Beecrypt Ciphers: Speed by Data Length P3-1000-Debian-Etch Beecrypt Ciphers: Speed by Data Length Ath-2000-Debian-Etch Beecrypt Ciphers: Speed by Data Length 5 16 30

Total Page:16

File Type:pdf, Size:1020Kb

Beecrypt Ciphers: Speed by Data Length P3-1000-Debian-Etch Beecrypt Ciphers: Speed by Data Length Ath-2000-Debian-Etch Beecrypt Ciphers: Speed by Data Length 5 16 30 p2-300-debian-etch libgcrypt Ciphers: Absolute Time by Data Length p3-1000-debian-etch libgcrypt Ciphers: Absolute Time by Data Length ath-2000-debian-etch libgcrypt Ciphers: Absolute Time by Data Length 10 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 Seconds Seconds 0.001 Seconds 0.001 0.0001 0.0001 0.0001 1e-05 1e-05 1e-05 1e-06 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish CAST5 Rijndael Twofish CAST5 Rijndael Twofish CAST5 Serpent Blowfish 3DES Serpent Blowfish 3DES Serpent Blowfish 3DES cel-2660-debian-etch libgcrypt Ciphers: Absolute Time by Data Length p4-3200-debian-etch libgcrypt Ciphers: Absolute Time by Data Length p4-3200-gentoo libgcrypt Ciphers: Absolute Time by Data Length 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 Seconds Seconds Seconds 0.0001 0.0001 0.0001 1e-05 1e-05 1e-05 1e-06 1e-06 1e-06 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish CAST5 Rijndael Twofish CAST5 Rijndael Twofish CAST5 Serpent Blowfish 3DES Serpent Blowfish 3DES Serpent Blowfish 3DES p2-300-debian-etch libgcrypt Ciphers: Speed by Data Length p3-1000-debian-etch libgcrypt Ciphers: Speed by Data Length ath-2000-debian-etch libgcrypt Ciphers: Speed by Data Length 2.5 8 14 7 12 2 6 10 5 1.5 8 4 6 1 3 Megabyte / Second Megabyte / Second Megabyte / Second 4 2 0.5 1 2 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish CAST5 Rijndael Twofish CAST5 Rijndael Twofish CAST5 Serpent Blowfish 3DES Serpent Blowfish 3DES Serpent Blowfish 3DES cel-2660-debian-etch libgcrypt Ciphers: Speed by Data Length p4-3200-debian-etch libgcrypt Ciphers: Speed by Data Length p4-3200-gentoo libgcrypt Ciphers: Speed by Data Length 18 20 25 16 18 16 20 14 14 12 12 15 10 10 8 8 10 Megabyte / Second 6 Megabyte / Second Megabyte / Second 6 4 4 5 2 2 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish CAST5 Rijndael Twofish CAST5 Rijndael Twofish CAST5 Serpent Blowfish 3DES Serpent Blowfish 3DES Serpent Blowfish 3DES p2-300-debian-etch libmcrypt Ciphers: Absolute Time by Data Length p3-1000-debian-etch libmcrypt Ciphers: Absolute Time by Data Length ath-2000-debian-etch libmcrypt Ciphers: Absolute Time by Data Length 10 1 1 1 0.1 0.1 0.1 0.01 Seconds Seconds Seconds 0.01 0.01 0.001 0.001 0.001 0.0001 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Twofish Safer+ GOST Twofish Safer+ GOST Twofish Safer+ GOST cel-2660-debian-etch libmcrypt Ciphers: Absolute Time by Data Length p4-3200-debian-etch libmcrypt Ciphers: Absolute Time by Data Length p4-3200-gentoo libmcrypt Ciphers: Absolute Time by Data Length 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 Seconds Seconds Seconds 0.001 0.001 0.001 0.0001 0.0001 0.0001 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Twofish Safer+ GOST Twofish Safer+ GOST Twofish Safer+ GOST p2-300-debian-etch libmcrypt Ciphers: Speed by Data Length p3-1000-debian-etch libmcrypt Ciphers: Speed by Data Length ath-2000-debian-etch libmcrypt Ciphers: Speed by Data Length 3.5 14 20 18 3 12 16 2.5 10 14 12 2 8 10 1.5 6 8 Megabyte / Second 1 Megabyte / Second 4 Megabyte / Second 6 4 0.5 2 2 