The Nasa Planetary Data System's Cartography And

Total Page:16

File Type:pdf, Size:1020Kb

The Nasa Planetary Data System's Cartography And 3rd Planetary Data Workshop 2017 (LPI Contrib. No. 1986) 7124.pdf THE NASA PLANETARY DATA SYSTEM’S CARTOGRAPHY AND IMAGING SCIENCES NODE AND THE PLANETARY SPATIAL DATA INFRASTRUCTURE (PSDI) INITIATIVE. L.R. Gaddis, J. Laura, T. Hare, and J. Hagerty. U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ ([email protected]). Introduction: An effort currently underway IMG focuses primarily on archiving, distrib- within the NASA-funded planetary research com- uting, and making available data from past and pre- munity is the Mapping and Planetary Spatial Infra- sent NASA planetary space missions. Extended structure Team (MAPSIT, [1]). MAPSIT is a com- topics addressed by IMG include planetary geo- munity assessment group organized to address a metric characterization and analysis, calibration, critical lack of community-based strategic spatial detailed geometric and physical camera and instru- data planning for space science and exploration ment modeling and characterization, geographic (http://www.lpi.usra.edu/mapsit/). MAPSIT is information systems, mosaicking and basemap managed for NASA through the U.S. Geological generation for planetary surface and orbital explo- Survey’s (USGS) Astrogeology Science Center ration, metadata harvesting and analysis, etc. By (ASC) and the Inter-Agency Agreement for Plane- tary Spatial Data Infrastructure (PSDI) research leveraging institutional spatial data expertise and (NASA-USGS-PSDI-IAA, [2]). A new initiative activities in ASC and working closely with data of NASA and USGS is the development of a PSDI providers, IMG also provides access to data and that builds on extensive knowledge from the ter- software that geometrically characterize and trans- restrial research community [3, 4]. PSDI is a form planetary images. Through collaborations be- framework designed to enable the efficient discov- tween IMG partners at USGS and the Jet Propul- ery, access, and exploitation of planetary spatial sion Laboratory (JPL), and within projects and data to facilitate data analysis, knowledge synthe- mission operations at JPL, IMG provides software sis, and scientific decision-making. Here we ad- tools and capabilities in response to research and dress the role of this PSDI in the context of ongo- flight-project needs. Archival products of these ac- ing work to archive and deliver planetary data by tivities are made available to users through PDS NASA’s Planetary Data System, and in particular IMG online data services. the PDS Cartography and Imaging Sciences Dis- PSDI Background: The PSDI framework is cipline Node (aka “Imaging” or IMG). intended to integrate people (developers and data IMG Background: The PDS Imaging Node is users), regulatory mechanisms and policies, data a curator of NASA's larger digital image collec- access technologies, standards, and planetary spa- tions from past, present, and future planetary mis- tial data. The PSDI addresses three issues often sions. Current IMG data holdings total ~975 TB seen among spatial data users. First, because data and they are projected to grow by ~200 TB each year [e.g., 5]. IMG provides to the NASA planetary collection can be prohibitively expensive, data re- science community the digital image archives, an- usability is a primary goal of the PSDI. Second, cillary data, sophisticated data search and retrieval development and delivery of highly usable, de- tools, and technical expertise necessary to develop rived data products and tools to support users di- and fully utilize the vast collection of digital plan- rectly without having individual users gain the spe- etary images of many terrestrial planetary bodies, cialized expertise necessary to produce them inde- including icy satellites. Science expertise at IMG pendently. Third, the use of standards and stand- includes orbital and landed camera instrument de- ardized methodologies in the development and velopment, data processing, data engineering and sharing of tools and data will both benefit directly informatics, planetary remote sensing at UV to from a well-characterized framework and simplify RADAR wavelengths, and geospatial data analysis integration of such products back into the PSDI. and product development. Managed primarily at The development and maintenance of three the USGS ASC, IMG also leverages capabilities types of foundational data products [7] are critical and ongoing NASA-funded projects in planetary to this PSDI: stand-alone data products, special- nomenclature, software development (via the ized products required for the derivation of other ISIS3 software [6]), spatial data analysis, and no- data products, and highly usable products provid- menclature at that institution. ing high science return across the broadest possible