MASTERS of DISGUISE: Learning About Camouflage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Habitat Selection by Two K-Selected Species: an Application to Bison and Sage Grouse
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-01 Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse Joshua Taft Kaze Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Animal Sciences Commons BYU ScholarsArchive Citation Kaze, Joshua Taft, "Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse" (2013). Theses and Dissertations. 4284. https://scholarsarchive.byu.edu/etd/4284 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Masters of Science Randy T. Larsen, Chair Steven Peterson Rick Baxter Department of Plant and Wildlife Science Brigham Young University December 2013 Copyright © 2013 Joshua T. Kaze All Rights Reserved ABSTRACT Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze Department of Plant and Wildlife Science, BYU Masters of Science Population growth for species with long lifespans and low reproductive rates (i.e., K- selected species) is influenced primarily by both survival of adult females and survival of young. Because survival of adults and young is influenced by habitat quality and resource availability, it is important for managers to understand factors that influence habitat selection during the period of reproduction. -
Predators As Agents of Selection and Diversification
diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8]. -
Mimicry and Defense
3/24/2015 Professor Donald McFarlane Mimicry and Defense Protective Strategies Camouflage (“Cryptic coloration”) Diverse Coloration Diversion Structures Startle Structures 2 1 3/24/2015 Camouflage (“Cryptic coloration”) Minimize 3d shape, e.g. flatfish Halibut (Hippoglossus hippoglossus) 3 4 2 3/24/2015 Counter‐Shading 5 Disruptive Coloration 6 3 3/24/2015 Polymorphism – Cepeae snails 7 Polymorphism – Oophaga granuliferus 8 4 3/24/2015 Polymorphism – 9 Polymorphism – Oophaga Geographic locations of study populations and their color patterns. (A) Map of the pacific coast of Colombia showing the three study localities: in blue Oophaga histrionica, in orange O. lehmanni, and in green the pHYB population. (B) Examples of color patterns of individuals from the pHYB population (1–4) and the pattern from a hybrid between Oophaga histrionica and O. lehmanni bred in the laboratory (H) 10 5 3/24/2015 Diversion Structures 11 Startle Structures 12 6 3/24/2015 Warning Coloration (Aposematic coloration) Advertise organism as distasteful, toxic or venomous Problem: Predators must learn by attacking prey; predator learning is costly to prey. Therefore strong selective pressure to STANDARDIZE on a few colors/patterns. This is MULLERIAN MIMICRY. Most common is yellow/black, or red/yellow/black 13 Warning Coloration (Aposematic coloration) Bumblebee (Bombus Black and yellow mangrove snake (Boiga sp.) Sand Wasp (bembix oculata) dendrophila) Yellow‐banded poison dart frog (Dendrobates leucomelas Fire salamander ( Salamandra salamandra) 14 7 3/24/2015 Warning Coloration (Aposematic coloration) coral snakes (Micrurus sp.) ~ 50 species in two families, all venomous 15 Batesian Mimicry 1862 –Henry Walter Bates; “A Naturalist on the River Amazons” 16 8 3/24/2015 Batesian Mimicry Batesian mimics “cheat” –they lack toxins, venom, etc. -
INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH a Knowledge Repository Art
[Conference-Composition of Colours :December , 2014 ] ISSN- 2350-0530 DOI: https://doi.org/10.29121/granthaalayah.v2.i3SE.2014.3515 INTERNATIONAL JOURNAL of RESEARCH –GRANTHAALAYAH A knowledge Repository Art PROTECTIVE COLORATION IN ANIMALS Leena Lakhani Govt. Girls P.G. College, Ujjain (M.P.) India [email protected] INTRODUCTION Animals have range of defensive markings which helps to the risk of predator detection (camouflage), warn predators of the prey’s unpalatability (aposematism) or fool a predator into mimicry, masquerade. Animals also use colors in advertising, signalling services such as cleaning to animals of other species, to signal sexual status to other members of the same species. Some animals use color to divert attacks by startle (dalmatic behaviour), surprising a predator e.g. with eyespots or other flashes of color or possibly by motion dazzle, confusing a predator attack by moving a bold pattern like zebra stripes. Some animals are colored for physical