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Twofish Safer+ GOST Twofish Safer+ GOST Twofish Safer+ GOST cel-2660-debian-etch libmcrypt Ciphers: Speed by Data Length p4-3200-debian-etch libmcrypt Ciphers: Speed by Data Length p4-3200-gentoo libmcrypt Ciphers: Speed by Data Length 30 35 45 40 30 25 35 25 20 30 20 25 15 15 20 10 15 Megabyte / Second Megabyte / Second 10 Megabyte / Second 10 5 5 5 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Rijndael CAST6 Loki97 CAST5 Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Serpent xTEA Blowfish 3DES Twofish Safer+ GOST Twofish Safer+ GOST Twofish Safer+ GOST p2-300-debian-etch Botan Ciphers: Absolute Time by Data Length p3-1000-debian-etch Botan Ciphers: Absolute Time by Data Length ath-2000-debian-etch Botan Ciphers: Absolute Time by Data Length 10 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 Seconds Seconds Seconds 0.001 0.0001 0.0001 0.0001 1e-05 1e-05 1e-05 1e-06 1e-06 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 cel-2660-debian-etch Botan Ciphers: Absolute Time by Data Length p4-3200-debian-etch Botan Ciphers: Absolute Time by Data Length p4-3200-gentoo Botan Ciphers: Absolute Time by Data Length 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 Seconds Seconds Seconds 0.0001 0.0001 0.0001 1e-05 1e-05 1e-05 1e-06 1e-06 1e-06 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 p2-300-debian-etch Botan Ciphers: Speed by Data Length p3-1000-debian-etch Botan Ciphers: Speed by Data Length ath-2000-debian-etch Botan Ciphers: Speed by Data Length 3.5 12 16 3 14 10 12 2.5 8 10 2 6 8 1.5 6 Megabyte / Second Megabyte / Second 4 Megabyte / Second 1 4 2 0.5 2 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 cel-2660-debian-etch Botan Ciphers: Speed by Data Length p4-3200-debian-etch Botan Ciphers: Speed by Data Length p4-3200-gentoo Botan Ciphers: Speed by Data Length 30 35 40 30 35 25 30 25 20 25 20 15 20 15 15 Megabyte / Second 10 Megabyte / Second Megabyte / Second 10 10 5 5 5 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 p2-300-debian-etch Crypto++ Ciphers: Absolute Time by Data Length p3-1000-debian-etch Crypto++ Ciphers: Absolute Time by Data Length ath-2000-debian-etch Crypto++ Ciphers: Absolute Time by Data Length 10 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 Seconds Seconds Seconds 0.001 0.0001 0.0001 0.0001 1e-05 1e-05 1e-05 1e-06 1e-06 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 cel-2660-debian-etch Crypto++ Ciphers: Absolute Time by Data Length p4-3200-debian-etch Crypto++ Ciphers: Absolute Time by Data Length p4-3200-gentoo Crypto++ Ciphers: Absolute Time by Data Length 1 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001 0.001 Seconds Seconds Seconds 0.0001 0.0001 0.0001 1e-05 1e-05 1e-05 1e-06 1e-06 1e-06 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Rijndael Twofish GOST Blowfish 3DES Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 Serpent CAST6 xTEA CAST5 p2-300-debian-etch Crypto++ Ciphers: Speed by Data Length p3-1000-debian-etch Crypto++ Ciphers: Speed by Data Length ath-2000-debian-etch Crypto++ Ciphers: Speed by Data Length 3.5 12 25 3 10 20 2.5 8 15 2 6 1.5 10 Megabyte / Second Megabyte / Second 4 Megabyte / Second 1 5 2 0.5 0 0 0 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 1000000 Data Length in Bytes Data Length in Bytes Data Length in Bytes Rijndael Twofish GOST Blowfish 3DES Rijndael
Recommended publications
