavemovedafairdistance–monitoringwillneedtocover around2kmdownstream(Morganetal.1997).Siteschosenneedtobeindependent,and translocatedkākahishouldbeplacedinthesediment,notbroadcastasthisreduces recapturerates(Morganetal.1997). Ifitwerepossibletofindturbidstreamswithvegetation,andclearstreamswithout vegetation,onecouldteaseouttheissueofsediment(separatefromvegetation)through controlledreintroductionstothesesites.However,Ithinkitunlikelythatenoughlocations ofthistypewouldexistforsuchastudy.

2 Thisapproachpresentsarisktotranslocatedindividuals:ifthehypothesisiscorrect,musselstranslocatedto nonvegetatedsiteswillhaveareducedchanceofsurvival.Theethicsneedconsideration.

92 Kākahimonitoringwouldfocusonnumbersrecoveredandgrowthofthecohorts. Ininitialphases,monitoringshouldbefrequenttocapturetranslocationsurvivalratesand earlydispersal.Kākahimonitoringshouldsearchmicrohabitatsotherthanthesedimentto determineifjuvenilesinhabitdifferentareasthanadults(RoperandHickey1994). Monitoringshouldbeoverafewyears;ifjuvenilesaremakingsecondarymigrationsinto adultbeds(RoperandHickey1994),theywillbedetectedthroughlongtermobservations. Streammonitoringshouldagaincoverturbidity,trophicstatus,DO,substratecomposition, andtemperature.Forfurtheranalysis,streamscouldbeclassifiedasclear(totalparticulate matter(TPM)>120mg.L 1for<10%ofthetime)orturbid(TPM>120mg.L 1for>20% ofthetime;Roweetal.2000). Thereintroductionexperimentwouldinformwhethersurvivalindifferent environmentsisanissue(andbydefaultshedalittlelightonwhetherhabitatorlackof hostfishisaprimaryfactor),andwhetherdifferentstressorsaffectjuvenilesmorethan adults.Itwouldinformuswheretoproceedwithtranslocations,andmaybeginto illuminatewhethertranslocationsarethebestrestorationoptionforkākahi.Itwouldnot revealwhichaspectsofvegetationareaffectingthekākahi.Forexample,dotheyneed cleanwater,cleansubstrate,thehigherDOthatcomeswithuncloggedinterstices,orlower temperatures?Thesewouldneedtobeexploredinamanipulativeexperiment. Thisexperimentisusefulinthatitcandeterminevegetationeffectonjuveniles, whereasthegenerallypoorjuveniledetectionratesinthewildmeanstheuseofextant populationswouldonlyshowvegetationeffectonadults,whichmaybeverydifferentto theeffectsonjuveniles.Thereintroductionexperimentcouldbealteredforusewiththe firstapproach,sothattranslocationsaremadetodeliberatelyrevegetatedstreamsand untreatedcontrolstreams,ratherthanstreamswithnaturallyoccurringvegetationwhich mayhavelessgroundcoverandalesswelldesignedfilterstrip(Ministryforthe Environment2001).

93 Hypothesis Experimentalmanagement Monitoring Feedback strategy questions

Vegetationplanted Selectstreamswithextantkākahi Measuregrowth • Whichsitetypehas forerosioncontrol populations.Markandrelease andsurvivalatthe thebestsurvivaland increaseskākahi kākahi.Replantselectedstreams differentsites growth? usingerosioncontrolmethods. beforeandafter growthandsurvival. • Whichtypesofareas Leaveothersascontrols. treatment shouldwefocuson (vegetation forfurtherre established). introductions? Measurehabitat variables. • Doweneedto revegetatestreamsto increasekākahi survivalandgrowth?

Hypothesis Experimentalmanagement How/whatto Feedback strategy measure questions

Designnextsetofquestionsandmanagement responses

Fig. 2.A nexampleofhowadaptivemanagementmightbeused tofacilitaterestorationofkākahiintheWhanganuiRiver. 94 Hypothesis Experimentalmanagement Monitoring Feedback strategy questions

Kākahi growthand Selectstreamswithvegetatedand Measuregrowth • Whichsitetypehas survivalishigherin clearedcatchments.Introduce andsurvival. thebestsurvivaland vegetatedcatchments. markedkākahi (juvenileandadult growth? cohorts). • Whichtypesofareas shouldwefocuson forfurtherre introductions? • Doweneedto revegetatestreamsto increasekākahi survivalandgrowth?

Hypothesis Experimentalmanagement How/whatto Feedback strategy measure questions

Designnextsetofquestionsandmanagement responses

Fig. 2. Continued 95 Hypothesis Experimentalmanagement Monitoring Feedback Sampleanswer strategy questions

Kākahi growthand Selectstreamswithvegetatedand Measuregrowth • Whichsitetypehas survivalishigherin clearedcatchments.Introduce andsurvival. thebestsurvivaland Kākahi surviveandgrow growth? vegetatedcatchments. markedkākahi (juvenileandadult betterinvegetated cohorts). • Whichtypesofareas streams. shouldwefocuson forfurtherre introductions? • Doweneedto revegetatestreamsto … WHY? increasekākahi survivalandgrowth?

Monitoring Feedback Hypothesis Experimentalmanagement strategy questions

Asubstrateofcleansand 1) Findsitesinvegetated Measuregrowthand • Dokākahi growand improvesjuvenilekākahi catchmentswithcleansandand survivalrates. survivebetterinclean growthandsurvival. withfinesedimentonthe Measurehabitat sandsubstrates? substrate. variables. • Whatmanagement 2) Translocate kākahi tothesesites actionsneedtobe (withreplication). takentoensureour rivershavesufficient cleansandtoprovide juvenilehabitat?