protection, such as having pigments in the skin to protect against sunburn; some animals can lighten or darken their skin for temperature regulation. This adaptive mechanism is known as protective coloration. After several years of evolution, most animals now achieved the color pattern most suited for their natural habitat and role in the food chains. Animals in the world rely on their coloration for either protection from predators, concealment from prey or sexual selection. In general the purpose of protective coloration is to decrease an organism’s visibility or to alter its appearance to other organisms. Sometimes several forms of protective coloration are superimposed on one animal. TYPES OF PROTECTIVE COLORATION PREVENTIVE DETECTION AND RECOGNITION CRYPSIS AND DISRUPTION Cryptic coloration helps to disguise an animal so that it is less visible to predators or prey. -
Seventh Grade
Name: _____________________ Maui Ocean Center Learning Worksheet Seventh Grade Our mission is to foster understanding, wonder and respect for Hawai‘i’s Marine Life. Based on benchmarks SC.6.3.1, SC. 7.3.1, SC. 7.3.2, SC. 7.5.4 Maui Ocean Center SEVENTH GRADE 1 Interdependent Relationships Relationships A food web (or chain) shows how each living thing gets its food. Some animals eat plants and some animals eat other animals. For example, a simple food chain links plants, cows (that eat plants), and humans (that eat cows). Each link in this chain is food for the next link. A food chain always starts with plant life and ends with an animal. Plants are called producers (they are also autotrophs) because they are able to use light energy from the sun to produce food (sugar) from carbon dioxide and water. Animals cannot make their own food so they must eat plants and/or other animals. They are called consumers (they are also heterotrophs). There are three groups of consumers. Animals that eat only plants are called herbivores. Animals that eat other animals are called carnivores. Animals and people who eat both animals and plants are called omnivores. Decomposers (bacteria and fungi) feed on decaying matter. These decomposers speed up the decaying process that releases minerals back into the food chain for absorption by plants as nutrients. Do you know why there are more herbivores than carnivores? In a food chain, energy is passed from one link to another. When a herbivore eats, only a fraction of the energy (that it gets from the plant food) becomes new body mass; the rest of the energy is lost as waste or used up (by the herbivore as it moves). -
Adaptations for Survival: Symbioses, Camouflage & Mimicry
Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasitism Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Commensalism or Mutualism? Anemone shrimp http://magma.nationalgeographic.com/ Anemone fish http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp and Eel http://magma.nationalgeographic.com/ Whale Barnacles & Lice What kinds of symbioses are these? Commensal Parasite Camouflage • Often important for predators and prey to avoid being seen • Predators to catch their prey and prey to hide from their predators • Camouflage: Passive or adaptive Passive Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Passive Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Adaptive Camouflage Camouflage by Accessorizing Decorator crab Friday Harbor Marine Health Observatory http://www.projectnoah.org/ Camouflage by Mimicry http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Mimicry • Animals can gain protection (or even access to prey) by looking -
Food Web Lesson Plan
NYSDEC Region 1 Freshwater Fisheries I FISH NY Program Food Web Grade Level(s): 3-5 NYS Learning Standards Time: 30-45 minutes Core Curriculum MST Group Size: 10-30 Living Environment: Standard 4 Students will: understand and apply Summary scientific concepts, principles, and theories Students will be introduced to some of the pertaining to the physical setting and organisms in an aquatic ecosystem. The concept living environment and recognize the of food webs and the many roles organisms play historical development of ideas in science. as consumers, producers, and decomposers will • Key Idea 5: Organisms maintain a be introduced. Students will participate in an dynamic equilibrium that sustains activity to learn how humans play a role in the life. aquatic food web as anglers