  • The Design of Rijndael: AES - the Advanced Encryption Standard/Joan Daemen, Vincent Rijmen
    Joan Daernen · Vincent Rijrnen Theof Design Rijndael AES - The Advanced Encryption Standard With 48 Figures and 17 Tables Springer Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Springer TnL-1Jn Joan Daemen Foreword Proton World International (PWI) Zweefvliegtuigstraat 10 1130 Brussels, Belgium Vincent Rijmen Cryptomathic NV Lei Sa 3000 Leuven, Belgium Rijndael was the surprise winner of the contest for the new Advanced En­ cryption Standard (AES) for the United States. This contest was organized and run by the National Institute for Standards and Technology (NIST) be­ ginning in January 1997; Rij ndael was announced as the winner in October 2000. It was the "surprise winner" because many observers (and even some participants) expressed scepticism that the U.S. government would adopt as Library of Congress Cataloging-in-Publication Data an encryption standard any algorithm that was not designed by U.S. citizens. Daemen, Joan, 1965- Yet NIST ran an open, international, selection process that should serve The design of Rijndael: AES - The Advanced Encryption Standard/Joan Daemen, Vincent Rijmen. as model for other standards organizations. For example, NIST held their p.cm. Includes bibliographical references and index. 1999 AES meeting in Rome, Italy. The five finalist algorithms were designed ISBN 3540425802 (alk. paper) . .. by teams from all over the world. 1. Computer security - Passwords. 2. Data encryption (Computer sCIence) I. RIJmen, In the end, the elegance, efficiency, security, and principled design of Vincent, 1970- II. Title Rijndael won the day for its two Belgian designers, Joan Daemen and Vincent QA76.9.A25 D32 2001 Rijmen, over the competing finalist designs from RSA, IBl\!I, Counterpane 2001049851 005.8-dc21 Systems, and an English/Israeli/Danish team.
    [Show full text]
  • The First Biclique Cryptanalysis of Serpent-256
    The First Biclique Cryptanalysis of Serpent-256 Gabriel C. de Carvalho1, Luis A. B. Kowada1 1Instituto de Computac¸ao˜ – Universidade Federal Fluminense (UFF) – Niteroi´ – RJ – Brazil Abstract. The Serpent cipher was one of the finalists of the AES process and as of today there is no method for finding the key with fewer attempts than that of an exhaustive search of all possible keys, even when using known or chosen plaintexts for an attack. This work presents the first two biclique attacks for the full-round Serpent-256. The first uses a dimension 4 biclique while the second uses a dimension 8 biclique. The one with lower dimension covers nearly 4 complete rounds of the cipher, which is the reason for the lower time complex- ity when compared with the other attack (which covers nearly 3 rounds of the cipher). On the other hand, the second attack needs a lot less pairs of plain- texts for it to be done. The attacks require 2255:21 and 2255:45 full computations of Serpent-256 using 288 and 260 chosen ciphertexts respectively with negligible memory. 1. Introduction The Serpent cipher is, along with MARS, RC6, Twofish and Rijindael, one of the AES process finalists [Nechvatal et al. 2001] and has not had, since its proposal, its full round versions attacked. It is a Substitution Permutation Network (SPN) with 32 rounds, 128 bit block size and accepts keys of sizes 128, 192 and 256 bits. Serpent has been targeted by several cryptanalysis [Kelsey et al. 2000, Biham et al. 2001b, Biham et al.