Fig. 3.Anexampleofhowresultsfrommanagementexper imentscouldbefedbackintofurtheradaptivemanagementresponses . 96 Feedbackiscrucialinadaptivemanagement–theresultsmustbeincorporated backintotherestorationormanagementproject.Resultswoulddeterminewhich managementexperimentstoproceedwith,andwhichmanagementactionstotrialnext. Foranexampleofhowapossibleanswermightbefedbackintothekākahiproject,see Fig.3,whichlaysoutanexampleofasecondroundofmanagementquestionsand experiments.

EVALUATIONANDCRITIQUEOFTHISADAPTIVEMANAGEMENTFRAMEWORK Anattemptwasmadetouseadaptivemanagementtoassesstheeffectofsedimenton kākahisurvival.However,giventhelinkbetweenvegetationandsedimentload,effects couldnotbeseparatedfromotherconfoundingfactors,suchastemperature,DOand nutrientinput.Consequently,eventhoughAMislaudedasameanstodeterminecausal factorswhileallowingmanagementaction,onapplicationitfailstoanswerquestionswith sufficientresolutiontoconductrestorationexpeditiously.

PURERESEARCHQUESTIONS Thereisaplethoraofinformationneededtosupportmanagementinterventions,mostof whichmayneedtobeexploredthroughdirectedresearchratherthanthroughanyAM framework.Themostpertinentoftheseare: Juvenilehabitatneeds. Kākahilessthan20mmarerarelyfoundinthewild(Roperand Hickey1994)implyingthatjuvenilesmaysettleindifferenthabitatsfromthatoftheir largercounterparts(Grimmond1968,Kat1982,RoperandHickey1994).Determining juvenilehabitatneedswillhelpascertainwhetherjuvenilehabitatrestorationisrequired. Ammoniatoxicity. Musselsarehighlysensitivetoammonia(Augspurgeretal.2003, Newtonetal.2003,Cherryetal.2005,Hemmingetal.2006),andammoniaconcentrations arehighinwatersdrainingpredominantlypastoralcatchments(QuinnandStroud2002). Delineationofammoniatoxicitytokākahiwilldeterminerestorationtargetsonammonia inthewaterways. Nutrientenrichmentandbreeding Nutrientenrichmentcanincreasebreedingsuccessinsomespecies(Byrne1998).Evidence fromsurveysintheWhanganuiRiverevaluatedagainstnutrientdataforsubcatchments (Ausseiletal.2005,McArthurandClark2007)wasequivocal.Nutrientinfluenceonkākahi breedingcouldbeinvestigatedtodetermineifrestorationinitiativesaimedatreducing nutrientconcentrationstoverylowlevelsarecounterproductive.

97 Dissolvedoxygen. MolluscsareaffectedbylowlevelsofDO.Densitiesof Corbicula fluminea werereducedinareaswithlowDO,andgrowthwassignificantlyimpairedwhen DOwas<3.0mg.L 1atthesedimentwaterinterface(Belanger1991).Aconcentrationof 6.2mg.L 1inoverlyingwaterhasbeengivenasathresholdfor Uniotumidus (Weber2005). Forkākahi,thisthresholdmaybearound5mg.L 1(Jamesetal.1998)butthisneeds confirmation.Researchiscurrentlyunderwaywhichmayhelpaddressthisknowledgegap (J.Butterworth,unpublishedresearch)andproviderestorationtargets. Triggersforglochidialrelease. Percival(1931)suggestedthatkākahireleasedglochidia inresponsetosuddenmovement(heusedaplanktonnet),butsubsequentstudiesindicate theimportanceoftemperaturechange(Jonesetal.1986,DunnandLayzer1997,Byrne 1998,Jonesetal.2005).Weneedtoknowtheeffectofhumaninfluencedalterationsto streamtemperaturesonglochidialreleaseandwhethertherearetemperaturetargetstoaim forinrestoration.

PROPAGATIONOFJUVENILESINCAPTIVITY Juvenilemusselswillneedtobepropagatedtoprovidestockforrestoration, reintroductions,andforpureresearchneeds.Parentsofthesemusselswillneedtobefrom theWhanganuiRivertomeetiwirequirementsofkeepingwhakapapapure(B.Potaka pers.comm.2007).FreshwatermusselshavebeenpropagatedintheUnitedStateswith varyingsuccess(egHoveetal.1998,Zimmerman2003,BeatyandNeves2004).Methods havenowbeendevelopedwhichincreasethesuccessfulencystment,metamorphosisand survivaloffreshwatermusselsincaptivity(Hoveetal.1998).Generalprinciplesofthose methodsarelistedinAppendix2.

GETTINGTHERE

WHERETOCONCENTRATEEFFORTS Generallyrestorationeffortsarebestconcentratedinfirstandsecondorderstreams (MinistryfortheEnvironment2001).Revegetatingthesestreamsmakesafargreater impactonwaterqualitythanreplantingsectionsdownstream(Ministryforthe Environment2001),withshadingto1kmoffirstorderstreamreturningsubstantially morebenefitthan1kmoffifthorderstream(Rutherford1998).Also,ifmiddlesections arereplantedbeforeuppersections,theyremainpronetoregularandaggressiveflood flowsandplantsgettornoutasaresult(MinistryfortheEnvironment2001).

98 HorizonsRegionalCouncilhasidentifiedtheŌhuraRiverasthemainsediment polluter(~25%ofallsedimentinput)intheWhanganuiRiver(Phillips2001,Horizons RegionalCouncil2006).TheHikumutuandRetarukecatchmentsarealsopriority subcatchments(Phillips2001).Theseareasshouldbetheinitialfocusofrevegetation adaptivemanagementexperiments.