user base. Because many of these elements have a 3rd Planetary Data Workshop 2017 (LPI Contrib. No. 1986) 7124.pdf long lead-time, the MAPSIT community is cur- the high-level images require additional processing rently engaged in developing a roadmap to ensure to be properly adjusted as a collection (bundle-ad- that the development of software, data products, justed or controlled) to a foundational data set or to and processing capability keeps pace with the plan- become foundational data themselves. This level etary research and exploration needs of NASA. of processing can be facilitated by PDS tools but is Leveraging available data and the most recent currently beyond the scope of what PDS can sup- technologies for data consolidation, delivery and port. However, once created such foundational accessibility, the ultimate goal of a PSDI is to pro- products can become part of the PDS archives vide seamless discovery, access, and exploitation through geospatial data delivery services such as of spatially enabled data for all data consumers the PDS IMG Annex (https://astrogeol- without any predetermined requirement of spatial ogy.usgs.gov/pds/annex). data expertise through the use of cutting edge tech- Summary: Although PDS, PDS IMG, and the nologies, standards, and transparent policy initia- PSDI have the common goals of making data ac- tives. Key aspects of the PSDI framework are its cessible and usable for NASA mission planning abilities to adapt and respond quickly to changing and research, the implementations are distinct and user needs by building on existing NASA capabil- complementary. Although the PDS focus is on ities in planetary data archiving and spatial data long-term data availability and usability, the PSDI product development. framework is a living structure that addresses user The PDS Foundation for a PSDI Frame- needs by leveraging the data within the PDS, using work: As the primary archive for planetary digital current technologies to transform those data to data, the PDS plays a critical role in laying the meet the standards and interoperability policies de- foundation for the development of a PSDI, and also fined by the PSDI, and providing data access in the ultimate success of such a PSDI. In part this mechanisms that can evolve rapidly and readily as role is achieved by recognizing that the fundamen- new technologies become available. The develop- tal goals of the PDS and PSDI are complementary. ment of a strategic PSDI plan is foundational in re- PDS emphasizes the archival and long-term preser- alizing the ability to fully leverage NASA col- vation of fundamental planetary data products, and lected spatial data in the future. NASA plays a piv- these include raw and low-level data products as otal role in driving the development of a PSDI, well as higher level products developed by mis- identifying policy alignment with existing SDI sions and resulting from exploration, science, map- mandates and filling policy gaps, and empowering ping and cartography research. partners to codify a user-centered plan for spatial PDS IMG, along with other discipline nodes in data management. At present, the PSDI is in the the PDS, has developed a variety of specialized planning stages, with current emphasis on gather- and sophisticated data delivery services to support ing community input through MAPSIT on user users. For example, a user can conduct either a sim- needs, relevant standards for data delivery and ple or complex data search using the Planetary Im- software development, necessary foundational age Atlas (https://pds-imaging.jpl.nasa.gov ) or the products and tools to develop them, and how the Planetary Image Locator Tool (PILOT, https://pi- unique planetary science aspects of the people, lot.wr.usgs.gov/). The latter is integrated with the standards, policies, data access networks and data planetary image processing package ISIS3 and it will need to be integrated. allows users to select planetary image data, submit References: [1] Lawrence, S. J. et al. (2016), them for cloud processing (i.e., map-projection) 47th LPSC, abs. #1710. [2] Keszthelyi, L. et al. using the Projection on the Web (POW) tool (2017), this volume. [3] Laura, J. et al. (2017), Vi- (https://astrocloud.wr.usgs.gov/) and export them sion 2050, abs. #8110. [4] Laura, J. et al. (2017), in formats directly usable in common analytical this volume. [5] Gaddis, L. and T. Hare (2015), and visualization tool such as ArcMap or QGIS ge- Eos, 96, doi:10.1029/2015EO041125. [6] Sides, S. et al. (2017) LPS XLVIII, 48th LPSC, abs. #2739. ographic information systems. Thus the user need th not understand the complex processing steps that [7] Archinal, B.A. et al. (2017), 48 LPSC, abs. #2286. ISIS3 performs to create such usable products from lower-level PDS data. For example, for such map- projected products to become truly foundational, .