    [Show full text]
  • Multiple New Formulas for Cipher Performance Computing
    International Journal of Network Security, Vol.20, No.4, PP.788-800, July 2018 (DOI: 10.6633/IJNS.201807 20(4).21) 788 Multiple New Formulas for Cipher Performance Computing Youssef Harmouch1, Rachid Elkouch1, Hussain Ben-azza2 (Corresponding author: Youssef Harmouch) Department of Mathematics, Computing and Networks, National Institute of Posts and Telecommunications1 10100, Allal El Fassi Avenue, Rabat, Morocco (Email:[email protected] ) Department of Industrial and Production Engineering, Moulay Ismail University2 National High School of Arts and Trades, Mekns, Morocco (Received Apr. 03, 2017; revised and accepted July 17, 2017) Abstract are not necessarily commensurate properties. For exam- ple, an online newspaper will be primarily interested in Cryptography is a science that focuses on changing the the integrity of their information while a financial stock readable information to unrecognizable and useless data exchange network may define their security as real-time to any unauthorized person. This solution presents the availability and information privacy [14, 23]. This means main core of network security, therefore the risk analysis that, the many facets of the attribute must all be iden- for using a cipher turn out to be an obligation. Until now, tified and adequately addressed. Furthermore, the secu- the only platform for providing each cipher resistance is rity attributes are terms of qualities, thus measuring such the cryptanalysis study. This cryptanalysis can make it quality terms need a unique identification for their inter- hard to compare ciphers because each one is vulnerable to pretations meaning [20, 24]. Besides, the attributes can a different kind of attack that is often very different from be interdependent.
    [Show full text]
  • Serpent: a Proposal for the Advanced Encryption Standard
    Serpent: A Proposal for the Advanced Encryption Standard Ross Anderson1 Eli Biham2 Lars Knudsen3 1 Cambridge University, England; email [email protected] 2 Technion, Haifa, Israel; email [email protected] 3 University of Bergen, Norway; email [email protected] Abstract. We propose a new block cipher as a candidate for the Ad- vanced Encryption Standard. Its design is highly conservative, yet still allows a very efficient implementation. It uses S-boxes similar to those of DES in a new structure that simultaneously allows a more rapid avalanche, a more efficient bitslice implementation, and an easy anal- ysis that enables us to demonstrate its security against all known types of attack. With a 128-bit block size and a 256-bit key, it is as fast as DES on the market leading Intel Pentium/MMX platforms (and at least as fast on many others); yet we believe it to be more secure than three-key triple-DES. 1 Introduction For many applications, the Data Encryption Standard algorithm is nearing the end of its useful life. Its 56-bit key is too small, as shown by a recent distributed key search exercise [28]. Although triple-DES can solve the key length problem, the DES algorithm was also designed primarily for hardware encryption, yet the great majority of applications that use it today implement it in software, where it is relatively inefficient. For these reasons, the US National Institute of Standards and Technology has issued a call for a successor algorithm, to be called the Advanced Encryption Standard or AES.
    [Show full text]
  • MERGING+ANUBIS User Manual
    USER MANUAL V27.09.2021 2 Contents Thank you for purchasing MERGING+ANUBIS ........................................................................................... 6 Important Safety and Installation Instructions ........................................................................................... 7 Product Regulatory Compliance .................................................................................................................... 9 MERGING+ANUBIS Warranty Information................................................................................................ 11 INTRODUCTION .............................................................................................................................................. 12 Package Content ........................................................................................................................................ 12 OVERVIEW ................................................................................................................................................... 13 MERGING+ANUBIS VARIANTS AND KEY FEATURES ........................................................................ 13 ABOUT RAVENNA ...................................................................................................................................... 16 MISSION CONTROL - MODULAR BY SOFTWARE ............................................................................... 16 MERGING+ANUBIS panels description ....................................................................................................
    [Show full text]
  • Cryptographic Sponge Functions
    Cryptographic sponge functions Guido B1 Joan D1 Michaël P2 Gilles V A1 http://sponge.noekeon.org/ Version 0.1 1STMicroelectronics January 14, 2011 2NXP Semiconductors Cryptographic sponge functions 2 / 93 Contents 1 Introduction 7 1.1 Roots .......................................... 7 1.2 The sponge construction ............................... 8 1.3 Sponge as a reference of security claims ...................... 8 1.4 Sponge as a design tool ................................ 9 1.5 Sponge as a versatile cryptographic primitive ................... 9 1.6 Structure of this document .............................. 10 2 Definitions 11 2.1 Conventions and notation .............................. 11 2.1.1 Bitstrings .................................... 11 2.1.2 Padding rules ................................. 11 2.1.3 Random oracles, transformations and permutations ........... 12 2.2 The sponge construction ............................... 12 2.3 The duplex construction ............................... 13 2.4 Auxiliary functions .................................. 15 2.4.1 The absorbing function and path ...................... 15 2.4.2 The squeezing function ........................... 16 2.5 Primary aacks on a sponge function ........................ 16 3 Sponge applications 19 3.1 Basic techniques .................................... 19 3.1.1 Domain separation .............................. 19 3.1.2 Keying ..................................... 20 3.1.3 State precomputation ............................ 20 3.2 Modes of use of sponge functions .........................
