Dissertation Ting-Wen Chen V3 CV.Pages

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Ting-Wen Chen V3 CV.Pages ZENTRUM FÜR BIODIVERSITÄT UND NACHHALTIGE LANDNUTZUNG SEKTION BIODIVERSITÄT, ÖKOLOGIE UND NATURSCHUTZ − CENTRE OF BIODIVERSITY AND SUSTAINABLE LAND USE − SECTION: BIODIVERSITY, ECOLOGY AND NATURE CONSERVATION Assembly processes in soil animal communities: Integrating phylogeny and trait-based approaches Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität Göttingen vorgelegt von Master of Science Ting-Wen Chen aus Kaohsiung City, Taiwan Göttingen, Dezember 2017 Referent: Prof. Dr. Stefan Scheu Korreferent: Prof. Dr. Holger Kreft Tag der mündlichen Prüfung: 26.01.2018 Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky Table of contents Summary .......................................................................................................................1 Chapter 1 General Introduction ....................................................................................................3 The nature of soil biodiversity .........................................................................................................................3 Inferring processes from patterns ...................................................................................................................3 Community assembly processes ......................................................................................................................................3 Functional traits—the objects ..........................................................................................................................................4 Community phylogenetic patterns ...................................................................................................................................5 A conceptual model for soil biodiversity studies ............................................................................................6 Collembola—the model organisms .................................................................................................................7 Collembola phylogeny .....................................................................................................................................................8 Collembola traits ..............................................................................................................................................................9 Fatty acid composition as a trait ......................................................................................................................................9 Case studies using Collembola ......................................................................................................................................10 Structure of the thesis .....................................................................................................................................11 References ........................................................................................................................................................11 Chapter 2 Collembola Phylogeny and Trait Evolution .............................................................17 Abstract ...........................................................................................................................................................17 Keywords .........................................................................................................................................................17 Introduction..................................................................................................................................................... 18 Materials and Methods ..................................................................................................................................19 Taxa sampling ...............................................................................................................................................................19 DNA extraction, PCR and sequencing ...........................................................................................................................20 Phylogeny of field-collected Collembola ......................................................................................................................21 Individual-based unrooted phylogeny .....................................................................................................................21 Species-based phylogeny......................................................................................................................................... 21 Extended Collembola phylogeny ...................................................................................................................................22 Ultrametric tree transformation .....................................................................................................................................22 Collembola traits ............................................................................................................................................................23 Phylogenetic signal ........................................................................................................................................................23 Ancestral state estimation ..............................................................................................................................................24 Evolution model of traits ...............................................................................................................................................24 Correlated evolution of traits .........................................................................................................................................24 Results ..............................................................................................................................................................25 Phylogeny of field-collected Collembola ......................................................................................................................25 Phylogeny of species occurring in Central Europe ........................................................................................................25 Phylogenetic signal of traits ...........................................................................................................................................28 Trait evolution ................................................................................................................................................................28 Discussion ........................................................................................................................................................32 Collembola phylogeny ...................................................................................................................................................32 Functional traits and their evolution ..............................................................................................................................33 Conclusions and Outlooks ............................................................................................................................................35 Author Contributions .....................................................................................................................................35 Data Accessibility ............................................................................................................................................35 References ........................................................................................................................................................35 Supplementary Materials ...............................................................................................................................41 vii Chapter 3 Neutral lipid fatty acid composition as trait and constraint in Collembola evolution ......................................................................................................................59 Abstract ...........................................................................................................................................................59 Keywords .........................................................................................................................................................59 Introduction..................................................................................................................................................... 60 Materials and Methods ..................................................................................................................................61 Sampling .......................................................................................................................................................................61 Fatty acid analysis ..........................................................................................................................................................63 Collembola phylogeny ...................................................................................................................................................64 Statistical analysis ..........................................................................................................................................................65
Recommended publications
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • With Special Emphasis on the Equatorial Oceanic Islands
    insects Article Synthesis of the Brazilian Poduromorpha (Collembola: Hexapoda) with Special Emphasis on the Equatorial Oceanic Islands Estevam C. A. de Lima 1,2,* , Maria Cleide de Mendonça 1, Gabriel Costa Queiroz 1 , Tatiana Cristina da Silveira 1 and Douglas Zeppelini 2 1 Laboratório de Apterygotologia, Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; [email protected] (M.C.d.M.); [email protected] (G.C.Q.); [email protected] (T.C.d.S.) 2 Laboratório de Sistemática de Collembola e Conservação—Coleção de Referência de Fauna de Solo—CCBSA—Universidade Estadual da Paraíba Campus V, João Pessoa 58070-450, Brazil; [email protected] * Correspondence: [email protected] Simple Summary: Endemic Collembola species are bioindicators of environmental quality since native species abundance is particularly sensitive to environmental disturbances. Oceanic island biota generally present high percentages of endemic species, and the vulnerability of these species is higher than those of the continents. The objective of this work was to carry out a survey of the Collembola species of the order Poduromorpha in the Brazilian oceanic islands and synthesize a distribution list of this order for Brazil. Our results reveal four new species of Collembola Poduromorpha for Brazilian oceanic islands that may be useful for the conservation strategies of these island regions and a contributor to the knowledge of the order in Brazil. Citation: de Lima, E.C.A.; de Mendonça, M.C.; Queiroz, G.C.; da Silveira, T.C.; Abstract: We present new species and records of Poduromorpha for the Brazilian oceanic islands and Zeppelini, D.