Recommended publications
  • Bio 219 Biomedical Imaging and Scientific Visualization
    Bio 219 Biomedical Imaging and Scientific Visualization Ch. Zollikofer M. Ponce de León Organization • OLAT: – course scripts (pdf) • website: www.aim.uzh.ch/morpho/wiki/Teaching/SciVis – course scripts (pdf); passwd: scivisdocs – link collection (tutorials, applets, software/data downloads, ...) • book (background information): Zollikofer & Ponce de León, Virtual Reconstruction. A Primer in Computer-assisted Paleontology and Biomedicine (NY: Wiley, 2005) CHF 55 • final exam – Monday, 26. May 2014, 1015-1100 BioMedImg & SciVis • at the intersection between – theory/practice of image data acquisition – computer graphics – medical diagnostics – computer-assisted paleoanthropology Grotte Chauvet, France Biomedical Imaging • acquisition • processing • analysis • visualization ... of biomedical data Scientific Visualization visual... • representation (cf. data presentation) • exploration • analysis ...of scientific data aims of this course • provide theoretical (and practical) foundations of – image data acquisition, storage, retrieval – image data processing and analysis – image data visualization/rendering • establish links between – real-life vision and computer vision – computer science and biomedical sciences – theory and practice of handling biomedical data contents • real-life vision • computers and data representation • 2D image data acquisition • 3D image data acquisition • biomedical image processing in 2D and 3D • biomedical image data visualization and interaction biomedical data types of data data flow humans and computers facts and data • facts exist by definition (±independent of the observer): – females and males – humans and Neanderthals – dogs and wolves • data are generated through observation: – number of living human species: 1 – proportion of females to males at birth: 49/51 – nr. of wolves per square km biomedical data: general • physical/physiological data about the human body: – density – temperature – pressure – mass – chemical composition biomedical data: space and time • spatial – 1D – 2D – 3D • temporal • spatiotemporal (4D) ..
    [Show full text]
  • Three-Dimensional Thematic Map Imaging of the Yacht Port on the Example of the Polish National Sailing Centre Marina in Gda ´Nsk
    applied sciences Article Three-Dimensional Thematic Map Imaging of the Yacht Port on the Example of the Polish National Sailing Centre Marina in Gda ´nsk Pawel S. Dabrowski 1 , Cezary Specht 1,* , Mariusz Specht 2 and Artur Makar 3 1 Department of Geodesy and Oceanography, Gdynia Maritime University, 81-347 Gdynia, Poland; [email protected] 2 Department of Transport and Logistics, Gdynia Maritime University, 81-225 Gdynia, Poland; [email protected] 3 Department of Navigation and Hydrography, Polish Naval Academy, 81-127 Gdynia, Poland; [email protected] * Correspondence: [email protected] Abstract: The theory of cartographic projections is a tool which can present the convex surface of the Earth on the plane. Of the many types of maps, thematic maps perform an important function due to the wide possibilities of adapting their content to current needs. The limitation of classic maps is their two-dimensional nature. In the era of rapidly growing methods of mass acquisition of spatial data, the use of flat images is often not enough to reveal the level of complexity of certain objects. In this case, it is necessary to use visualization in three-dimensional space. The motivation to conduct the study was the use of cartographic projections methods, spatial transformations, and the possibilities offered by thematic maps to create thematic three-dimensional map imaging (T3DMI). The authors presented a practical verification of the adopted methodology to create a T3DMI visualization of Citation: Dabrowski, P.S.; Specht, C.; Specht, M.; Makar, A. the marina of the National Sailing Centre of the Gda´nskUniversity of Physical Education and Sport Three-Dimensional Thematic Map (Poland).