    [Show full text]
  • Serpenttools Documentation
    serpentTools Documentation The serpentTools developer team Feb 20, 2020 CONTENTS: 1 Project Overview 3 2 Installation 7 3 Changelog 11 4 Examples 19 5 File-parsing API 77 6 Containers 97 7 Samplers 129 8 Settings 137 9 Miscellaneous 143 10 Variable Groups 147 11 Command Line Interface 161 12 Developer’s Guide 165 13 License 201 14 Developer Team 203 15 Glossary 205 16 Indices and tables 207 Bibliography 209 Index 211 i ii serpentTools Documentation A suite of parsers designed to make interacting with SERPENT [serpent] output files simple and flawless. The SERPENT Monte Carlo code is developed by VTT Technical Research Centre of Finland, Ltd. More information, including distribution and licensing of SERPENT can be found at http://montecarlo.vtt.fi The Annals of Nuclear Energy article should be cited for all work using SERPENT. Preferred citation for attribution Andrew Johnson, Dan Kotlyar, Gavin Ridley, Stefano Terlizzi, & Paul Romano. (2018, June 29). “serpent-tools: A collection of parsing tools and data containers to make interacting with SERPENT outputs easy, intuitive, and flawless.,”. CONTENTS: 1 serpentTools Documentation 2 CONTENTS: CHAPTER ONE PROJECT OVERVIEW The serpentTools package contains a variety of parsing utilities, each designed to read a specific output from the SERPENT Monte Carlo code [serpent]. Many of the parsing utilities store the outputs in custom container objects, while other store or return a collection of arrays. This page gives an overview of what files are currently supported, including links to examples and relevant documentation. Unless otherwise noted, all the files listed below can be read using serpentTools.read().
    [Show full text]
  • The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS (Full Version)
    The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS (Full Version) Christof Beierle1, J´er´emy Jean2, Stefan K¨olbl3, Gregor Leander1, Amir Moradi1, Thomas Peyrin2, Yu Sasaki4, Pascal Sasdrich1, and Siang Meng Sim2 1 Horst G¨ortzInstitute for IT Security, Ruhr-Universit¨atBochum, Germany [email protected] 2 School of Physical and Mathematical Sciences Nanyang Technological University, Singapore [email protected], [email protected], [email protected] 3 DTU Compute, Technical University of Denmark, Denmark [email protected] 4 NTT Secure Platform Laboratories, Japan [email protected] Abstract. We present a new tweakable block cipher family SKINNY, whose goal is to compete with NSA recent design SIMON in terms of hardware/software perfor- mances, while proving in addition much stronger security guarantees with regards to differential/linear attacks. In particular, unlike SIMON, we are able to provide strong bounds for all versions, and not only in the single-key model, but also in the related-key or related-tweak model. SKINNY has flexible block/key/tweak sizes and can also benefit from very efficient threshold implementations for side-channel protection. Regarding performances, it outperforms all known ciphers for ASIC round-based implementations, while still reaching an extremely small area for serial implementations and a very good efficiency for software and micro-controllers im- plementations (SKINNY has the smallest total number of AND/OR/XOR gates used for encryption process). Secondly, we present MANTIS, a dedicated variant of SKINNY for low-latency imple- mentations, that constitutes a very efficient solution to the problem of designing a tweakable block cipher for memory encryption.