and consumers. • Key Idea 6: Plants and animals depend on each other and their Objectives physical environment. • Students will be able to identify 1-3 fish specific to fishing site • Students will be able to construct an aquatic food web • Students will be able to explain how humans play a role in the aquatic food web • Students will be able to identify species as producers, consumers, or decomposers Materials o Organism Identification Cards o Food Web worksheet o Fish mounts/pictures of fish o Suggested Organism Props for each identification card: . Angler: fishing rod with thick fishing line . Crab: tongs . Plankton: hair band with springs . Sun: sunglasses . Algae: toothpaste or plastic fish tank plant . Bird: noise maker or feathers . Bait: air freshener . Shellfish: fake pearl necklace . Fish: models, pictures, or nose plugs . Skate: elbow & knee pads . -
Adaptations for Survival: Symbioses, Camouflage
Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.oceanfootage.com/stockfootage/Cleaning_Station_Fish/ http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasites Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Whale Barnacles & Lice Commensalism or Parasitism? Commensalism or Mutualism? http://magma.nationalgeographic.com/ http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp http://magma.nationalgeographic.com/ Anemone Hermit Crab http://www.scuba-equipment-usa.com/marine/APR04/ Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Adaptive Camouflage Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Camouflage by Mimicry Mimicry • Batesian: an edible species evolves to look similar to an inedible species to avoid predation • Mullerian: two or more inedible species all evolve to look similar maximizing efficiency with which predators learn to avoid them Batesian Mimicry An edible species evolves to resemble an inedible species to avoid predators Pufferfish (poisonous) Filefish (non-poisonous) -
Bio112 Home Work Community Structure
Name: Date: Bio112 Home Work Community Structure Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. All of the populations of different species that occupy and are adapted to a given habitat are referred to by which term? a. biosphere b. community c. ecosystem d. niche e. ecotone ____ 2. Niche refers to the a. home range of an animal. b. preferred habitat for an organism. c. functional role of a species in a community. d. territory occupied by a species. e. locale in which a species lives. ____ 3. A relationship in which benefits flow both ways between the interacting species is a. a neutral relationship. b. commensalism. c. competitive exclusion. d. mutualism. e. parasitism. ____ 4. A one-way relationship in which one species benefits and directly hurts the other is called a. commensalism. b. competitive exclusion. c. parasitism. d. obligate mutualism. e. neutral relationship. ____ 5. The interaction in which one species benefits and the second species is neither harmed nor benefited is a. mutualism. b. parasitism. c. commensalism. d. competition. e. predation. ____ 6. The interaction between two species in which one species benefits and the other species is harmed is a. mutualism. b. commensalism. c. competition. d. predation. e. none of these ____ 7. The relationship between the yucca plant and the yucca moth that pollinates it is best described as a. camouflage. b. commensalism. c. competitive exclusion. d. mutualism. e. all of these Name: Date: ____ 8. Competitive exclusion is the result of a. mutualism. b. commensalism. -
ANIMAL ADAPTATIONS UNIT LESSON PLAN 6Th – 8Th Grade
ANIMAL ADAPTATIONS UNIT LESSON PLAN 6th – 8th grade Topics Introduction to Adaptations Camouflage Animal Locomotion Animal Senses Food Web Objectives Students will be able to: Provide examples of and explain how the three types of adaptations are utilized by living organisms. Identify the types of adaptations that animals use for protection, locomotion, and finding food. Describe differences in adaptations between aquatic and terrestrial animals. Interpret examples of natural selection and explain why it is important for a species. Create a food web and identify the key elements. Explain how energy moves through trophic levels of a food web. Explain and provide examples of how an animal’s habitat influences its adaptations. Instructional Materials Topic Video Vocabulary Flash Cards Assessment Materials