STAKEHOLDERS TheWhanganuiisalongriverwithalargecatchmentandnumerousstakeholders.The mainstakeholdersareiwi,farmers,forestrycompanies,privatelandowners,the DepartmentofConservation,districtcouncils(RuapehuandWanganui),andregional councils(HorizonsRegionalCouncilandEnvironmentWaikato).Tobesuccessful, Whanganuirestorationprogrammeswillneedtoinvolveasmanyofthesestakeholdersas possible(GippelandCollier1998,MinistryfortheEnvironment2001). Afeworganisations,includingHorizonsRegionalCouncilandtheWhanganui RiverEnhancementTrust(WRET),arecurrentlyworkingtoimprovewaterqualityinthe Whanganuiregion(HorizonsRegionalCouncil2006),however,accordingtoinformation fromtheNewZealandEcologicalRestorationNetwork(2007),communityandiwicare groupsinWhanganuiaresadlylacking.Thereisaneedforcommunitygroupstobe developedtoexecuterestorationprogrammes.

SUPPORTAVAILABLEFORRESTORATION Restorationcostsmoney.Securingfundingwillhelpprogrammessucceed(Ministryforthe Environment2001).Ensuringrestorationpractitionershaveexpertadviceisalsoessential. Appendix3listsorganisationsofferingadviceandfinancialsupport.

MEASURINGSUCCESS Theoverarchinggoal,‘Torestorekākahitoabundanceandwidedistributioninthe WhanganuiRiver,’isnotmeasurable;itneedsquantifiabletargets.Targetscouldbethat30 sitesintheupperandlowerWhanganuihavekākahipopulationswhere:

 catchperuniteffortisgreaterthan50;

 recruitmentisoccurring(juveniles<30mmarepresent);and

 morethan25%ofthepopulationarejuvenile(lessthan38mminshell length). Thesearelongtermtargetsandwouldbesupplementedbyshortertermtargetsfor managementexperiments.However,itisusefultoholdanoverarchingrestorationvision

99 (suchasabove),andhaveameanstoassesswhenthatvisionisreached.Measuringthis targetcouldbeconductedonceeveryfiveyearsusingtimedsearches(seechaptertwo).

CONCLUSIONS KākahihavedeclinedintheWhanganuiRiver,evidencedbybothkaumātuatestimonyand recentsurveys.Thisremainsaconcerntoiwi,whonotethedepletionoftraditionalfood sources,andthemaurioftheriver.Highconcentrationsofsuspendedsedimentdonot seemtobecausingdeclinethroughreducedfeedingactivityintheshortterm,butthe longtermeffectsofsedimentmaystillbecontributingtodecline.Sedimentmayalsobe affectingjuvenilesurvivalinthelowerreaches.Further,theimpactsofadeclineinhost fishnumbersonkākahirecruitmentintheWhanganuiRiverremainunexplored,andare likelytobeamajorfactorinfluencingkākahideclineinthecatchment. Itisobviousthatrestorationinitiativesareneededtoaidthereturnofkākahitoits formerabundance.Giventheknowledgegaps,adaptivemanagementcanbeusedtotrial revegetationasarestorationoption.Revegetationwouldlikelyaidkākahidirectly,aswell asindirectlythroughimprovinghabitatforandthereforenumbersofhostfish.Direct translocationscouldalsobeusedasarestorationmeasureandcanbedesignedtohelp answerquestionsonkākahihabitatneedsandimpactsongrowthandsurvival.Caregroups arelackingintheWhanganuicatchmentandwillneedtobeestablishedtoconduct restorationactivities.Workingwithotheragenciesandaccessingsupportislikelytobring greatertosuccesstorestorationeffortsintheWhanganuiRiver.Nāreiraeteiwi,tiakina kiaora!

100 REFERENCES Allan,C.,andA.Curtis.2005.Nippedinthebud:whyregionalscaleadaptivemanagement isnotblooming.EnvironmentalManagement 36 :414425. Augspurger,T.,A.E.Keller,M.C.Black,W.G.Cope,andF.J.Dwyer.2003.Water qualityguidanceforprotectionoffreshwatermussels(Unionidae)fromammonia exposure.EnvironmentalToxicologyandChemistry 22 :25692575. Ausseil,O.,H.Barnett,A.Beveridge,L.Fung,B.Gilliland,F.Gordon,H.Janssen,C. McCarron,J.Roygard,M.Todd,andH.Zarour.2005.Stateoftheenvironment reportoftheManawatuWanganuiregion2005.HorizonsRegionalCouncil, PalmerstonNorth. Bauer,G.,S.Hochwald,andW.Silkenat.1991.Spatialdistributionoffreshwatermussels: theroleofhostfishandmetabolicrate.FreshwaterBiology 26 :377386. Beaty,B.B.,andR.J.Neves.2004.Useofanaturalriverwaterflowthroughculture systemforrearingjuvenilefreshwatermussels(Bivalvia:Unionidae)andevaluation oftheeffectsofsubstratesize,temperature,andstockingdensity.American MalacologicalBulletin 19 :1523. Belanger,S.E.1991.Theeffectofdissolvedoxygen,sediment,andsewagetreatmentplant dischargesupongrowth,survivalanddensityofAsiaticclams.Hydrobiologia 218 :113126. BrimBox,J.B.,andJ.Mossa.1999.Sediment,landuse,andfreshwatermussels:prospects andproblems.JournaloftheNorthAmericanBenthologicalSociety 18 :99117. Byrne,M.1998.Reproductionofriverandlakepopulationsof Hyridelladepressa (Unionacea:Hyriidae)inNewSouthWales:implicationsfortheirconservation. Hydrobiologia 389 :2943. Cherry,D.S.,J.L.Scheller,N.L.Cooper,andJ.R.Bidwell.2005.Potentialeffectsof Asianclam( Corbiculafluminea )dieoffsonnativefreshwatermussels(Unionidae)I: watercolumnammonialevelsandammoniatoxicity.JournaloftheNorth AmericanBenthologicalSociety 24 :369380. Dunn,C.S.,andJ.B.Layzer.1997.Evaluationofvariousholdingfacilitiesformaintaining freshwatermusselsincaptivity.Pages205213 in K.Cummings,editor. ConservationandmanagementoffreshwatermusselsII:proceedingsofaUMRCC symposium.UpperMississippiRiverConservationCommittee. Ellis,J.,V.Cummings,J.Hewitt,S.Thrush,andA.Norkko.2002.Determiningeffectsof suspendedsedimentonconditionofasuspensionfeedingbivalve( Atrinazelandica ):

