Quantum Information Science: Applications, Global Research and Development, and Policy Considerations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is Quantum Information?
What Is Quantum Information? Robert B. Griffiths Carnegie-Mellon University Pittsburgh, Pennsylvania Research supported by the National Science Foundation References (work by R. B. Griffiths) • \Nature and location of quantum information." Ph◦ys. Rev. A 66 (2002) 012311; quant-ph/0203058 \Channel kets, entangled states, and the location of quan◦ tum information," Phys. Rev. A 71 (2005) 042337; quant-ph/0409106 Consistent Quantum Theory (Cambridge 2002) http://quan◦ tum.phys.cmu.edu/ What Is Quantum Information? 01. 100.01.tex Introduction What is quantum information? Precede by: • What is information? ◦ What is classical information theory? ◦ What is information? Example, newspaper • Symbolic representation of some situation ◦ Symbols in newspaper correlated with situation ◦ Information is about that situation ◦ What Is Quantum Information? 04. 100.04.tex Classical Information Theory Shannon: • \Mathematical Theory of Communication" (1948) ◦ One of major scientific developments of 20th century ◦ Proposed quantitative measure of information ◦ Information entropy • H(X) = p log p − X i i i Logarithmic measure of missing information ◦ Probabilistic model: pi are probabilities ◦ Applies to classical (macroscopic)f g signals ◦ Coding theorem: Bound on rate of transmission of information• through noisy channel What Is Quantum Information? 05. 100.05.tex Quantum Information Theory (QIT) Goal of QIT: \Quantize Shannon" • Extend Shannon's ideas to domain where quantum effects◦ are important Find quantum counterpart of H(X) ◦ We live in a quantum world, so • QIT should be the fundamental info theory ◦ Classical theory should emerge from QIT ◦ Analogy: relativity theory Newton for v c ◦ ! What Is Quantum Information? 06. 100.06.tex QIT: Current Status Enormous number of published papers • Does activity = understanding? ◦ Some topics of current interest: • Entanglement ◦ Quantum channels ◦ Error correction ◦ Quantum computation ◦ Decoherence ◦ Unifying principles have yet to emerge • At least, they are not yet widely recognized ◦ What Is Quantum Information? 07. -
Key Concepts for Future QIS Learners Workshop Output Published Online May 13, 2020
Key Concepts for Future QIS Learners Workshop output published online May 13, 2020 Background and Overview On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations. The workshop participants focused on identifying concepts that could, with additional supporting resources, help prepare secondary school students to engage with QIS and provide possible pathways for broader public engagement. This workshop report identifies a set of nine Key Concepts. Each Concept is introduced with a concise overall statement, followed by a few important fundamentals. Connections to current and future technologies are included, providing relevance and context. The first Key Concept defines the field as a whole. Concepts 2-6 introduce ideas that are necessary for building an understanding of quantum information science and its applications. Concepts 7-9 provide short explanations of critical areas of study within QIS: quantum computing, quantum communication and quantum sensing. The Key Concepts are not intended to be an introductory guide to quantum information science, but rather provide a framework for future expansion and adaptation for students at different levels in computer science, mathematics, physics, and chemistry courses. As such, it is expected that educators and other community stakeholders may not yet have a working knowledge of content covered in the Key Concepts. -
Everyday Life Information Seeking
Everyday Life Information Seeking Reijo Savolainen Department of Information Studies and Interactive Media, University of Tampere, Tampere, Finland Folksonomies Ethiopia– Abstract Information seeking may be analyzed in two major contexts: job-related and nonwork. The present entry concentrates on nonwork information seeking, more properly called everyday life information seeking (ELIS). Typically, ELIS studies discuss the ways in which people access and use various information sources to meet information needs in areas such as health, consumption, and leisure. The entry specifies the concept of ELIS and characterizes the major ELIS models. They include the Sense-Making approach (Dervin), the Small world theory (Chatman), the ecological model of ELIS (Williamson), ELIS in the context of way of life (Savolainen), the model of information practices (McKenzie), and the concept of information grounds (Fisher). ELIS practices tend to draw on the habitualized use of a limited number of sources which have been found useful in previous use contexts. Since the late 1990s, the Internet has increasingly affected the ELIS practices by providing easily accessible sources. Even though the popularity of the networked sources has grown rapidly they will complement, rather than replace, more traditional sources and channels. INTRODUCTION THE CONCEPT OF ELIS Information seeking is a major constituent of information Thus far, a rich variety of themes have been explored in behavior or information practices, that is, the entirety of ELIS studies. They have focused on people belonging to ways in which people seek, use, and share information in diverse groups such as the following: different contexts.[1,2] Information seeking may be ana- lyzed in two major contexts: job-related and nonwork. -
