Novel Small-Molecule TNF-Α Modulators As Chemoprotective

Total Page:16

File Type:pdf, Size:1020Kb

Novel Small-Molecule TNF-Α Modulators As Chemoprotective Reducing the side-effects of chemotherapy Medicinal chemist and cancer researcher Dr JiaJiu Shaw discusses the need to develop novel DR JIAJIU SHAW chemoprotective agents, and shares the details of his own work towards accomplishing this goal which is known to be associated with several the elevated levels of TNF-α and TGF-β. This is potential side-effects. This is why we did not another promising area we may pursue. conduct many chemoprotective studies on UTL-4 compounds. One of the main reasons Do you have any results from the SBIR phase we pursued UTL-5g as a chemoprotector is that II study? most of the UTL-5 compounds are associated with very low acute toxicity and UTL-5g shows In addition to further confirming that UTL-5g the highest potency among them. reduces the side-effects induced by cisplatin, we have investigated the metabolic behaviour of What are the benefits of taking a UTL-5g, ultimately finding that it is dramatically collaborative approach to your project? In different from a structurally similar drug, particular, how did your collaborations with leflunomide. I believe this difference is one Drs Frederick Valeriote and Ben Chen help of the main reasons that UTL-5g has a lower move your study in the right direction? acute toxicity than leflunomide. This was a significant finding and it formed the basis of Dr Valeriote has more than 35 years of a published review paper. Another important experience in cancer research. He also finding originated from the repeat dose toxicity has extensive research experience in study, in which we treated mice with up to radioprotection, which is another potential 1,500 mg/kg per day orally for seven days; there Could you introduce your current research application of UTL-5g. Dr Chen has over 30 were no treatment-related deaths and only project entitled ‘Novel small-molecule TNF years of research experience in immunology minimal, non-limiting toxicological effects on modulators as chemoprotective agents’? and haematology; both are related areas clinical signs and clinical pathology endpoints. What are its chief aims and mission? of chemoprotection and radioprotection. Histopathology revealed that the spleen was Their collaborative efforts are critical to my a target organ. Microscopically, increased In this project, we aim to show that UTL-5g continued productive research progress. Of haematopoiesis of the spleen was seen in all protects tissues from chemotherapy-induced course, there are also many other collaborators UTL-5g treatment groups, which is consistent side-effects. We started by examining the and supporters that I have to be thankful for, with the platelet protection effect of UTL-5g. protective effects of UTL-5g on nephrotoxicity, including Drs Stephen Brown, An-Rong Lee and hepatotoxicity and myelotoxicity on cisplatin. Wen-Hsin Huang. You have been working on your current With the current successful data, we are project since 2009 and it is due for beginning to expand our research to investigate Will there be any wider benefits to the completion this summer. What is the next whether UTL-5g protects tissues against development of UTL-5g? step after SBIR phase II? oxaliplatin. We may even examine additional anticancer therapeutics. Yes, as I mentioned briefly, UTL-5g shows We’ll carefully review the overall data and promising chemoprotective properties against decide whether it makes sense to add more Your project focuses on the tumour cisplatin-induced side-effects. Meanwhile, we studies and file an investigational new drug necrosis factor alpha (TNF-α) inhibitor, are also evaluating the chemoprotective effect of application for chemoprotection. We may UTL-5g. Why was UTL-4 unacceptable as a UTL-5g against oxaliplatin – as it is more widely also consider the possibility of using it as a chemoprotective agent? prescribed today – with the support of a newly- radioprotector. Furthermore, we now have new issued Small Business Innovation Research compounds – based on the UTL-5 platform – in UTL-4 compounds are the predecessors of UTL-5 (SBIR) phase I grant. The other application is its the pipeline under preclinical development. If compounds. Although UTL-4 compounds display radioprotective effect. Under a phase I contract the new compounds are significantly better significant anti-inflammatory properties, their of the SBIR programme, we showed that UTL-5g than UTL-5g, we may have a tough decision as IC50 values are similar to that of leflunomide, could protect an irradiated lung by lowering to what to do next. 16 INTERNATIONAL INNOVATION DR JIAJIU SHAW Protection perfection Researchers at US drug discovery company 21st Century Therapeutics, Inc. may hold the key to advancing chemoprotection, potentially enabling clinicians to negate the side-effects of chemotherapy MEDICAL SCIENCE HAS already seen a bone marrow as well, reducing the production of vomiting, hypotension and, in some cases, number of breakthroughs in the field of cancer platelets and white blood cells. Finally, and most cutaneous reactions – as well as being relatively treatment, and pre-eminent among these has importantly, hepatotoxicity is induced in high inconvenient to administer (by intravenous been the discovery of platinum-based anticancer doses, limiting the amount of cisplatin that can infusion). A novel chemoprotector for use with drugs. The first cisplatin, was approved by the be used at any given time. cisplatin would therefore be an extremely useful US Food and Drug Administration (FDA) for clinical tool, and the development of such an clinical use in the US in 1978 – and its efficacy agent is the current goal of Dr JiaJiu Shaw’s CHEMOPROTECTION is such that it remains a popular component research group at 21st Century Therapeutics, in combination chemotherapies today. At the The side-effects of chemotherapy, and Inc., a small drug discovery company based in time, its discovery revolutionised the treatment platinum-based chemotherapy in particular, Michigan, USA. Their efforts have been focused of this persistent and multifarious disease. limit an otherwise very effective treatment. on the tumour necrosis factor alpha (TNF-α) Although particularly effective against testicular Much attention has therefore been devoted modulator UTL-5g. This drug candidate, selected cancer, its introduction saw cure rates for most to the development of chemoprotective from their own small-molecule library, has other forms of cancer improve significantly. agents to nullify them. As it stands, the FDA already brought forth some promising results. has approved only one adjuvant to cisplatin There was, however, a price to be paid for for this purpose: amifostine, marketed under LEAVING THE COMPETITION BEHIND cisplatin’s success – and more than 30 years the trade name Ethyol. The use of this drug is later, the physical cost of effective chemotherapy becoming increasingly widespread, but when Having secured funding from the National still lingers on in patients receiving treatment. administered in conjunction with cisplatin it Institutes of Health (NIH) for a Small Business Platinum-based chemotherapeutic agents target remains controversial. The main problem is that Innovation Research (SBIR) phase I trial of rapidly dividing cells, curbing tumour growth the two substances are not pharmacologically UTL-5g, Shaw and his collaborators had the but also leading to hair loss and damage to the compatible, which may cause Ethyol to have a opportunity to investigate the potential of skin and nails. Cisplatin adds fresh toxicities of tumour-protective effect. their candidate against Ethyol. UTL-5g was the its own. With repeated doses, damage to the ideal subject for further testing because it is a kidney cells evolves slowly but predictably, and Ethyol is also associated with side-effects patented TNF-α modulator functional in vivo, in 25-30 per cent of cases the drug will affect the of its own – including dizziness, nausea, and is easily synthesisable via a simple one- WWW.RESEARCHMEDIA.EU 17 INTELLIGENCE batch, two-step reaction from readily available this new phase of study, the group obtained starting materials. The SBIR phase I trial involved further proof of UTL-5g’s chemoprotective NOVEL SMALL-MOLECULE numerous animal studies, and the findings were effects, as well as examining the mechanisms TNF- MODULATORS AS α overwhelmingly positive. by which it achieves these effects in vivo, and CHEMOPROTECTIVE AGENTS its pharmacokinetic properties. A more precise OBJECTIVES In rodent models, UTL-5g lowered elevated and detailed investigation of the substance’s levels of several substances associated with toxicity has also been carried out. With positive Short-term objective: to design and identify increased toxicity following cisplatin treatment; results, measures to develop the formulation and a promising radio/chemoprotective agent blood urea nitrogen, creatinine, blood aspartate upscale production of the active pharmacological that is significantly better than what is transaminase and alanine transaminase levels, ingredients are also planned. Based on the currently available. elevated by cisplatin, all fell significantly success of this work, 21st Century Therapeutics, Long-term objective: to develop a novel drug following UTL-5g treatment, constituting a Inc. has been able to form a number of productive for chemo/radioprotection to reduce the chemoprotective effect. What is more, the partnerships in the intervening years, and has suffering of patients and increase the chemo/ agent achieved the same extent of protection secured various grants to develop UTL-5g in new radiotherapy outcome. as amifostine at a greatly reduced dosage; 60 directions in addition to pursuing its continuing mg/kg of UTL-5g was equivalent to 200 mg/kg preclinical development. KEY COLLABORATORS of amifostine. It not only avoided the apparent Dr Frederick Valeriote, researcher in cancer tumour-protective effect, but actually added Currently, Shaw and his collaborators are and radiotherapy, Henry Ford Health System, positive effects: Shaw’s researchers observed an examining the possibility of using UTL-5g Detroit, Michigan, USA increased platelet count, and a dose-dependent as a radioprotective agent.
