Hunt Allocation Modeling for Migrating Animals: the Case of Baffin Bay Narwhal, Monodon Monoceros

Total Page:16

File Type:pdf, Size:1020Kb

Hunt Allocation Modeling for Migrating Animals: the Case of Baffin Bay Narwhal, Monodon Monoceros Hunt Allocation Modeling for Migrating Animals: The Case of Baffin Bay Narwhal, Monodon monoceros CORTNEY A. WATT, THOMAS DONIOL-VALCROZE, LARS WITTING, RODERICK C. HOBBS, RIKKE GULDBORG HANSEN, DAVID S. LEE, MARIANNE MARCOUX, VERONIQUE LESAGE, EVA GARDE, STEVEN H. FERGUSON, and MADS PETER HEIDE-JØRGENSEN Introduction rison et al., 2018). Migration patterns particular challenge for ensuring in- follow predictable routes and seasonal dividual stocks are managed sustain- Marine mammal populations or timing such that the exposure to po- ably (Allen and Singh, 2016); thus, a stocks often have large spatial distri- tential interactions with anthropogenic modeling approach that accounts for butions and follow seasonal migration activities may occur at a number of lo- this movement and mixing of stocks patterns that expose them to taking by cations annually each for a short pe- is needed (Ogburn et al., 2017). In this hunters or other risks at different times riod of time (Rosenbaum et al., 2013; way, removals can be attributed to the and locations throughout the year O’Corry-Crowe et al., 2016; Forney stock of origin, regardless of the time (Heide-Jørgensen et al., 2003; Valen- et al., 2017; Watt et al., 2017). Un- of year or location of the hunt. zuela et al., 2009; Foote et al., 2010; derstanding migration of animals and In many cases, genetic samples and Horton et al., 2017), and often across residency time becomes particularly phenology of catches are used to esti- many international jurisdictions (Har- important for sustainable manage- mate the portion of each stock avail- ment of hunted species (Harrison et able to hunters at different hunting Cortney A. Watt, Marianne Marcoux, and Ste- al., 2018). Movement of animals has sites, across seasons (de March and ven H. Ferguson are with the Department of been considered particularly important Postma, 2003; Shafer et al., 2014; Fisheries and Oceans Canada, 501 University 1 Crescent, Winnipeg, MB R3T 2N6, Canada. for developing and implementing con- Doniol-Valcroze et al. ). However, Thomas Doniol-Valcroze is with Fisheries and servation measures (Cooke, 2008; Mc- in cases such as narwhals, Monodon Oceans Canada, Pacific Biological Station, 3190 Gowan et al., 2017), but there are few monoceros, where genetic variation is Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada. Lars Witting is with Greenland Institute examples where movement and harvest very low (Palsbøll et al., 1997; West- of Natural Resources, P.O. Box 570, DK-3900, data have been integrated for sustain- bury et al., 2019; Louis et al., 2020; Nuuk, Greenland. Roderick C. Hobbs is with the able management of hunted species Petersen et al.2) other methods such North Atlantic Marine Mammal Commission, recently retired from the NOAA’s NMFS Marine (although see Nichols et al., 1995). as telemetry, diet, behavioral studies, Mammal Laboratory, and his current address Sustainable management of hunting or local knowledge may be used to as- is 6130 NE 204th Street, Kenmore, WA 98028 USA. Rikke G. Hansen, Eva Garde, and Mads typically divides species into manage- Peter Heide-Jørgensen are with the Greenland ment units, or stocks (hereafter re- 1Doniol-Valcroze, T., J.-F. Gosselin, and M. O. Institute of Natural Resources, Strandgade 91, ferred to as stocks) that are thought to Hammill. 2012. Population modeling and har- 2. DK 1401 Copenhagen K, Denmark. David vest advice under the precautionary approach S. Lee is with the Nunavut Tunngavik Incorpo- be self-sustaining, and often defined for eastern Hudson Bay beluga (Delphinapterus rated, Department of Wildlife and Environment, based on genetic indicators, residen- leucas). DFO Can. Sci. Advis. Sec. Res. Doc. Ottawa ON K1P 5E7, Canada. Véronique Les- cy time, site-fidelity, or other life his- 2012/168:iii + 31 p. (http://waves-vagues.dfo- age is with the Department of Fisheries and mpo.gc.ca/). Oceans, Maurice Lamontagne Institute, 850, tory characteristics (Begg et al., 1999; 