    [Show full text]
  • Members | Diagnostic Imaging Tests
    Types of Diagnostic Imaging Tests There are several types of diagnostic imaging tests. Each type is used based on what the provider is looking for. Radiography: A quick, painless test that takes a picture of the inside of your body. These tests are also known as X-rays and mammograms. This test uses low doses of radiation. Fluoroscopy: Uses many X-ray images that are shown on a screen. It is like an X-ray “movie.” To make images clear, providers use a contrast agent (dye) that is put into your body. These tests can result in high doses of radiation. This often happens during procedures that take a long time (such as placing stents or other devices inside your body). Tests include: Barium X-rays and enemas Cardiac catheterization Upper GI endoscopy Angiogram Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography (MRA): Use magnets and radio waves to create pictures of your body. An MRA is a type of MRI that looks at blood vessels. Neither an MRI nor an MRA uses radiation, so there is no exposure. Ultrasound: Uses sound waves to make pictures of the inside of your body. This test does not use radiation, so there is no exposure. Computed Tomography (CT) Scan: Uses a detector that moves around your body and records many X- ray images. A computer then builds pictures or “slices” of organs and tissues. A CT scan uses more radiation than other imaging tests. A CT scan is often used to answer, “What does it look like?” Nuclear Medicine Imaging: Uses a radioactive tracer to produce pictures of your body.
    [Show full text]
  • (NSPM) Content Outline and Exam Blueprint Effective Through 2020
    Nonsurgical Pain Management (NSPM) Content Outline and Exam Blueprint Effective through 2020 The NSPM subspecialty examination will assess a nurse anesthetist’s competence of needle placement in three anatomical approaches (i.e., midline, lateral, peripheral) and four anatomical regions (i.e., cervical, thoracic, lumbar, and sacral), as well as assess knowledge related to the NSPM certification examination content outline as listed below: Domain I. Physiology and Pathophysiology of Pain (13%) I.A. Applicable anatomy and physiology of pain I.B. Nociception: transduction, transmission, perception and modulation of pain I.C. Factors influencing pain I.D. Cellular response to pain and treatment I.E. Pain classifications I.F. Evidence based principles I.G. Pathophysiology I.G.1. Neurotransmitters I.G.2. Inflammatory mediators I.G.3. Pain pathways Domain II. Imaging Safety (8%) II.A. Evaluation of equipment II.B. Equipment safety II.C. Radiation safety II.D. Safe practices with imaging equipment II.E. Provider and Staff safety II.F. Patient safety Domain III. Assessment/Diagnosis/Integration/Referral (24%) III.A. Physical examination III.B. Pain generators III.C. Health history III.D. Diagnostic studies III.D.1. MRI III.D.2. CT III.D.3. EMG III.D.4. X-ray III.D.5. Discogram III.E. Documentation III.F. Data interpretation III.G. Treatment plan III.H. Imaging strategies III.I. Clinical judgment III.J. Multidisciplinary collaboration 1 Nonsurgical Pain Management (NSPM) Content Outline and Exam Blueprint Effective through 2020 Domain IV. Pharmacological Treatment (15%) IV.A. Pharmacology and pain IV.A.1. NSAIDS IV.A.2. Opioids IV.A.3.
    [Show full text]
  • 1. Cartography: the Development and Critique of Maps and Mapmaking
    1. Cartography: the development and critique of maps and mapmaking Maps ‘are once again in the thick of it’ for critical social theorists, artists, literary critics and cultural geographers, but also in a very different way for planners, GIS researchers and scientists. Art and science offer different cartographic explanations. There are profound differences between those who research mapping as a practical form of applied knowledge, and those who seek to critique the map and the mapping process. (Perkins 2003: 341-342) Cartography is the study of maps and map-making. Classically, it focused on the art of the map-maker; today it includes the history of maps and their use in society. A map, as defined by the International Cartographic Association (2009), is ‘a symbolised image of geographical reality, representing selected features or characteristics, resulting from the creative effort of its author's execution of choices, and is designed for use when spatial relationships are of primary relevance’. While this definition eloquently indicates the varying constructions of maps, leading to the different ways maps are conceptualised and produced within society, its basic premise -- that a map is first and foremost ‘a symbolised image of a geographical reality’ -- has been challenged with the rise of a critical cartography/geography. Taking this definition as a starting premise, this chapter will seek to illustrate the ‘creativity’ and ‘selectivity’ of maps through a brief history of cartography, before embarking in later sections on a more critical analysis of the debates that surround the subject. The primary goal here is to understand the lessons that can be drawn from the historical development of cartography in a bid to assist contemporary criminologists in the development of more appropriate questions about maps and ultimately the process of crime mapping itself.