Recommended publications
  • Selective Protection of Normal Cells During Chemotherapy by RY4 Peptides
    Published OnlineFirst May 29, 2014; DOI: 10.1158/1541-7786.MCR-13-0425 Molecular Cancer Cell Death and Survival Research Selective Protection of Normal Cells during Chemotherapy by RY4 Peptides Xiao-Rong Wu, Lihua Liu, Zhi-Fu Zhang, Bing Zhang, Hongzhe Sun, Gerald L. Chan, and Na Li Abstract Mitochondrial targeted Szeto-Schiller (SS) peptides have recently gained attention for their antioxidative stress ability; however, the functional variations between normal and cancer cells have not been determined. Here, we report the results of such experiments conducted with a newly designed class of peptide called RY4, which is based on SS peptide sequence characteristics. The RY4 peptide exhibits distinct differences in antioxidative stress response between normal and cancer cells when challenged with chemotherapeutics like the glycolytic inhibitor dichlor- oacetate (DCA), the platinating agent carboplatin, and the DNA damage inducer doxorubicin. Interestingly, only normal human cells were protected by the RY4 peptide and catalase (CAT) activity was significantly enhanced in normal but not tumor cells when incubated with RY4. Pull-down, coimmunoprecipitation, and LC/MS-MS proteomic analysis demonstrated that RY4 and catalase are capable of forming protein complexes. Finally, in vivo efficacy was evaluated by intraperitoneal administration of RY4 into a lung cancer xenograft model, which revealed significant myocardiocyte protection from doxorubicin-induced cardiotoxicity without diminishing doxorubicin's tumoricidal effects. Taken together, RY4 offers selective protection to normal cells from chemotherapy-induced toxicity by enhancing the activity of cellular antioxidant enzymes. Implications: RY4 peptides selectively reduce chemotherapeutic-induced oxidative stress and represent a new class of chemoprotective agents with clinical potential.
    [Show full text]
  • Effect of the Chemoprotective Agent WR-2721 on Disposition and Biotransformations of Ormaplatin in the Fischer 344 Rat Bearing a Fibrosarcoma1
    [CANCERRESEARCH55, 2837—2846,July1. 1995] Effect of the Chemoprotective Agent WR-2721 on Disposition and Biotransformations of Ormaplatin in the Fischer 344 Rat Bearing a Fibrosarcoma1 D. CharlesThompson,StevenD. Wyrick, David J. Holbrook, and StephenG. Chane? Curriculum in Toxicology (D. C. T.. D. J. H., S. G. C.] and Department of Biochemistry and Biophysics ID. J. H., S. G. CI, School of Medicine, and Division of Medicinal Chemistry and Natural Products [S. D. WI, School of Pharmacy, University ofNorth Carolina, Chapel Hill, North Carolina 27599-7260 ABSTRA4@T be selective for nontumor tissues (4, 5). The proposed mechanism for this selectivity is a relative lack of alkaline phosphatase activity in The effects of the phosphorothloate agent, WR-2721, have been Eaves tumor tissues as compared to normal tissues and the lesser conversion ligated with respect to the biotransformations oformaplatin in the Fischer of the inactive parent compound, WR-2721, to its postulated active 344 rat bearinga transplantedfibrosarcoma.A number of different paradigms ofdosing route and schedule for the administration of the two thiol metabolite, WR-1065, within tumor tissues. Because WR-1065 agents have been investigated. In the first group ofexperiments, WR.2721 is postulated to bind to reactive platinum species within the cell, this (200mg/kg, l.p.) wasadministered30 mis beforeormaplatin (12.5mg/kg, would provide a mechanistic basis for selective protection of normal i.p.), and then peritoneal fluid, plasma, and tissues were harvested at 30 tissues as compared to tumor tissues (3, 6, 7). This hypothesis has mm after the ormaplatin administration. Our results suggest that a sig never been tested directly.