    [Show full text]
  • Optimization of AES Encryption Algorithm with S- Box
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 259-268 © International Research Publication House http://www.irphouse.com Optimization of AES Encryption Algorithm with S- Box Dr. J. Abdul Jaleel1, Anu Assis2 and Sherla A.3 Dept. Of Electrical and Electronics Engineering1,3, Dept. Of Electronics and Communication2 [email protected], [email protected] [email protected] Abstract In any wireless communication, security is crucial during data transmission. The encryption and decryption of data is the major challenge faced in the wireless communication for security of the data. These algorithms are used to ensure the security in the transmission channels. Similarly hardware utilization and power consumption are another major things to be considered since most of the mobile terminals are battery operated. In this paper, we use the Advanced Encryption Standard (AES) which works on a 128 bit data encrypting it with 128, 192 or 256 bits of keys for ensuring security. In this paper, we compare AES encryption with two different S-Boxes: S-box with 256 byte lookup table (Rijndael S-Box) and AES with 16 byte S-Box (Anubis S-Box). Optimized and synthesized VHDL code is used for AES encryption. Xilinx ISE 13.2i software is used for VHDL code implementation and Modelsim simulator is used for the simulation. Keywords: AES(Advanced Encryption Standard ), Rijndael, Cryptography, VHDL. Introduction As we move into twenty-first century, almost all information processing and telecommunication are in digital formats. In any wireless communication, security is crucial during data transmission. The encryption and decryption of data is the major challenge faced in the wireless communication for security of the data.
    [Show full text]
  • The Long Road to the Advanced Encryption Standard
    The Long Road to the Advanced Encryption Standard Jean-Luc Cooke CertainKey Inc. [email protected], http://www.certainkey.com/˜jlcooke Abstract 1 Introduction This paper will start with a brief background of the Advanced Encryption Standard (AES) process, lessons learned from the Data Encryp- tion Standard (DES), other U.S. government Two decades ago the state-of-the-art in cryptographic publications and the fifteen first the private sector cryptography was—we round candidate algorithms. The focus of the know now—far behind the public sector. presentation will lie in presenting the general Don Coppersmith’s knowledge of the Data design of the five final candidate algorithms, Encryption Standard’s (DES) resilience to and the specifics of the AES and how it dif- the then unknown Differential Cryptanaly- fers from the Rijndael design. A presentation sis (DC), the design principles used in the on the AES modes of operation and Secure Secure Hash Algorithm (SHA) in Digital Hash Algorithm (SHA) family of algorithms Signature Standard (DSS) being case and will follow and will include discussion about point[NISTDSS][NISTDES][DC][NISTSHA1]. how it is directly implicated by AES develop- ments. The selection and design of the DES was shrouded in controversy and suspicion. This very controversy has lead to a fantastic acceler- Intended Audience ation in private sector cryptographic advance- ment. So intrigued by the NSA’s modifica- tions to the Lucifer algorithm, researchers— This paper was written as a supplement to a academic and industry alike—powerful tools presentation at the Ottawa International Linux in assessing block cipher strength were devel- Symposium.