    [Show full text]
  • Biodiversity of Compost Mesofauna and Its Potential As an Indicator of the Composting Process Status
    ® Dynamic Soil, Dynamic Plant ©2011 Global Science Books Biodiversity of Compost Mesofauna and its Potential as an Indicator of the Composting Process Status Hanne Steel* • Wim Bert Nematology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium Corresponding author : * [email protected] ABSTRACT One of the key issues in compost research is to assess the quality and maturity of the compost. Biological parameters, especially based on mesofauna, have multiple advantages for monitoring a given system. The mesofauna of compost includes Isopoda, Myriapoda, Acari, Collembola, Oligochaeta, Tardigrada, Hexapoda, and Nematoda. This wide spectrum of organisms forms a complex and rapidly changing community. Up to the present, none of the dynamics, in relation to the composting process, of these taxa have been thoroughly investigated. However, from the mesofauna, only nematodes possess the necessary attributes to be potentially useful ecological indicators in compost. They occur in any compost pile that is investigated and in virtually all stages of the compost process. Compost nematodes can be placed into at least three functional or trophic groups. They occupy key positions in the compost food web and have a rapid respond to changes in the microbial activity that is translated in the proportion of functional (feeding) groups within a nematode community. Further- more, there is a clear relationship between structure and function: the feeding behavior is easily deduced from the structure of the mouth cavity and pharynx. Thus, evaluation and interpretation of the abundance and function of nematode faunal assemblages or community structures offers an in situ assessment of the compost process.
    [Show full text]
  • Collembola of Canada 187 Doi: 10.3897/Zookeys.819.23653 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 187–195 (2019) Collembola of Canada 187 doi: 10.3897/zookeys.819.23653 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Collembola of Canada Matthew S. Turnbull1, Sophya Stebaeva2 1 Unaffiliated, Kingston, Ontario, Canada2 The Severtsov Institute of Ecology and Evolution, Russian Aca- demy of Sciences, Leninskii pr. 33, Moscow 119071, Russia Corresponding author: Matthew S. Turnbull ([email protected]) Academic editor: D. Langor | Received 16 January 2018 | Accepted 8 May 2018 | Published 24 January 2019 http://zoobank.org/3A331779-19A1-41DA-AFCF-81AAD4CB049F Citation: Turnbull MS, Stebaeva S (2019) Collembola of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 187–195.https://doi. org/10.3897/zookeys.819.23653 Abstract The state of knowledge of diversity of Collembola in Canada was assessed by examination of literature and DNA barcode data. There are 474 described extant Collembola species known from Canada, a significant change compared to the 520 species estimated to occur in Canada in 1979 (Richards 1979) and the 341 reported in the most recent national checklist (Skidmore 1993). Given the number of indeterminate or cryptic species records, the dearth of sampling in many regions, and the growing use of genetic biodiversity assessment methods such as Barcode Index Numbers, we estimate the total diversity of Collembola in Canada to be approximately 675 species. Advances in Collembola systematics and Canadian research are discussed. Keywords biodiversity assessment, Biota of Canada, Collembola, springtails Collembola, commonly known as springtails, is a class of small, entognathous, wing- less hexapods that is a sister group to Insecta.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • (Collembola) in Meadows, Pastures and Road Verges in Central Finland
    © Entomologica Fennica. 29 August 2017 Springtails (Collembola) in meadows, pastures and road verges in Central Finland Atte Komonen* & Saana Kataja-aho Komonen, A. & Kataja-aho, S. 2017: Springtails (Collembola) in meadows, pas- tures and road verges in Central Finland. — Entomol. Fennica 28: 157–163. Understanding of species distribution, abundance and habitat affinities is crucial for red-list assessment, conservation and habitat management. In Central Fin- land, we studied Collembola in three habitat types, namely non-grazed meadows, pastures and road verges using pitfall traps. Altogether, 9,630 Collembola indi- viduals were recorded. These belonged to 12 families, 34 genera and 60 species. The number of specimens was clearly higher in meadows than in pastures or road verges. The number of species, however, was higher in meadows and road verges (40 and 39 species, respectively) than in pastures (33 species). The overall spe- cies number is comparable to other large-scale sampling schemes in similar habi- tats. We recorded a few abundant species (Spatulosminthurus flaviceps, Smin- thurus viridis and Sminthurus nigromaculatus) that have been previously re- corded from very different biotopes. In conclusion, biodiversity inventories of soil fauna, as well as other biota, should also include marginal habitats, which of- ten host peculiar communities. A. Komonen, University of Jyväskylä, Department of Biological and Environ- mental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; *Cor- responding author’s e-mail: [email protected] S. Kataja-aho, University of Jyväskylä, Natural History Museum, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; E-mail: [email protected] Received 15 November 2016, accepted 22 December 2016 1.