    [Show full text]
  • Mesna: Drug Information
    Official reprint from UpToDate® www.uptodate.com ©2017 UpToDate® Mesna: Drug information Copyright 1978-2017 Lexicomp, Inc. All rights reserved. (For additional information see "Mesna: Patient drug information" and see "Mesna: Pediatric drug information") For abbreviations and symbols that may be used in Lexicomp (show table) Brand Names: US Mesnex Brand Names: Canada Mesna for injection; Uromitexan Pharmacologic Category Antidote; Chemoprotective Agent Dosing: Adult Note: Mesna dosing schedule should be repeated each day ifosfamide is received. If ifosfamide dose is adjusted (decreased or increased), the mesna dose should also be modified to maintain the mesna-to-ifosfamide ratio. Prevention of ifosfamide-induced hemorrhagic cystitis: Standard-dose ifosfamide (manufacturer’s labeling): IV: Mesna dose is equal to 20% of the ifosfamide dose given for 3 doses: With the ifosfamide dose, hour 4, and at hour 8 after the ifosfamide dose (total daily mesna dose is 60% of the ifosfamide dose) Oral mesna (following IV mesna; for ifosfamide doses ≤2 g/m2/day): Mesna dose (IV) is equal to 20% of the ifosfamide dose at hour 0, followed by mesna dose (orally) equal to 40% of the ifosfamide dose given 2 and 6 hours after the ifosfamide dose (total daily mesna dose is 100% of the ifosfamide dose). Note: If the oral mesna dose is vomited within 2 hours of administration, repeat the dose or administer IV mesna. Short infusion standard-dose ifosfamide (<2.5 g/m2/day): ASCO guidelines: IV: Total mesna dose is equal to 60% of the ifosfamide dose, in 3 divided
    [Show full text]
  • Tuning the Metabolism of the Anticancer Drug Cisplatin with Chemoprotective Agents to Improve Cite This: Metallomics, 2016, 8, 1170 Its Safety and Efficacy
    Metallomics View Article Online MINIREVIEW View Journal | View Issue Tuning the metabolism of the anticancer drug cisplatin with chemoprotective agents to improve Cite this: Metallomics, 2016, 8, 1170 its safety and efficacy Melani Sooriyaarachchi,a Graham N. George,bcd Ingrid J. Pickering,bcd e a Aru Narendran and Ju¨rgen Gailer* Numerous in vivo studies have shown that the severe toxic side-effects of intravenously administered cisplatin can be significantly reduced by the co-administration of sulfur-containing ‘chemoprotective agents’. Using a metallomics approach, a likely biochemical basis for these potentially useful observations Received 18th August 2016, was only recently uncovered and appears to involve the reaction of chemoprotective agents with cisplatin- Accepted 8th September 2016 derived Pt-species in human plasma to form novel platinum–sulfur complexes (PSC’s). We here reveal DOI: 10.1039/c6mt00183a aspects of the structure of two PSC’s and establish the identification of an optimal chemoprotective agent to ameliorate the toxic side-effects of cisplatin, while leaving its antineoplastic activity largely intact, as a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. www.rsc.org/metallomics feasible research strategy to transform cisplatin into a safer and more effective anticancer drug. Introduction Severe toxic side-effects of CP The serendipitous discovery of the antiproliferative effects of In contrast to so-called ‘molecularly targeted’ anticancer drugs cis-diaminedichloroplatinum(II) or cisplatin [CP] on E.