    [Show full text]
  • Differential Factors: Improved Attacks on Serpent
    Cryptographic Properties of S-boxes Differential Factors Improved Attacks on Serpent Conclusion Differential Factors: Improved Attacks on Serpent Cihangir TEZCAN and Ferruh Ozbudak¨ Department of Mathematics Middle East Technical University Institute of Applied Mathematics Department of Cryptography Middle East Technical University LightSEC 2014 Istanbul,_ Turkey Cihangir TEZCAN and Ferruh Ozbudak¨ Differential Factors: Improved Attacks on Serpent Cryptographic Properties of S-boxes Differential Factors Improved Attacks on Serpent Conclusion Outline 1 Cryptographic Properties of S-boxes 2 Differential Factors 3 Improved Attacks on Serpent 4 Conclusion Cihangir TEZCAN and Ferruh Ozbudak¨ Differential Factors: Improved Attacks on Serpent Cryptographic Properties of S-boxes Differential Factors Improved Attacks on Serpent Conclusion S-box Properties and Cryptanalysis Confusion layer of cryptographic algorithms mostly consists of S-boxes. S-box Properties and Cryptanalysis 1 Differential Uniformity => Differential Cryptanalysis 2 Non-linear Uniformity => Linear Cryptanalysis 3 Branch Number => Algebraic and Cube Attacks 4 Number of Shares => Side-Channel Attacks, DPA 5 Undisturbed Bits => Truncated, Impossible, Improbable Differential Cryptanalysis Cihangir TEZCAN and Ferruh Ozbudak¨ Differential Factors: Improved Attacks on Serpent Example (Serpent S1) 1 Input: 4x => Output: ?1?? 2 Input: 8x => Output: ?1?? 3 Input: Cx => Output: ?0?? 4 Output: 1x => Input: 1??? 5 Output: 4x => Input: 1??? 6 Output: 5x => Input: 0??? Cryptographic Properties of S-boxes
    [Show full text]
  • Modes of Operation for Compressed Sensing Based Encryption
    Modes of Operation for Compressed Sensing based Encryption DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften Dr. rer. nat. vorgelegt von Robin Fay, M. Sc. eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen Siegen 2017 1. Gutachter: Prof. Dr. rer. nat. Christoph Ruland 2. Gutachter: Prof. Dr.-Ing. Robert Fischer Tag der mündlichen Prüfung: 14.06.2017 To Verena ... s7+OZThMeDz6/wjq29ACJxERLMATbFdP2jZ7I6tpyLJDYa/yjCz6OYmBOK548fer 76 zoelzF8dNf /0k8H1KgTuMdPQg4ukQNmadG8vSnHGOVpXNEPWX7sBOTpn3CJzei d3hbFD/cOgYP4N5wFs8auDaUaycgRicPAWGowa18aYbTkbjNfswk4zPvRIF++EGH UbdBMdOWWQp4Gf44ZbMiMTlzzm6xLa5gRQ65eSUgnOoZLyt3qEY+DIZW5+N s B C A j GBttjsJtaS6XheB7mIOphMZUTj5lJM0CDMNVJiL39bq/TQLocvV/4inFUNhfa8ZM 7kazoz5tqjxCZocBi153PSsFae0BksynaA9ZIvPZM9N4++oAkBiFeZxRRdGLUQ6H e5A6HFyxsMELs8WN65SCDpQNd2FwdkzuiTZ4RkDCiJ1Dl9vXICuZVx05StDmYrgx S6mWzcg1aAsEm2k+Skhayux4a+qtl9sDJ5JcDLECo8acz+RL7/ ovnzuExZ3trm+O 6GN9c7mJBgCfEDkeror5Af4VHUtZbD4vALyqWCr42u4yxVjSj5fWIC9k4aJy6XzQ cRKGnsNrV0ZcGokFRO+IAcuWBIp4o3m3Amst8MyayKU+b94VgnrJAo02Fp0873wa hyJlqVF9fYyRX+couaIvi5dW/e15YX/xPd9hdTYd7S5mCmpoLo7cqYHCVuKWyOGw ZLu1ziPXKIYNEegeAP8iyeaJLnPInI1+z4447IsovnbgZxM3ktWO6k07IOH7zTy9 w+0UzbXdD/qdJI1rENyriAO986J4bUib+9sY/2/kLlL7nPy5Kxg3 Et0Fi3I9/+c/ IYOwNYaCotW+hPtHlw46dcDO1Jz0rMQMf1XCdn0kDQ61nHe5MGTz2uNtR3bty+7U CLgNPkv17hFPu/lX3YtlKvw04p6AZJTyktsSPjubqrE9PG00L5np1V3B/x+CCe2p niojR2m01TK17/oT1p0enFvDV8C351BRnjC86Z2OlbadnB9DnQSP3XH4JdQfbtN8 BXhOglfobjt5T9SHVZpBbzhDzeXAF1dmoZQ8JhdZ03EEDHjzYsXD1KUA6Xey03wU uwnrpTPzD99cdQM7vwCBdJnIPYaD2fT9NwAHICXdlp0pVy5NH20biAADH6GQr4Vc
    [Show full text]