Inst Xxx: Information User Needs & Assessment
INST408A_Consumer_Health_Informatics_Syllabus_Fall2019_StJean&Jardine_Final INST 408A-0101 Special Topics in Information Science: Consumer Health Informatics College of Information Studies, University of Maryland Mondays, 2:00 – 4:45 PM (Hornbake Library, North Wing, Room 0302H) Fall 2019 Co-Instructors: Beth St. Jean, Associate Professor Fiona Jardine, Doctoral Candidate Hornbake Building, Room 4117K Hornbake Building, Room 4105 301-405-6573 301-602-3936 [email protected] [email protected] Office Hours: Beth St. Jean: Mondays, 5:00 to 6:00 PM, or by appointment. Fiona Jardine: Fridays 12:00 to 1:00 PM, or by appointment. Our Liaison Librarian: Rachel Gammons, Head of Teaching and Learning Services, 4100C McKeldin Library, [email protected], 301-405-9120. [Research Guide: https://lib.guides.umd.edu/information_studies] Catalog Description [Prerequisite: INST 201 (Introduction to Information Science)] In this course, we will investigate the fields of Consumer Health Informatics and Information Behavior, focusing most heavily on their intersection – Consumer Health Information Behavior. We will explore people’s health-related information needs and whether, how, and why people seek out and use (or do not seek out and use) health information and the types of health information they find useful. We will also cover the important and interrelated topics of information avoidance, health behaviors, health literacy, digital health literacy, doctor-patient communication, and patient-to-patient communication through support groups and online communities. Throughout the course, we will also focus on the important concept of health justice – an ideal state in which everyone has an adequate and equitable capability to be healthy. We will identify populations that frequently experience social injustice and explore the information-related causes and broader consequences of the health inequities members of these populations tend to face. -
Free-Electron Qubits
Free-Electron Qubits Ori Reinhardt†, Chen Mechel†, Morgan Lynch, and Ido Kaminer Department of Electrical Engineering and Solid State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel † equal contributors Free-electron interactions with laser-driven nanophotonic nearfields can quantize the electrons’ energy spectrum and provide control over this quantized degree of freedom. We propose to use such interactions to promote free electrons as carriers of quantum information and find how to create a qubit on a free electron. We find how to implement the qubit’s non-commutative spin-algebra, then control and measure the qubit state with a universal set of 1-qubit gates. These gates are within the current capabilities of femtosecond-pulsed laser-driven transmission electron microscopy. Pulsed laser driving promise configurability by the laser intensity, polarizability, pulse duration, and arrival times. Most platforms for quantum computation today rely on light-matter interactions of bound electrons such as in ion traps [1], superconducting circuits [2], and electron spin systems [3,4]. These form a natural choice for implementing 2-level systems with spin algebra. Instead of using bound electrons for quantum information processing, in this letter we propose using free electrons and manipulating them with femtosecond laser pulses in optical frequencies. Compared to bound electrons, free electron systems enable accessing high energy scales and short time scales. Moreover, they possess quantized degrees of freedom that can take unbounded values, such as orbital angular momentum (OAM), which has also been proposed for information encoding [5-10]. Analogously, photons also have the capability to encode information in their OAM [11,12]. -
Librarianship and the Philosophy of Information
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Philosophy and Practice (e-journal) Libraries at University of Nebraska-Lincoln July 2005 Librarianship and the Philosophy of Information Ken R. Herold Hamilton College Follow this and additional works at: https://digitalcommons.unl.edu/libphilprac Part of the Library and Information Science Commons Herold, Ken R., "Librarianship and the Philosophy of Information" (2005). Library Philosophy and Practice (e-journal). 27. https://digitalcommons.unl.edu/libphilprac/27 Library Philosophy and Practice Vol. 3, No. 2 (Spring 2001) (www.uidaho.edu/~mbolin/lppv3n2.htm) ISSN 1522-0222 Librarianship and the Philosophy of Information Ken R. Herold Systems Manager Burke Library Hamilton College Clinton, NY 13323 “My purpose is to tell of bodies which have been transformed into shapes of a different kind.” Ovid, Metamorphoses Part I. Library Philosophy Provocation Information seems to be ubiquitous, diaphanous, a-categorical, discrete, a- dimensional, and knowing. · Ubiquitous. Information is ever-present and pervasive in our technology and beyond in our thinking about the world, appearing to be a generic ‘thing’ arising from all of our contacts with each other and our environment, whether thought of in terms of communication or cognition. For librarians information is a universal concept, at its greatest extent total in content and comprehensive in scope, even though we may not agree that all information is library information. · Diaphanous. Due to its virtuality, the manner in which information has the capacity to make an effect, information is freedom. In many aspects it exhibits a transparent quality, a window-like clarity as between source and patron in an ideal interface or a perfect exchange without bias. -