    [Show full text]
  • Vernonia Cinerea) in Human Embryonic Kidney (HEK293
    Review Article Clinician’s corner Images in Medicine Experimental Research Case Report Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2019/40242.12624 Original Article Postgraduate Education Cytoprotective Activity of Neichitti (Vernonia Case Series cinerea) in Human Embryonic Kidney (HEK293) Section Normal Cells and Human Cervix Epitheloid Short Communication Carcinoma (HeLa) Cells against Cisplatin Complementary/Alternative Medicine Induced Toxicity: A Comparative Study ARUL AMUTHAN1, VASUDHA DEVI2, CHANDRASHEKARA SHASTRY SHREEDHARA3, VENKATA RAO4, RICHARD LOBO5 ABSTRACT statistically compared using One-Way ANOVA, followed by Introduction: Traditional Siddha Medicine literatures suggest Dunnett’s (2-sided) post-hoc test. to use the decoction of Vernonia cinerea (VC) to alleviate toxic Results: Aqueous fraction showed 2.8 times higher effects caused by metals. Cisplatin, a metal used in cancer cytoprotection (improvement in cell viability by 54%) than treatment is known to cause nephrotoxicity. CAE against cisplatin induced toxicity in HEK293 cells. BF did Aim: To evaluate and compare protective activity of aqueous not show protective activity in HEK293 cells. In HELA cells, extract and fractions of VC in Human Embryonic Kidney AF showed 1.73 times higher cytoprotection than CAE and (HEK293) cells and Human Cervix Epitheloid Carcinoma (HELA) 1.55 times higher cytoprotection than BF against cisplatin, as cell lines against cisplatin induced cytotoxicity. evidenced by improvement in cell viability by 30%, 11% and 13% in AF, CAE and BF respectively. AF exhibited 80% higher Materials and Methods: The Crude Aqueous Extract (CAE) cytoprotection against cisplatin cytotoxicity in normal HEK293 was obtained from whole plant of VC. CAE was fractioned using than cancer HELA cells.
    [Show full text]
  • 703.Full.Pdf
    Vol. 9, 703–710, February 2003 Clinical Cancer Research 703 Phase I Clinical and Pharmacologic Study of Weekly Cisplatin and Irinotecan Combined with Amifostine for Refractory Solid Tumors1 Abdul-Kader Souid, Ronald L. Dubowy, Conclusion: The combination of cisplatin and irinote- Susan M. Blaney, Linda Hershon, Jim Sullivan, can administered weekly for 4 weeks in children with re- Wendy D. McLeod, and Mark L. Bernstein1 fractory cancer is well tolerated. Amifostine offers some myeloprotection, likely permitting >30% dose escalation for Departments of Pediatric Hematology/Oncology, State University of irinotecan, when administered in a combination regimen New York Upstate Medical University, Syracuse, New York 13210 [A-K. S., R. L. D.]; Texas Children’s Cancer Center, Houston, Texas with cisplatin. However, effective antiemetics and calcium 77030 [S. M. B.]; Sainte-Justine Hospital, H3T 1C5, Canada [L. H., supplementation are necessary with the use of amifostine. M. L. B.]; and the Statistical Office, Children Oncology Group, Further escalation of irinotecan dosing, using these precau- Gainesville, Florida 32601 [J. S., W. D. M.] tions for amifostine administration, may be possible. ABSTRACT INTRODUCTION Purpose: This Phase I study was designed primarily to Irinotecan (Camptosar, CPT-11, 7-ethyl-10-[4-(1-piper- determine the maximum tolerated dose (MTD) and dose- idino)-1-piperidino]carbonyloxycamptothecin) is a water-solu- limiting toxicities (DLTs) of irinotecan and cisplatin with ble derivative of camptothecin, an alkaloid extracted
    [Show full text]
  • A Solid Phase Assay for Topoisomerase I Interfacial Poisons and Catalytic Inhibitors
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2011 A Solid Phase Assay For Topoisomerase I Interfacial Poisons And Catalytic Inhibitors Vidusha Cyril University of Central Florida Part of the Molecular Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Cyril, Vidusha, "A Solid Phase Assay For Topoisomerase I Interfacial Poisons And Catalytic Inhibitors" (2011). Electronic Theses and Dissertations, 2004-2019. 1836. https://stars.library.ucf.edu/etd/1836 A SOLID PHASE ASSAY FOR TOPOISOMERASE I INTERFACIAL POISONS AND CATALYTIC INHIBITORS by VIDUSHA CYRIL B.Tech. Sathyabama University, 2009 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Molecular and Microbiology in the Burnett School of Biomedical Sciences in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2011 Major Professor: Mark. T. Muller © 2011 Vidusha Cyril ii ABSTRACT We report a mechanism based screening technique to rapidly identify eukaryotic topoisomerase I targeting agents. The method is based on genetic tagging of topoisomerase I to immobilize the enzyme on a solid surface in a microtiter well format. DNA is added to the wells and retained DNA is detected by Picogreen fluorescence. Compounds that result in an increase in Picogreen staining represent potential topoisomerase interfacial poisons while those that reduce fluorescence report catalytic inhibitors; therefore, the solid phase assay represents a „bimodal‟ readout that reveals mechanisms of action.