101 resultsfromasurvey,alaboratoryexperimentandafieldtransplantexperiment. JournalofExperimentalMarineBiologyandEcology267 :147174. Ellis,M.M.1936.Erosionsiltasafactorinaquaticenvironments.Ecology 17 :2942. EnvironmentCourt.2004.NgatiRangiTrust(RMA874/01),TamahakiIncSociety(RMA 875/01),WhanganuiRiverMaoriTrustBoard,HinengakauDevelopmentTrust, NgatiHikairoHapuForum,NgatiTamaoNgatiHauaTrust,PungarehuMarae IncorporatedSocietyonbehalfofNgatiTueraHapuandNgatiRangiTrust(RMA 877/01)AppellentsvTheManawatuWanganuiRegionalCouncilRespondentand GenesisPowerLimitedApplicant.Decisionno:A067/2004.EnvironmentCourt. Firmin,P.1994. in oralarchives.WhanganuiRegionalMuseum,Whanganui Gehrke,P.C.2003.Assessingtheeffectivenessofpestfishmanagement.Pages8594 in ManaginginvasivefreshwaterfishinNewZealand.Proceedingsofaworkshop, 2001.DepartmentofConservation,Hamilton. Gippel,C.S.,andK.Collier.1998.Degradationandrehabilitationofwaterwaysin AustraliaandNewZealand.Pages269300 in L.C.deWaal,A.R.G.Large,andP. M.Wade,editors.Rehabilitationofrivers:principlesandimplementation.John Wiley&SonsLtd,Chichester. Grimmond,N.M.1968.Observationsongrowthandagein Hyridellamenziesi (Mollusca, Bivalva)inafreshwatertidallake.UnpublishedMasterofSciencethesis,University ofOtago,Dunedin. Hemming,J.M.,P.V.Winger,S.J.Herrington,W.Gierhart,H.Herod,andJ.Ziewitz. 2006.Waterandsedimentqualityatmussel(Unionidae)habitatsinthe OchlockoneeRiverofFloridaandGeorgia.EndangeredSpeciesResearch 2:3749. HorizonsRegionalCouncil.2006.Teamingupforourriver.Acrosstheregion:4. Hove,M.C.,K.R.Hillegass,J.E.Kurth,V.E.Pepi,C.J.Lee,K.A.Knudsen,A.R. Kapuscinski,P.A.Mahoney,andM.M.Bomier.1998.Considerationsfor conductinghostsuitabilitystudies.Pages2734 in Proceedingsoftheconservation, captivecare,andpropagationoffreshwatermusselssymposium.OhioBiological Survey. James,M.R.,S.C.Ogilvie,andR.Henderson.1998.Ecologyandpotentialusein biomanipulationofthefreshwatermussel Hyridellamenziesi (Gray)inLakeRotorua. NIWAClientReport:HCC90210/1.NationalInstituteofWaterandAtmospheric Research.

102 Jones,H.A.,R.D.Simpson,andC.L.Humphrey.1986.Thereproductivecyclesand glochidiaoffreshwatermussels(Bivalvia:Hyriidae)oftheMacleayRiver, NorthernNewSouthWales,Australia.Malacologia 27 :185202. Jones,J.W.,R.A.Mair,andR.J.Neves.2005.Factorsaffectingsurvivalandgrowthof juvenilefreshwatermusselsculturedinrecirculatingaquaculturesystems.North AmericanJournalofAquaculture 67 :210220. Kat,P.W.1982.Effectsofpopulationdensityandsubstratumtypeongrowthand migrationof Elliptiocomplanata (Bivalvia:Unionidae).MalacologicalReview 15 :119 127. McArthur,K.,andM.Clark.2007.Nitrogenandphosphorusloadstoriversinthe ManawatuWanganuiRegion:ananalysisoflowflowstate:technicalreportto supportpolicydevelopment.HorizonsRegionalCouncil,PalmerstonNorth. McNab,J.1983.Wildlifemanagementasscientificexperimentation.WildlifeSociety Bulletin 11 :397401. MinistryfortheEnvironment.2001.Managingwaterwaysonfarms:aguidetosustainable waterandriparianmanagementinruralNewZealand.Ministryforthe Environment,Wellington. MinistryofAgricultureandFisheries.Practiceswhichminimisedamagetowatercourses. in http://www.maf.govt.nz/mafnet/ruralnz/sustainableresourceuse/land management/erosionrisks/erowater.htm .DateaccessedJune112008. Morgan,A.,N.J.Welker,andJ.B.Layzer.1997.Feasibilityofreintroducingthreatened andendangeredmusselsintoShoalCreekinAlabamaandTennessee.Pages196 204 in K.Cummings,editor.Conservationandmanagementoffreshwatermussels II:proceedingsofaUMRCCsymposium.UpperMississippiRiverConservation Committee. Naimo,T.J.1995.Areviewoftheeffectsofheavymetalsonfreshwatermussels. Ecotoxicology 4:341362. NewZealandEcologicalRestorationNetwork.2007.ManawatuWanganuiecological restorationdirectory:restorationsites,organisations,nativeplantnurseries.Bush TellyTrust,. Newton,T.J.,J.W.Allran,J.A.O'Donnell,M.R.Bartsch,andW.B.Richardson.2003. Effectsofammoniaonjuvenileunionidmussels( Lampsiliscardium )inlaboratory sedimenttoxicitytests.EnvironmentalToxicologyandChemistry 22 :25542560.