Quantum in the Cloud: Application Potentials and Research Opportunities
Quantum in the Cloud: Application Potentials and Research Opportunities Frank Leymann a, Johanna Barzen b, Michael Falkenthal c, Daniel Vietz d, Benjamin Weder e and Karoline Wild f Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstr. 38, Stuttgart, Germany Keywords: Cloud Computing, Quantum Computing, Hybrid Applications. Abstract: Quantum computers are becoming real, and they have the inherent potential to significantly impact many application domains. We sketch the basics about programming quantum computers, showing that quantum programs are typically hybrid consisting of a mixture of classical parts and quantum parts. With the advent of quantum computers in the cloud, the cloud is a fine environment for performing quantum programs. The tool chain available for creating and running such programs is sketched. As an exemplary problem we discuss efforts to implement quantum programs that are hardware independent. A use case from machine learning is outlined. Finally, a collaborative platform for solving problems with quantum computers that is currently under construction is presented. 1 INTRODUCTION Because of this, the overall algorithms are often hybrid. They perform parts on a quantum computer, Quantum computing advanced up to a state that urges other parts on a classical computer. Each part attention to the software community: problems that performed on a quantum computer is fast enough to are hard to solve based on classical (hardware and produce reliable results. The parts executed on a software) technology become tractable in the next classical computer analyze the results, compute new couple of years (National Academies, 2019). parameters for the quantum parts, and pass them on Quantum computers are offered for commercial use to a quantum part. -
Computer Information Science Associate in Applied Science Degree (AAS)
Computer Information Science Associate in Applied Science Degree (AAS) At a Glance The Computer Information Science program is designed to prepare students to be successful or enhance their careers in select, high-demand, information technology fields. Special emphasis is placed on the knowledge and skills needed in the small business computer environment. In addition, this program provides a solid foundation for those considering transferring to a senior institution. Students should consult with an advisor or the faculty teaching in their discipline with regard to the suggested sequence for scheduling of courses. General Education & Elective Courses CREDITS CIS 146 Microcomputer Applications ...................................................................................3 ENG 101 English Composition I .............................................................................................3 MTH 100 Intermediate College Algebra ..................................................................................3 MTH 112 Precalculus Algebra .................................................................................................3 ORI 105 Orientation & Student Success ................................................................................3 SPH 106 Fundamentals of Oral Communication ....................................................................3 History, Social and Behavioral Science Elective .............................................................................3 Humanities and Fine Arts Elective ..................................................................................................3 -
Quantum Information Science, NIST, and Future Technological Implications National Institute of Standards & Technology Http
Quantum Information Science, NIST, and Future Technological Implications Carl J. Williams, Chief Atomic Physics Division National Institute of Standards & Technology http://qubit.nist.gov NIST – Atomic Physics Division Carl J. Williams, Chief What is Quantum Information? “Quantum information is a radical departure in information technology, more fundamentally different from current technology than the digital computer is from the abacus.” W. D. Phillips, 1997 Nobel Prize Winner in Physics A convergence of two of the 20th Century’s great revolutions A new science! Quantum Mechanics Information Science (i.e. computer science, (i.e. atoms, photons, JJ’s, communications, physics of computation) cryptology) The second quantum revolution NIST – Atomic Physics Division Carl