    [Show full text]
  • Interaction of Mesna with Platinum Chemotherapy Agents Cisplatin and Carboplatin: Chemistry, in Vitro, in Vivo, and Clinical Pharmacokinetics
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies Legacy Theses 2001 Interaction of Mesna with platinum chemotherapy agents Cisplatin and Carboplatin: chemistry, in vitro, in vivo, and clinical pharmacokinetics Kangarloo, Shahbal B. Kangarloo, S. B. (2001). Interaction of Mesna with platinum chemotherapy agents Cisplatin and Carboplatin: chemistry, in vitro, in vivo, and clinical pharmacokinetics (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/16467 http://hdl.handle.net/1880/41240 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca The author of this thesis has granted the University of Calgary a non-exclusive license to reproduce and distribute copies of this thesis to users of the University of Calgary Archives. Copyright remains with the author. Theses and dissertations available in the University of Calgary Institutional Repository are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited. The original Partial Copyright License attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by the University of Calgary Archives.
    [Show full text]
  • A Phase I Trial of Amifostine (WR-2721) and Melphalan in Children with Refractory Cancer Peter C
    (CANCER RESEARCH 55. 406M-4072. Seplcmbtr 15. I9M5| A Phase I Trial of Amifostine (WR-2721) and Melphalan in Children with Refractory Cancer Peter C. Adamson,1 Frank M. Balis, Jean E. Belasco, Beverly Lange, Stacey L. Berg,2 Susan M. Blaney,2 Catherine Craig,2 and David G. Poplack2 Pediatrie Branch, National Cancer Institute, Bethesda, Maryland 20M2 ¡P.C. A.. F. M. B., C. G., S. L B., S. M. B.. D. G. P./, unti Children's Hospital of Philadelphia. Philadelphia, Pennsylvania 19104 ¡J.E. B.. B. L.¡ ABSTRACT The use of colony-stimulating factors, an approach that has been successful with other anticancer drugs, did not prevent severe myelo Melphalan has a steep dose-response curve, but the use of high doses suppression from melphalan, a stem-cell poison (3). An alternative results in unacceptable myelosuppression. Strategies to circumvent this approach is to administer a chemoprotective agent. Amifostine (WR- dose-limiting myelosuppression would allow for the administration of higher, more effective doses of melphalan. Amifostine (WR-2721) has been 2721) is an organic thiophosphate that selectively protects against the shown in preclinical studies to protect the bone marrow from the myelo- cytotoxicity of alkylating agents. In preclinical studies, amifostine toxicity of melphalan, and in clinical trials, to protect from the myelotox- protects the bone marrow from the myelotoxicity of melphalan (4), icity of other alkylating agents. A Phase 1 trial of the combination of and in clinical trials it appears to circumvent the myelotoxicity of amifostine and melphalan was performed in children with refractory other alkylating agents (5-10).