103 Norkko,J.,J.E.Hewitt,andS.F.Thrush.2006.Effectsofincreasedsedimentationonthe physiologyoftwoestuarinesoftsedimentbivalves, Austrovenusstutchburyi and Paphiesaustralis .JournalofExperimentalMarineBiologyandEcology 333 :1226. Phillips,J.2001.Whanganuicatchmentwaterquality:astudyonclarityandmicrobiological waterqualityintheWhanganuiRiveranditstributaries.HorizonsRegional Council,PalmerstonNorth. Quinn,J.M.,R.J.Daviescolley,C.W.Hickey,M.L.Vickers,andP.A.Ryan.1992. Effectsofclaydischargesonstreams.2.benthicinvertebrates.Hydrobiologia 248 :235247. Quinn,J.M.,andM.J.Stroud.2002.Waterqualityandsedimentandnutrientexportfrom NewZealandhilllandcatchmentsofcontrastinglanduse.NewZealandJournalof MarineandFreshwaterResearch 36 :409429. Roni,P.,editor.2005.Monitoringstreamandwatershedrestoration.AmericanFisheries Society,Bethesda,Maryland. Roper,D.S.,andC.W.Hickey.1994.Populationstructure,shellmorphology,ageand conditionofthefreshwatermussel Hyridellamenziesi (Unionacea:Hyriidae)from sevenlakeandriversitesintheWaikatoRiversystem.Hydrobiologia 284 :205217. Rowe,D.,M.Hicks,andJ.Richardson.2000.Reducedabundanceofbandedkokopu (Galaxiasfasciatus )andothernativefishinturbidriversoftheNorthIslandofNew Zealand.NewZealandJournalofMarineandFreshwaterResearch 34 :545556. Rutherford,K.1998.Canshadereducestreamtemperature?Pages56 in J.M.Quinnand B.S.Thorrold,editors.Hillcountrystreammanagement:proceedingsofa workshop,April1998.NIWATechnicalReport46.TheNationalInstituteof WaterandAtmosphericResearch,Wellington. Ryan,P.A.1991.EnvironmentaleffectsofsedimentonNewZealandstreams:areview. NewZealandJournalofMarineandFreshwaterResearch 25 :207221. WaitangiTribunal.1999.TheWhanganuiRiverReport.WaitangiTribunal,Wellington. Walters,C.J.,andC.S.Holling.1990.Largescalemanagementexperimentsandlearning bydoing.Ecology 71 :20602068. Watters,G.T.1996.Smalldamsasbarrierstofreshwatermussels(Bivalvia,Unionoida) andtheirhosts.BiologicalConservation 75 :7985. Weber,E.2005.Populationsizeandstructureofthreemusselspecies(Bivalvia: Unionidae)inanortheasternGermanriverwithspecialregardtoinfluencesof environmentalfactors.Hydrobiologia 537 :169183.

104 WhanganuiRiverMāoriTrustBoard.2002.DraftMissionStatement. in .WhanganuiRiver MāoriTrustBoard. Widdows,J.,P.Fieth,andC.M.Worrall.1979.Relationshipsbetweenseston,available foodandfeedingactivityinthecommonmussel Mytilusedulis .MarineBiology 50 :195207. Wilhere,G.F.2002.Adaptivemanagementinhabitatconservationplans.Conservation Biology 16 :2029. Williams,J.D.,M.L.Warren,K.S.Cummings,J.L.Harris,andR.J.Neves.1993. ConservationstatusoffreshwatermusselsoftheUnitedStatesandCanada. Fisheries 18 :622. Zimmerman,L.L.2003.Propagationofjuvenilefreshwatermussels(Bivalvia:Unionidae) andassessmentofhabitatsuitabilityforrestorationofmusselsintheClinchRiver, Virginia.Unpublishedthesis.VirginiaPolytechnicInstituteandStateUniversity Blacksburg.

105 GLOSSARY

iwi tribe,thoseyoubelongtoandareconnectedwith kāinga home,settlement karanga theformaloratoryofawoman.Used(mostly)inoutsideareasto welcomepeople,invitegueststodine,farewellthedead, acknowledgelandmarks,carvingsetc.Animportantaspectof Māoritikangaandkawa kawa protocols,formalwaysofdoingthings.KawaisbasedonMāori worldviewsandincorporatesconceptsoftapuandnoa kōrero talk,information marae acommunitybuildingandthesurrounds,servingasaplaceto meetandsleep noa thingsofaneverydaynature,unrestrictedmatters tangihanga funeralceremony tapu tapuandnoaarekeyconceptswithintheMāoriworld.Taputhings arethingsofarestrictednature–oftenspecialthingslikeintricate cloaks,formalmeetinghouses,orourbodies.Thereareprotocols governinghowtaputhingsareapproachedandhandled.Thingsof atapunaturearenottobebroughtintocontactwiththingsofa noanature;theyarekeptseparate.Anexampleofthisisthatyou donotbringfoodintotheformalmeetinghouse–itiskepttothe eatingarea tikanga usualwayofdoingthings.Tikangaisbasedonobservednorms tūpuna ancestors waiata song waka canoe wānanga aschooloflearning,oftenheldbyselectedindividualsandpassed onunderrestrictedcircumstances whaikōrero formaloratoryusedtowelcomepeople,discussissues,recount importantkōrero,farewellthedeadetc.Animportantaspectof Māoritikangaandkawa