J. Williams, Chief Second Quantum Revolution We are witnessing the second quantum revolution • First quantum revolution (1920’s - 1980’s) – Described how nature works at the quantum level – Weirdness of QM discovered and debated – Wave-particle duality -> Wavefunctions – Spooky action at a distance -> Entanglement – Technology uses semiclassical properties – quantization & wave properties • Second quantum revolution (starts ~1980’s - ) – Exploits how nature works at the quantum level – Interactions are how Nature computes! – Weirdness of QM exploited – Information storage capacity of superposed wavefunctions – Information transmittal accomplished by entanglement, teleportation – Information exchange accomplished by interactions – Technology uses the weird properties of quantum mechanics NIST – Atomic Physics Division Carl J. Williams, Chief Classical Bits vs. Quantum Bits • Classical Bits: two-state systems Classical bits: 0 (off) or 1 (on) (switch) • Quantum Bits are also two-level(state) systems ⎜↑〉 ⎜1〉 Atom ⎜0〉 ⎜↓〉 Internal State Motional State Ö But: Quantum Superpositions are possible Ψ= α|↓〉 + β|↑〉 = α|0〉 + β|1〉 NIST – Atomic Physics Division Carl J. -
Study of Information Seeking Behavior and Library Use Pattern of Researchers in the Banasthali University
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Philosophy and Practice (e-journal) Libraries at University of Nebraska-Lincoln March 2013 Study of Information Seeking Behavior and Library Use Pattern of Researchers in the Banasthali University A.K. Pareek Banasthali University, [email protected] Madan S. Rana Assam University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/libphilprac Part of the Library and Information Science Commons Pareek, A.K. and Rana, Madan S., "Study of Information Seeking Behavior and Library Use Pattern of Researchers in the Banasthali University" (2013). Library Philosophy and Practice (e-journal). 887. https://digitalcommons.unl.edu/libphilprac/887 Study of Information Seeking Behavior and Library Use Pattern of Researchers in the Banasthali University A.K.Pareek* Madan S. Rana** Abstract This study was undertaken to determine the information seeking behavior and library use by research scholars at the Banasthali University. The overall purpose of the study was to determine what their information requirements and also determine their awareness of library services available to them. The study collected data on the information requirements of researchers. Data were gathered from 100 researchers out of 150 through open and closed questionnaire. Findings indicate that guidance in the use of library resources and services is necessary to help researchers meet some of their information requirements. Keywords: Information seeking behavior; Library resources; e-resources; Inter-Library Loan (ILL); Documentary delivery. Introduction In library and information science research is a substantial body of work addressing information-related behavior, including information needs, information seeking and use of information resources. -
Quantum Information Science and the Technology Frontier Jake Taylor February 5Th, 2020
Quantum Information Science and the Technology Frontier Jake Taylor February 5th, 2020 Office of Science and Technology Policy www.whitehouse.gov/ostp www.ostp.gov @WHOSTP Photo credit: Lloyd Whitman The National Quantum Initiative Signed Dec 21, 2018 11 years of sustained effort DOE: new centers working with the labs, new programs NSF: new academic centers NIST: industrial consortium, expand core programs Coordination: NSTC combined with a National Coordination Office and an external Advisory committee 2 National Science and Technology Council • Subcommittee on Quantum Information Science (SCQIS) • DoE, NSF, NIST co-chairs • Coordinates NQI, other research activities • Subcommittee on Economic and Security Implications of Quantum Science (ESIX) • DoD, DoE, NSA co-chairs • Civilian, IC, Defense conversation space 3 Policy Recommendations • Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress; • Build a quantum-smart and diverse workforce to meet the needs of a growing field; • Encourage industry engagement, providing appropriate mechanisms for public-private partnerships; • Provide the key infrastructure and support needed to realize the scientific and technological opportunities; • Drive economic growth; • Maintain national security; and • Continue to develop international collaboration and cooperation. 4 Quantum Sensing Accuracy via physical law New modalities of measurement Concept: atoms are indistinguishable. Use Challenge: measuring inside the body. Use this to create time standards, enables quantum behavior of individual nuclei to global navigation. image magnetic resonances (MRI) Concept: speed of light is constant. Use this Challenge: estimating length limited by ‘shot to measure distance using a time standard. noise’ (individual photons!). -
American Leadership in Quantum Technology Joint Hearing
AMERICAN LEADERSHIP IN QUANTUM TECHNOLOGY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 24, 2017 Serial No. 115–32 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–671PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H.