    [Show full text]
  • Imaging Services Order Guide Medicare Guidelines Require Explicit Written and Signed Provider Orders
    Imaging Services 2021 Imaging Services Order Guide Medicare guidelines require explicit written and signed provider orders. This guide was created to assist you in ordering and authorizing exams accurately. Please obtain insurance authorizations before scheduling imaging studies. Call one of our licensed/certified technologists if you have questions or comments. NOTE: Please DO NOT call the department to schedule an appointment. CENTRALIZED SCHEDULING . 509-248-9592 GENERAL X-RAY . 509-895-0509 COMPUTED TOMOGRAPHY (CT) . 509-895-0507 MAGNETIC RESONANCE IMAGING (MRI) . 509-895-0505 NUCLEAR MEDICINE . 509-575-8099 `OHANA MAMMOGRAPHY . 509-574-3863 ULTRASOUND . 509-249-5154 VASCULAR ULTRASOUND–Memorial Heart & Vascular . 509-574-0243 VASCULAR STAT REFERRALS–Memorial Heart & Vascular . .509-494-0551 CARDIOVASCULAR SERVICES–Memorial Heart & Vascular . 509-574-0243 BONE DENSITY–Lakeview Campus . 509-972-1170 PROVIDER EMERGENCY . 509-248-7380 Option 0 Consultation of a Clinical Decision Support Mechanism is required to determine if advanced diagnostic imaging services (CT, MRI, Nuclear Medicine, PET) adheres to Appropriate Use Criteria. Order must include Decision Support Number (DSN), G-Code, and Modifier. PHONE | 509-895-0507 PHONE | 509-895-0507 2 3 CT/CAT Scan/Computed Tomography FAX | 509-576-6982 CT/CAT Scan/Computed Tomography FAX | 509-576-6982 *If patient is over 400 lbs., please call the CT department at 509-895-0507. *If patient is over 400 lbs., please call the CT department at 509-895-0507. Consultation of a Clinical Decision Support Mechanism is required. Order must include DSN, G-Code, and Modifier. Consultation of a Clinical Decision Support Mechanism is required. Order must include DSN, G-Code, and Modifier.
    [Show full text]
  • The History of Cartography, Volume Six: Cartography in the Twentieth Century
    The AAG Review of Books ISSN: (Print) 2325-548X (Online) Journal homepage: http://www.tandfonline.com/loi/rrob20 The History of Cartography, Volume Six: Cartography in the Twentieth Century Jörn Seemann To cite this article: Jörn Seemann (2016) The History of Cartography, Volume Six: Cartography in the Twentieth Century, The AAG Review of Books, 4:3, 159-161, DOI: 10.1080/2325548X.2016.1187504 To link to this article: https://doi.org/10.1080/2325548X.2016.1187504 Published online: 07 Jul 2016. Submit your article to this journal Article views: 312 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rrob20 The AAG Review OF BOOKS The History of Cartography, Volume Six: Cartography in the Twentieth Century Mark Monmonier, ed. Chicago, document how all cultures of all his- IL: University of Chicago Press, torical periods represented the world 2015. 1,960 pp., set of 2 using maps” (Woodward 2001, 28). volumes, 805 color plates, What started as a chat on a relaxed 119 halftones, 242 line drawings, walk by these two authors in Devon, England, in May 1977 developed into 61 tables. $500.00 cloth (ISBN a monumental historia cartographica, 978-0-226-53469-5). a cartographic counterpart of Hum- boldt’s Kosmos. The project has not Reviewed by Jörn Seemann, been finished yet, as the volumes on Department of Geography, Ball the eighteenth and nineteenth cen- State University, Muncie, IN. tury are still in preparation, and will probably need a few more years to be published.