106 APPENDIX1

SUGGESTEDPROCEDURESFORCONTACTINGIWIANDHAPŪ Dependingonwhereyourresearchis,youwillneedtocontacteitherthelocalmaraeor hapū,theoverarchingrūnangaforthearea,ortheiwirūngana,TeAwaTupua.Most maraearelistedinthephonebook.Thearearūnangaarelistedbelow,andyoucan probablyfindoutwhenTeAwaTupuaismeetingbycontactingtheWhanganuiRiver MāoriTrustBoard(seebelow). Ringtherūnangaormaraecommitteeandsetupatimetodiscussyourideawith them.Youmayliketosendalettertothecommitteebeforehand–thiscanbedistributed tocommitteememberssotheyhavesomeideaofwhatyouwillbespeakingaboutbefore youarrive.Eitherway,discussionsarebestdoneinperson,andnotsolelywithaletter. Thecommitteeislikelytowanttimetodiscussyourproposal,soleavespaceforthemto doso.Youwillneedtopresentyourfindingsbacktothehapūoriwiinvolved.Buildthis intoyourtimeplan–itisanessentialpartofrelations. Athuiyouattendtopresentyourproposal,theremayornotbeaformalwelcome. Attheveryleast,thereislikelytobeaspeechgiven.Itispolitetoreturnthis.Ifunfamiliar withtikangayoumayliketoconsidertakingsomeonetoguideyou.

USEFULCONTACTDETAILS WhanganuiRiverMāoriTrustBoard 61TaupōQuay POBox323 Whanganui 063458160 Lowerreachesoftheriver TeRūnangaoTūpoho 42MitchellStreet Whanganui 063480395 JohnMaihi Middlereachesoftheriver TamahakiIncSociety TeRūnangaoTamaupoko POBox55 POBox690 Whanganui 063854686 063432967 BoyCribb

107 Upperreachesoftheriver NgātiRangiTrust HinengākauDevelopmentTrust POBox195 POBox125 Taumarunui 078966726 PikiTaiaroa

108 APPENDIX2

PROPAGATIONOFJUVENILEKĀKAHIINCAPTIVITY FreshwatermusselshavebeenpropagatedintheUnitedStatesforsometimewithvarying success(egHoveetal.1998,Zimmerman2003,BeatyandNeves2004).Methodshave nowbeendevelopedwhichincreasethesuccessfulencystment,metamorphosisand survivaloffreshwatermusselsincaptivity(Hoveetal.1998).Generalprinciplesofthose methodsarelistedbelow.

PROPAGATION ,HOSTFISHINFESTATIONANDGLOCHIDIALCOLLECTION Collectgravidfemalesfromthefield(Hoveetal.1998,Jonesetal.2005).Handle individualscarefullyasstressedfemalescanabortglochidia(Jonesetal.1986).Glochidia canbeobtainedbygentlyflushingwaterthroughthefemale’sgillsusingapipette(Beaty andNeves2004),orbyleavingfemalesinanaquariumandcarefullywatchingfornatural release(Hoveetal.1998).Glochidialmaturitycanbedeterminedbyexposuretoadilute saltsolution(0.050.10mgNaCl/L);ifvalvessnapshut,glochidiaaremature–thosethat areslowtorespondorfailtocloseareunderdeveloped(Jonesetal.2005).Donotuse thesetoinfesthostfish. Hostscanbeinfestedintwoways.Oneoptionistoaddglochidiatoatankor smallcontainer,aeratetokeepinsuspension,andintroducehostfishforasettime(canbe between15minutesand24hours)(Hoveetal.1998,BeatyandNeves2004) .Anumberof fishcanbeexposedinashorttimeusingthismethod,butinfestationmaybelowornil (Hoveetal.1998).Alternatively,youcananaesthetisethefishandpipetteglochidiadirectly ontothegills(Hoveetal.1998).Thismethodensuresinfestation,butistimeconsuming, andstressfulforthefish(Hoveetal.1998). Whilewaitingforglochidiatometamorphoseandexcyst,fishcanbekeptinwell aeratedaquaria,orinrecirculatingorflowthroughsystemswithmeshtopreventlossof glochidiainoutgoingwater(BarnhartandRoberts1997,Hoveetal.1998).Smallhostfish willneedtobekeptinsuspendednetstopreventpredationonnewlyexcystedglochidia. (Hoveetal.1998).Glochidiacanbecollectedbysiphoningthetankbottomandsieving thesiphonate(Hoveetal.1998). Followfishhusbandryprinciples–handlefishaslittleaspossibleandavoidover infestingwithglochidia(Hoveetal.1998).Feedfishsufficiently,andcleantanksafter

109 feedingtoavoidfungalgrowthonuneatenfood(Hoveetal.1998).Whentransferringfish fromoneaquariatoanother,ensuretemperaturesareequal(Hoveetal.1998).