Video Reflection Worksheet Video Quiz Adaptations 1st letter Worksheet Natural Selection worksheet Camouflage worksheet (answer sheet available) Animal Locomotion worksheet Animal Senses worksheet (answer sheet available) Food Web worksheet (answer sheet available) Related Materials Links to videos and reading material that provides additional information on topics. NOAA Resources The National Oceanic and Atmospheric Administration (NOAA) is a partner of SoundWaters. These are additional resources you may use in addition to the other materials included above. Aquatic food webs https://www.noaa.gov/education/resource-collections/marine-life-education- resources/aquatic-food-webs Horseshoe crabs https://www.fisheries.noaa.gov/feature-story/horseshoe-crabs-managing-resource-birds- -
Factors Affecting Counterillumination As a Cryptic Strategy
Reference: Biol. Bull. 207: 1–16. (August 2004) © 2004 Marine Biological Laboratory Propagation and Perception of Bioluminescence: Factors Affecting Counterillumination as a Cryptic Strategy SO¨ NKE JOHNSEN1,*, EDITH A. WIDDER2, AND CURTIS D. MOBLEY3 1Biology Department, Duke University, Durham, North Carolina 27708; 2Marine Science Division, Harbor Branch Oceanographic Institution, Ft. Pierce, Florida 34946; and 3Sequoia Scientific Inc., Bellevue, Washington 98005 Abstract. Many deep-sea species, particularly crusta- was partially offset by the higher contrast attenuation at ceans, cephalopods, and fish, use photophores to illuminate shallow depths, which reduced the sighting distance of their ventral surfaces and thus disguise their silhouettes mismatches. This research has implications for the study of from predators viewing them from below. This strategy has spatial resolution, contrast sensitivity, and color discrimina- several potential limitations, two of which are examined tion in deep-sea visual systems. here. First, a predator with acute vision may be able to detect the individual photophores on the ventral surface. Introduction Second, a predator may be able to detect any mismatch between the spectrum of the bioluminescence and that of the Counterillumination is a common form of crypsis in the background light. The first limitation was examined by open ocean (Latz, 1995; Harper and Case, 1999; Widder, modeling the perceived images of the counterillumination 1999). Its prevalence is due to the fact that, because the of the squid Abralia veranyi and the myctophid fish Cera- downwelling light is orders of magnitude brighter than the toscopelus maderensis as a function of the distance and upwelling light, even an animal with white ventral colora- visual acuity of the viewer. -
Deceptive Coloration - Natureworks 01/04/20, 11:58 AM
Deceptive Coloration - NatureWorks 01/04/20, 11:58 AM Deceptive Coloration Deceptive coloration is when an organism's color Mimicry fools either its predators or its prey. There are two Some animals and plants look like other things -- types of deceptive coloration: camouflage and they mimic them. Mimicry is another type of mimicry. deceptive coloration. It can protect the mimic from Camouflage predators or hide the mimic from prey. If mimicry was a play, there would be three characters. The Model - the species or object that is copied. The Mimic - looks and acts like another species or object. The Dupe- the tricked predator or prey. The poisonous Camouflage helps an organism blend in with its coral snake surroundings. Camouflage can be colors or and the patterns or both. When organisms are harmless camouflaged, they are harder to find. This means king snake predators have to spend a longer time finding can look a them. That's a waste of energy! When a predator is lot alike. camouflaged, it makes it easier to sneak up on or Predators surprise its prey. will avoid Blending In: Stripes or Solids? the king snake because they think it is poisonous. This type There are of mimicry is called Batesian mimicry. In lots of Batesian mimicry a harmless species mimics a different toxic or dangerous species. examples of The viceroy butterfly and monarch butterfly were once thought to camouflage. Some colors and patterns help exhibit animals blend into areas with light and shadow. Batesian The tiger's stripes help it blend into tall grass. Its mimicry golden brown strips blend in with the grass and the where a dark brown and black stripes merge with darker harmless shadows.