    [Show full text]
  • What Is Geovisualization? to the Growing Field of Geovisualization
    This issue of GeoMatters is devoted What is Geovisualization? to the growing field of geovisualization. Brian McGregor uses geovisualiztion to by Joni Storie produce animated maps showing settle- ment patterns of Hutterite colonies. Dr. Marc Vachon’s students use it to produce From a cartography perspective, dynamic presentation options to com- videos about urban visualization (City geovisualization represents a change in municate knowledge. For example, at- Hall and Assiniboine Park), while Dr. how knowledge is formed and repre- lases require extra planning compared Chris Storie shows geovisualiztion for sented. Traditional cartography is usu- to individual maps, structurally they retail mapping in Winnipeg. Also in this issue Honours students describe their ally seen a visualization (a.k.a. map) could include hundreds of maps, and thesis projects for the upcoming collo- that is presented after the conclusion all the maps relate to each other. Dr. quium next March, Adrienne Ducharme is reached to emphasize or compliment Danny Blair and Dr. Ian Mauro, in the tells us about her graduate research at the research conclusions. Geovisual- Department of Geography, provide an ELA, we have a report about Cultivate ization changes this format by incor- excellent example of this integration UWinnipeg and our alumni profile fea- porating spatial data into the analysis with the Prairie Climate Atlas (http:// tures Michelle Méthot (Smith). (O’Sullivan and Unwin, 2010). Spatial www.climateatlas.ca/). The combina- Please feel free to pass this newsletter data, statistics and analysis are used to tion of maps with multimedia provides to anyone with an interest in geography. answer questions which contribute to for better understanding as well as en- Individuals can also see GeoMatters at the Geography website, or keep up with the conclusion that is reached within riched and informative experiences of us on Facebook (Department of Geog- the research.
    [Show full text]
  • 2021-2022 Diagnostic Imaging and Therapy Information Packet
    www.gatewayct.edu DIAGNOSTIC IMAGING & THERAPY PROGRAMS INFORMATION PACKET 2021-2022 Academic Year Diagnostic Medical Sonography Nuclear Medicine Technology Radiation Therapy Radiography Rev. 06/20 Please disregard all previous versions of the Diagnostic Imaging & Therapy Information Packet Please note: Information in this packet is subject to change. If you do not intend to apply to one of the Diagnostic Imaging & Therapy Programs for the 2021-2022 academic year, please obtain an updated packet for future years. 1 of 23 Introduction Diagnostic Imaging & Therapy refers to four disciplines: Diagnostic Medical Sonography (Associate Degree) Nuclear Medicine Technology (Associate Degree and Certificate) Radiation Therapy (Associate Degree) Radiography (Associate Degree) Diagnostic Medical Sonography The Associate in Science degree program in Diagnostic Medical Sonography (DMS) offers the student an outstanding opportunity to acquire both the academic and technical skills necessary to perform abdominal, obstetrical, superficial, vascular and gynecological sonography procedures. Students will train with highly skilled Sonographers at leading healthcare facilities. Graduates are encouraged to apply for National Qualifying Examination for certification in Sonography with The American Registry of Diagnostic Medical Sonography (ARDMS) (www.ardms.org) and/or the American Registry of Radiologic Technologists (ARRT (S)) (www.arrt.org). The DMS program is accredited in General (Abdomen and OBGYN) and Vascular concentrations by the Commission on Education of Allied Health Education Programs, 25400 US Highway 19 North, Suite 158, Clearwater, FL 33763, P:727-210-2350 F:727-210-2354, E: [email protected]. The joint committee on Education in Diagnostic Medical Sonography (JRC_DMS) is a nonprofit organization in existence to establish, maintain and promote quality standards for educational programs in DMS.