REARING Variousflowthroughandrecirculatingfacilitieshavebeendevelopedforfreshwater musselsincaptivity,includingponds,cages,aquaria,raceways,aeratedculturedishes, singleandmultistagedrecirculatingsystems,andsystemswithmanyminitanksattached toafeeder(O'Beirnetal.1998,Henleyetal.2001,Zimmerman2003,BeatyandNeves 2004,Jonesetal.2005).Recirculatingsystemsrequireregularmanualcleaningandhigher maintenance(Zimmerman2003,Jonesetal.2005).Recirculatingsystemsdoallowgreater controlofinputsandpredators,butthisdoesnotnecessaryequatetogreatersurvival (Zimmerman2003).Inrearingfacilities,usingthefollowingprinciplescanincreasegrowth andsurvival. Usenaturalwatersupplies .Thisincreaseschancesforsuccess,andprovidesawide rangeoffoodtypes(BeatyandNeves2004).Varietyindietincreasesgrowthandensures nutritionalrequirementsaremet(BeatyandNeves2004,Jonesetal.2005).Systemsusing naturalwatersuppliesarealsoeasiertomaintain(BeatyandNeves2004). Providesubstrate .Somespeciessurviveandgrowbetterinfinesediment(Jonesetal. 2005),othersperformequallyinfineorcoarsesediment(BeatyandNeves2004),but generallyallneedsubstrateofsomeform(O'Beirnetal.1998).Newlymetamorphosed juvenilesoftengothroughapedalfeedingstage(Gatenbyetal.1996,O'Beirnetal.1998). Sedimentmayactasasubstratumforpedalfeederstocollectfoodparticles,provide bacteriaforfoodandparticlebreakdown,aiddigestionbyprovidingsubstratetogrind particles,giveprotectionfrompredators,aidverticalorientationforfeeding,andkeep shellscleanoffungiandepiphytes(Gatenbyetal.1996,O'Beirnetal.1998,Jonesetal. 2005). Reducepredation .Predationfromflatworms,dipteranlarvaeandfishhasbeenobserved insomerearingfacilities(Hoveetal.1998,Zimmerman2003,Jonesetal.2005).Fishcan beexcludedwithmeshornets(Hoveetal.1998,Zimmerman2003).Insystemsusing treatedwater,flatwormscanbeeradicatedbyautoclavingsediment(Jonesetal.2005).In systemsusingnaturalwater,predatorscanbereducedbyfilteringincomingwater,but cannotbeeliminatedaltogether(BeatyandNeves2004). Follownaturalseasonalpatterns .Takeglochidiafromthefemaleinlinewithnatural releasetimes,whentheyaremature(Jonesetal.2005).Outofseasonglochidiaareslower toclosewhenexposedtosalt,havelessdevelopedtissue,andhavepoorsurvivaland

110 growthrates(Jonesetal.2005).Juvenilesneedtobeagoodsizetosurvivewinter– glochidiapropagatedtoolateintheseasondonotreachasufficientsizeandperish(Beaty andNeves2004). Preparejuvenilesforthereceivingenvironment. Musselsdevelopgillsandpalpsto copewiththesiltloadintheirmicrohabitat,withmusselsinmoreheavilysedimented environmentshavinglargerpalpsandsmallergillsthanthoseinclearerwaters(Kiørboe andMøhlenberg1981,Payneetal.1995).BeforereleaseintotheWhanganuiRiver,and whilejuvenilesaredeveloping,itwouldbeusefultoexposethemtosuspendedsediment toencouragegillandpalpdevelopmentsuitabletotheirreceivingenvironment. Takecareintransfertothewild. Releasejuvenileswhentemperatureismoderate– extremesofhotorcoldcancausehighermortalities(DunnandSietman1997).Ensurethe temperatureoftheambientwaterisequaltothereceivingwater.Keepmusselsmoistorin water,andminimiseperiodsoutofthewatertoreducestress(DunnandSietman1997). Avoidovercrowdingmusselsintransfercontainers,andusepersonnelwhoarefamiliar withmusselstoreducemortalities(DunnandSietman1997).Musselsshouldbeplacedin thesediment,notbroadcast,asthishelpsthemtoburrowandsettlemorequickly,and ensuresgreaterrecovery(Morganetal.1997).

111 REFERENCES Barnhart,M.C.,andA.Roberts.1997.Reproductionandfishhostsofunionidsfromthe OzarfkUplifts.Pages1620 in K.Cummings,editor.Conservationand managementoffreshwatermusselsII:proceedingsofaUMRCCsymposium. UpperMississippiRiverConservationCommittee. Beaty,B.B.,andR.J.Neves.2004.Useofanaturalriverwaterflowthroughculture systemforrearingjuvenilefreshwatermussels(Bivalvia:Unionidae)andevaluation oftheeffectsofsubstratesize,temperature,andstockingdensity.American MalacologicalBulletin 19 :1523. Dunn,H.L.,andB.E.Sietman.1997.Guidelinesusedinfourgeographicallydiverse Unionidrelocations.Pages176185 in K.Cummings,editor.Conservationand managementoffreshwatermusselsII:proceedingsofaUMRCCsymposium. UpperMississippiRiverConservationCommittee. Gatenby,C.M.,R.J.Neves,andB.C.Parker.1996.Influenceofsedimentandalgalfood onculturedjuvenilefreshwatermussels.JournaloftheNorthAmerican BenthologicalSociety 15 :597609. Henley,W.F.,L.L.Zimmerman,R.J.Neves,andM.R.Kidd.2001.Designand evaluationofrecirculatingwatersystemsformaintenanceandpropagationof freshwatermussels.NorthAmericanJournalofAquaculture 63 :144155. Hove,M.C.,K.R.Hillegass,J.E.Kurth,V.E.Pepi,C.J.Lee,K.A.Knudsen,A.R. Kapuscinski,P.A.Mahoney,andM.M.Bomier.1998.Considerationsfor conductinghostsuitabilitystudies.Pages2734 in Proceedingsoftheconservation, captivecare,andpropagationoffreshwatermusselssymposium.OhioBiological Survey. Jones,H.A.,R.D.Simpson,andC.L.Humphrey.1986.Thereproductivecyclesand glochidiaoffreshwatermussels(Bivalvia:Hyriidae)oftheMacleayRiver, NorthernNewSouthWales,Australia.Malacologia 27 :185202. Jones,J.W.,R.A.Mair,andR.J.Neves.2005.Factorsaffectingsurvivalandgrowthof juvenilefreshwatermusselsculturedinrecirculatingaquaculturesystems.North AmericanJournalofAquaculture 67 :210220. Kiørboe,T.,andF.Møhlenberg.1981.Particleselectioninsuspensionfeedingbivalves. MarineEcologyProgressSeries 5:291296.