    [Show full text]
  • New and Little Known Isotomidae (Collembola) from the Shore of Lake Baikal and Saline Lakes of Continental Asia
    ZooKeys 935: 1–24 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.935.49363 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research New and little known Isotomidae (Collembola) from the shore of Lake Baikal and saline lakes of continental Asia Mikhail Potapov1,2, Cheng-Wang Huang3, Ayuna Gulgenova4, Yun-Xia Luan5 1 Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany 2 Moscow Pedagogical State University, Moscow, 129164, Kibalchicha St. 6 b. 5, Russia 3 Key Laboratory of Insect Devel- opmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China 4 Banzarov Buryat State University, Ulan-Ude, 670000, Smolina St. 24a, Russia 5 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China Corresponding author: Cheng-Wang Huang ([email protected]) Academic editor: Wanda M. Weiner | Received 13 December 2019 | Accepted 13 March 2020 | Published 21 May 2020 http://zoobank.org/69778FE4-EAD8-4F5D-8F73-B8D666C25546 Citation: Potapov M, Huang C-W, Gulgenova A, Luan Y-X (2020) New and little known Isotomidae (Collembola) from the shore of Lake Baikal and saline lakes of continental Asia. ZooKeys 935: 1–24. https://doi.org/10.3897/ zookeys.935.49363 Abstract Collembola of the family Isotomidae from the shores of Lake Baikal and from six saline lake catenas of the Buryat Republic (Russia) and Inner Mongolia Province (China) were studied. Pseudanurophorus barathrum Potapov & Gulgenova, sp.
    [Show full text]
  • The Collembola of Antarctica1
    Pacific Insects Monograph 25: 57-74 20 March 1971 THE COLLEMBOLA OF ANTARCTICA1 By K. A. J. Wise2 Abstract: Subsequent to an earlier paper on Antarctic Collembola, further references and specimen locality records are given, and a new classification is used. Named species and definite distributions are combined in a definitive list of the Collembola of Antarctica. One new synonymy. Hypogastrura viatica (=H. antarctica), is recorded. Collections additional to those reported by Wise (1967) are recorded here, together with further information on some of the species, including one new synonymy. References in the synonymic lists are only those additional to the ones published in my previous paper. As in that paper, S. Orkney Is. and S. Sandwich Is. records are included here, but are excluded from the list of species in Antarctica. In addition to the Bishop Museum collections, specimens from collections of other institutions are recorded as follows: U.S. National Museum, Smithsonian Institution (USNM), British Museum (Nat. Hist.) (BMNH), British Antarctic Survey Biological Unit (BAS), and Canterbury University Antarctic Biology Unit (CUABU). The arrangement of figures and legends are as in Wise (1967). In specimen data a figure at the beginning of a group is the number of micro-slide specimens; a figure at the end, after the col­ lector's name, is the collector's site number. Classification Classification of the Antarctic species previously (Wise 1967) followed that of Salmon (1964) which radically changed some of the earlier classifications, separating some of the Suborder Arthropleona as distinct families in a new suborder, Neoarthropleona. Since then, Massoud (1967) has published a sound revision of the Neanuridae, in which he has sunk the Suborder Neoarthro­ pleona establishing the families recorded therein by Salmon as subfamilies or tribes in the Family Neanuridae.