    [Show full text]
  • Introduction to Medical Image Computing
    1 MEDICAL IMAGE COMPUTING (CAP 5937)- SPRING 2017 LECTURE 1: Introduction Dr. Ulas Bagci HEC 221, Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, FL 32814. [email protected] or [email protected] 2 • This is a special topics course, offered for the second time in UCF. Lorem Ipsum Dolor Sit Amet CAP5937: Medical Image Computing 3 • This is a special topics course, offered for the second time in UCF. • Lectures: Mon/Wed, 10.30am- 11.45am Lorem Ipsum Dolor Sit Amet CAP5937: Medical Image Computing 4 • This is a special topics course, offered for the second time in UCF. • Lectures: Mon/Wed, 10.30am- 11.45am • Office hours: Lorem Ipsum Dolor Sit Amet Mon/Wed, 1pm- 2.30pm CAP5937: Medical Image Computing 5 • This is a special topics course, offered for the second time in UCF. • Lectures: Mon/Wed, 10.30am-11.45am • Office hours: Mon/Wed, 1pm- 2.30pm • No textbook is Lorem Ipsum Dolor Sit Amet required, materials will be provided. • Avg. grade was A- last CAP5937: Medical Image Computing spring. 6 Image Processing Computer Vision Medical Image Imaging Computing Sciences (Radiology, Biomedical) Machine Learning 7 Motivation • Imaging sciences is experiencing a tremendous growth in the U.S. The NYT recently ranked biomedical jobs as the number one fastest growing career field in the nation and listed bio-medical imaging as the primary reason for the growth. 8 Motivation • Imaging sciences is experiencing a tremendous growth in the U.S. The NYT recently ranked biomedical jobs as the number one fastest growing career field in the nation and listed bio-medical imaging as the primary reason for the growth.
    [Show full text]
  • History of Cartography by Trista L
    Name Date History of Cartography By Trista L. Pollard Our view of the world has changed since 1500 years ago. The maps and globes we use today are very accurate. They show more details. You can see cities and countries. They show landforms and landmarks. Our maps now have a standard coordinate or grid system. This measurement system helps us to locate places on Earth. But what about the first maps? What are they like? How were they made? Let's take a journey into the history of cartography. Cartography is the science of making maps. Today's cartographers use computers and cameras to help make maps. This is called remote sensing. Cameras are placed or mounted on airplanes. These cameras take pictures of the Earth's surface. Satellites in space are also used for cartography. Mapmakers in the past had much less technology. They used observation and stories from sailors to make maps. Most early scientists believed the Earth was flat. Imagine sailing from your country and falling over a cliff! That's what people thought. They also thought Earth was a flat disc. The center of the disc was filled with people. The outer edges of the Earth were empty. A world map made as early as 500 B.C. showed a disc with two continents. These continents were Europe and Asia. Both were surrounded by an ocean. That makes sense! Most people only knew about their surrounding or immediate area. Geographers also found early maps of the Pacific Ocean. They were made by navigators from Polynesia or the Pacific Islands.
    [Show full text]
  • From GIS Data Sets to Cartographic Presentation
    Geographic Information Technology Training Alliance (GITTA) presents: From GIS data sets to Cartographic Presentation Responsible persons: Boris Stern, Helmut Flitter, Lorenz Hurni, Samuel Wiesmann From GIS data sets to Cartographic Presentation Table Of Content 1. From GIS data sets to Cartographic Presentation ................................................................................... 2 1.1. Map Presentation of GIS datasets .................................................................................................... 3 1.1.1. Map Creation from GIS datasets within GIS ............................................................................ 3 1.1.2. Map Layout settings with GIS datasets within GIS .................................................................. 4 1.1.3. Map Output with GIS datasets within GIS ............................................................................... 5 1.1.4. Map Creation with GIS datasets within CAC software ............................................................ 6 1.1.5. Map Presentation with GIS datasets within CAC software ....................................................... 7 1.1.6. Map Layout settings with GIS datasets within CAC software .................................................. 8 1.1.7. Summary .................................................................................................................................... 8 1.2. Solutions for Digital Mapping .........................................................................................................
    [Show full text]