112 MinistryfortheEnvironment.2001.Managingwaterwaysonfarms:aguidetosustainable waterandriparianmanagementinruralNewZealand.Ministryforthe Environment,Wellington. Morgan,A.,N.J.Welker,andJ.B.Layzer.1997.Feasibilityofreintroducingthreatened andendangeredmusselsintoShoalCreekinAlabamaandTennessee.Pages196 204 in K.Cummings,editor.Conservationandmanagementoffreshwatermussels II:proceedingsofaUMRCCsymposium.UpperMississippiRiverConservation Committee. O'Beirn,F.X.,R.J.Neves,andM.B.Steg.1998.Survivalandgrowthofjuvenile freshwatermussels(Unionidae)inarecirculatingaquaculturesystem.American MalacologicalBulletin 14 :165171. Payne,B.S.,J.Lei,A.C.Miller,andE.D.Hubertz.1995.Adaptivevariationinpalpand gillsizeofthezebramussel( Dreissenapolymorpha )andAsianclam( Corbicula fluminea ).CanadianJournalofFisheriesandAquaticSciences 52 :11301134. Zimmerman,L.L.2003.Propagationofjuvenilefreshwatermussels(Bivalvia:Unionidae) andassessmentofhabitatsuitabilityforrestorationofmusselsintheClinchRiver, Virginia.Unpublishedthesis.VirginiaPolytechnicInstituteandStateUniversity Blacksburg.

113 APPENDIX3

SUPPORTAVAILABLEFORRESTORATION Restorationcostsmoney.Securingfundingwillhelptheprogrammesucceed(Ministryfor theEnvironment2001).Ensuringrestorationpractitionershaveexpertadviceisalso essential.Financialsupportandadviceisavailablefromthefollowingsources:

 QueenElizabethIITrust providesadviceonlegalprotectionsforyourlandand conservationmanagementadvice,andmayprovidesomefunding(egforfencingcosts). See: http://www.openspace.org.nz/ orcontactQEIINationalTrust,POBox3341, Wellington6140.Phone044726626.

 NgāWhenuaRāhui providesfundingforconservationonMāoriownedland. Thefundprovideslegalprotectiontotheselandsandfinancesprogrammessuchaspest controlandfencing.See: http://www.doc.govt.nz/templates/page.aspx?id=43144or contactthekaitakawaengaon0800112771.Email [email protected]

 Fundingisavailablethroughthe MātaurangaKuraTaiaoFund tohelpiwi initiativestorevitalise,useandmaintainmātaurangaMāoriregardingtheenvironment.See: http://www.doc.govt.nz/templates/page.aspx?id=43160orcontactthekaitakawaengaon 0800112771.Email [email protected] .

 TheHorizonsRegionalCouncil SustainableLandUseInitiative helpsfarmers developWholeFarmPlanstoassesshowtobestusetheirlandinasustainableand profitablemanner.CostsofimplementingworksintheWholeFarmPlanaresharedwith Horizonsandthelandowner.See: http://www.horizons.govt.nz/Images/Publications/SLUI/SLUI%20v4.pdf orcontactthe SLUIManageron0508800800.Email[email protected].

 The WhanganuiRiverEnhancementTrust fundssocial,economicand environmentalenhancementprojectsintheWhanganuicatchment. See: http://www.genesisenergy.co.nz/genesis/index.cfm?4934F27A7E95D7480D76 FF896D5E2234 orcontactMichelleCaird,c/oTokaanuPowerStation,PrivateBag36, .Phone073847242.

 The BiodiversityConditionFund andthe BiodiversityAdviceFund are availabletoprivatelandownersandcommunitygroups.Upto$60,000isavailabletoeach projectannually.TheAdviceFundprovidesresourcesforinformationandadvice;the ConditionFundprovidesresourcesforprogrammeimplementation.See:

114 http://www.biodiversity.govt.nz/land/nzbs/pvtland/condition.html orcontact BiodiversityFunds,DepartmentofConservation,POBox10420,Wellington, Phone

0800 862020.Email [email protected] .

 The NaturalHeritageFund providesfundingtoprotect,purchase,ormanage privatelandforconservationpurposes. See: http://www.doc.govt.nz/templates/page.aspx?id=39023orcontactTheExecutive Officer,NatureHeritageFund,POBox10420,Wellington.Phone044710726.Email NHF[email protected] .

 Fundingforgroupsisavailablethroughthe LotteryEnvironmentandHeritage grants.See: http://www.cdgo.govt.nz/available grants/downloads.aspx#ApplicationType_7 .

 The SustainableManagementFund isavailablefromtheMinistryforthe Environmenttofundcommunitygroups,iwiandbusinesses.See: http://www.mfe.govt.nz/withyou/funding/smf/ orcontactProjectsandPartnerships, MinistryfortheEnvironment,POBox10362,Wellington6143.Phone044397400. Email[email protected] .

 The MAFSustainableFarmingFund isavailabletogroupsoffarmers,growers orforesterstoimprovethefinancialandenvironmentalperformanceandsolveproblems ortakeupopportunitiesforsustainableresourceuse.See: http://www.maf.govt.nz/sff/climatechange/index.htmorcontacttheFund Administrator,SustainableFarmingFund,MinistryofAgricultureandForestry,POBox 2526,Wellington.Phone0800100087.

115

Alltextandimages©HJRainforth2008,exceptFig.1page90.

116