    [Show full text]
  • Do Arthropod Assemblages Fit the Grassland and Savanna Biomes Of
    Research Article Arthropod assemblages of grassland and savanna in South Africa Page 1 of 10 Do arthropod assemblages fit the grassland and AUTHORS: savanna biomes of South Africa? Monique Botha1 Stefan J. Siebert1 Johnnie van den Berg1 The long-standing tradition of classifying South Africa’s biogeographical area into biomes is commonly linked to vegetation structure and climate. Because arthropod communities are often governed by both AFFILIATION: these factors, it can be expected that arthropod communities would fit the biomes. To test this hypothesis, 1Unit for Environmental Sciences we considered how well arthropod species assemblages fit South Africa’s grassy biomes. Arthropod and Management, North-West assemblages were sampled from six localities across the grassland and savanna biomes by means University, Potchefstroom, South Africa of suction sampling, to determine whether the two biomes have distinctive arthropod assemblages. Arthropod samples of these biomes clustered separately in multidimensional scaling analyses. Within CORRESPONDENCE TO: biomes, arthropod assemblages were more distinctive for savanna localities than grassland. Arthropod Monique Botha samples of the two biomes clustered together when trophic groups were considered separately, suggesting some similarity in functional assemblages. Dissimilarity was greatest between biomes for EMAIL: phytophagous and predacious trophic groups, with most pronounced differentiation between biomes [email protected] at sub-escarpment localities. Our results indicate that different arthropod assemblages do fit the grassy DATES: biomes to some extent, but the pattern is not as clear as it is for plant species. Received: 12 Nov. 2015 Significance: Revised: 26 Mar. 2016 • Provides the first comparison of arthropod composition between grassland and savanna biomes of Accepted: 06 Apr.
    [Show full text]
  • Second Contribution to the Knowledge of the Springtail Fauna of the White Mountains (Lefká Óri) in West Crete (Insecta: Collembola)
    Mitt. internat. entomol. Ver. Frankfurt a.M. ISSN 1019-2808 Band 32 . Heft 3/4 Seiten 175 - 183 22. November 2007 Second contribution to the knowledge of the springtail fauna of the White Mountains (Lefká Óri) in West Crete (Insecta: Collembola) Hans-Jürgen SCHULZ Abstract: This paper describes the results of Collembola collecting in more than 30 sites of the White Mountains. The collections are mostly based on moss and upper soil-layer samples. Besides widespread species, some rare species were found (e.g. Anurophorus coiffaiti and Crypto- pygus triglenus). 12 species are new for Crete. Key words: Collembola, species list, mountain region, Crete Introduction The “Species list of the fauna Europaea” lists 76 springtail species or subspecies for the island Crete (last update March 2005, http:// faunaeur.org/species_list.php). These data are mainly based on ELLIS (1976). He collected within the Iráklion region (sampling list with 50 sites). A recent study of the collembolan fauna from Crete was published by SCHULZ & LYMBERAKIS (2006). They recorded 22 Collembola species (pitfall trap samples from 4 sites near the mountain village Anopolis, western Crete). The present contribution continues the study of collem- bolan fauna of Crete, especially of its mountain regions. Material and methods Collembolan sampling was carried out between 5-24 and 6-9-2004 in nearly 30 different sites. More than 200 samples (mostly moss and litter 175 layer) were taken and extracted in modified Berlese devices. Additionally an aspirator was used for collecting springtails from stones. Fig. 1: Mountain area near the Kallergi cottage. Many aspirator collec- tions from the stones were taken here.
    [Show full text]
  • Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity
    Biodiversity and Coarse woody Debris in Southern Forests Proceedings of the Workshop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA - October 18-20,1993 Biodiversity and Coarse Woody Debris in Southern Forests Proceedings of the Workhop on Coarse Woody Debris in Southern Forests: Effects on Biodiversity Athens, GA October 18-20,1993 Editors: James W. McMinn, USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, and D.A. Crossley, Jr., University of Georgia, Athens, GA Sponsored by: U.S. Department of Energy, Savannah River Site, and the USDA Forest Service, Savannah River Forest Station, Biodiversity Program, Aiken, SC Conducted by: USDA Forest Service, Southem Research Station, Asheville, NC, and University of Georgia, Institute of Ecology, Athens, GA Preface James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in The effects of CWD on biodiversity depend upon the management of forest ecosystems. The implied harvesting variables, distribution, and dynamics. This objective is the conservation of a full complement of native proceedings addresses the current state of knowledge about species and communities within the forest ecosystem. the influences of CWD on the biodiversity of various Effective implementation of conservation measures will groups of biota. Research priorities are identified for future require a broader knowledge of the dimensions of studies that should provide a basis for the conservation of biodiversity, the contributions of various ecosystem biodiversity when interacting with appropriate management components to those dimensions, and the impact of techniques. management practices. We thank John Blake, USDA Forest Service, Savannah In a workshop held in Athens, GA, October 18-20, 1993, River Forest Station, for encouragement and support we focused on an ecosystem component, coarse woody throughout the workshop process.
    [Show full text]