    [Show full text]
  • Amifostine (WR-2721), a Cytoprotective Agent During High-Dose Cyclophosphamide Treatment of Non-Hodgkin’S Lymphomas: a Phase II Study
    Brazilian Journal of Medical and Biological Research (2000) 33: 791-798 Amifostine and high-dose cyclophosphamide for NHL 791 ISSN 0100-879X Amifostine (WR-2721), a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin’s lymphomas: a phase II study C.A. De Souza1, G. Santini2, 1Centro de Hematologia e Hemoterapia, Unidade de Transplante de Medula, G. Marino2, S. Nati2, Universidade Estadual de Campinas, Campinas, SP, Brasil A.M. Congiu2, A.C. Vigorito1 2Department of Hematology, San Martino Hospital, Genoa, Italy and E. Damasio2 Abstract Correspondence Clinical trials indicate that amifostine may confer protection on Key words C.A. De Souza various normal tissues without attenuating anti-tumor response. When · Amifostine Centro de Hematologia e administered prior to chemotherapy or radiotherapy, it may provide a · Cytoprotection Hemoterapia broad spectrum of cytoprotection including against alkylating drugs. · Non-Hodgkin’s lymphoma Unidade de Transplante de Medula The mechanism of protection resides in the metabolism at normal · High-dose cyclophosphamide UNICAMP · tissue site by membrane-bound alkaline phosphatase. Toxicity of this Peripheral blood progenitor 13083-080 Campinas, SP cell mobilization Brasil drug is moderate with hypotension, nausea and vomiting, and hypo- Fax: +55-19-788-8750 calcemia being observed. We report a phase II study using amifostine E-mail: [email protected] as a protective drug against high-dose cyclophosphamide (HDCY) (7 g/m2), used to mobilize peripheral blood progenitor cells (PBPC) and Publication supported by FAPESP. to reduce tumor burden. We enrolled 29 patients, 22 (75.9%) affected by aggressive and 7 (24.1%) by indolent non-Hodgkin’s lymphoma (NHL), who were submitted to 58 infusions of amifostine and com- Received August 10, 1999 pared them with a historical group (33 patients) affected by aggressive Accepted March 9, 2000 NHL and treated with VACOP-B followed by HDCY.
    [Show full text]
  • Pharmacokinetics and Therapeutic Uses of Mesna
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository November 2010 Pharmacokinetics and Therapeutic Uses of Mesna Murray J. Cutler The University of Western Ontario Supervisor Dr. David J. Freeman The University of Western Ontario Graduate Program in Pharmacology and Toxicology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Murray J. Cutler 2010 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Pharmacology Commons Recommended Citation Cutler, Murray J., "Pharmacokinetics and Therapeutic Uses of Mesna" (2010). Electronic Thesis and Dissertation Repository. 28. https://ir.lib.uwo.ca/etd/28 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. PHARMACOKINETICS AND THERAPEUTIC USES OF MESNA (Spine Title: Pharmacokinetics and Therapeutic Uses of Mesna) (Thesis Format: Integrated-Article) By Murray J. Cutler Department of Physiology and Pharmacology Graduate Program In Pharmacology and Toxicology Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario November, 2010 © Murray J. Cutler, 2010 THE UNIVERSITY OF WESTERN ONTARIO SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE
    [Show full text]
  • OCN Review Course About the Audience… Disclosures Plan for The
    About the audience… OCN Review Course • When will you take the exam? – Now anytime- 3 months post the sign up • Is anyone in the group, just contemplating taking the test? Chris Rimkus RN, MSN, AOCN • Anyone in here to get CEU’s? • The goal of the OCN test is to validate that you are a well rounded oncology nurse Plan for the day Disclosures • Goal of this course is to do snapshot review • I am on a couple speakers bureaus, but this – For those taking it soon- validate what you know will not impact anything I teach today – For those considering, shows what you need to – Onyx/Amgen focus on – Genentech • I will question you to see what you know and maybe show you where you need to focus attention • It is possible for me to discuss some off • Stay on track!! label information – This may take some work for me/you • There will be a lot of info and to be efficient – With an open question/answer, sometimes time with your time, it is likely the breaks are not gets away enough for appropriate adult learning • Get through all material theory • Get done ON TIME!!!!!!!!!!!! ONCC.ORG 1 ONS.ORG Resources to use • ONCC Website – 50 free questions- OCN – Other- do as many as you can • Core Curriculum- outdated but still recommended by those who take the test • ONS standards of professional practice • ONCC practice tests • Guidelines for practice from ONS • Other textbooks Do as many of the free tests as Do both versions of OCN, CBCN, you can!!! BMTCN, AOCNS 2 Books I Know… These books are still relevant… These are new editions this year $65-80 $55.86-
    [Show full text]