2Petersen, S. D., D. Tenkula, and S. H. Ferguson. Route de la Mer, P.O. Box 1000, Mont-Joli, QC Hobbs et al., 2019). Movement of 2011. Population genetic structure of narwhal G5H 3Z4, Canada. Corresponding author is C. animals among hunting regions and (Monodon monoceros). DFO Can. Sci. Advis. A. Watt ([email protected]). Sec. Res. Doc. 2011/021:vi + 20 p. (https:// hunting regions in which hunters have waves-vagues.dfo-mpo.gc.ca/Library/343698. doi: https://doi.org/10.7755/MFR.81.3–4.8 access to more than one stock pose a pdf). ABSTRACT— Hunted animals are often North Atlantic Marine Mammal Commis- stock that are available to hunters in differ- managed as static management units, or sion (NAMMCO) and the Canada-Green- ent regions and seasons. This matrix can stocks, specific to hunting regions. How- land Joint Commission on Conservation be informed by quantitative data on stock ever, movement of animals between regions and Management of Narwhal and Beluga structure (e.g., genetics, telemetry) or qual- poses a particular challenge for manage- (JCNB) has developed a model that allo- itative information (local knowledge, expert ment to ensure that the hunt of individual cates catches in different hunting regions opinion, etc.). Uncertainty in the availabil- stocks is sustainable. The incorporation of and seasons to different stocks based on ity of animals and individual stock sizes is genetic information in stock assessments movement data, local knowledge, and ex- incorporated in a stochastic version. The can improve management decisions, but the pert opinion. The model uses information model is presented using a case study of resolution of genetics may not differentiate on stock size, catches in different hunt- narwhals, which are managed as stocks stocks, making the use of movement data ing areas/seasons, and a matrix which es- based on their summer distribution in Can- necessary. The Joint Working Group of the timates the proportion of animals in each ada and Greenland. 81(3–4) 125 et al., 2004; Dietz et al., 2008). Nar- whals show site fidelity to their sum- mering region (Heide-Jørgensen et al., 2002, 2003), with nearly all of the few animals tracked by satellite telemetry for a year, returning to the summer- ing aggregation where they were cap- tured (but see Watt et al.3). To avoid local depletion, management of the hunt has been based on these individ- ual summer aggregations of the Baffin Bay population, referred to as stocks (Hobbs et al., 2019). There are six defined narwhal stocks in the Baffin Bay population in north- ern Canada: the Admiralty Inlet, Somerset Island, Eclipse Sound, East Baffin Island, Smith Sound, and Jones Sound stocks (Doniol-Valcroze et al.4) (Fig. 1). In West Greenland there are two defined stocks from the Baffin Bay population: the Melville Bay and Inglefield Bredning stocks (Heide-Jør- gensen et al., 2013) (Fig. 1). Narwhals are hunted in a number of regions across the Canadian Arc- tic and West Greenland (based on lo- cal knowledge; Fig. 2). In Canada, the hunt occurs primarily during summer, but individuals hunted from the Baf- fin Bay population spend the winter in Figure 1.—Summer distribution of narwhal stocks in the Canadian high Arctic Davis Strait and Baffin Bay and pass and in West Greenland. NSIDC_Sea_Ice_Polar_Stereographic_North projection is through a number of hunting areas on used. the migration to and from their sum- mering area (Heide-Jørgensen et al., sign removals to the stock of origin. In eas and seasons. The model has broad 2013). In addition, whales from some either case, when all takes cannot be application to estimating removals in of the Canadian stocks are also avail- assigned positively to a single stock other migrating marine or terrestrial able to hunters in West Greenland on there will be uncertainty in the assign- species impacted by anthropogenic the fall and winter hunting grounds ments and a need for a probabilistic activities (e.g., hunting, exposure to (Heide-Jørgensen et al., 2013). assignment scheme. noise, fishery bycatch) in multiple Narwhal stocks have been managed The Joint Working Group consisting locations and seasons where mixed independently of one another, but be- of the North Atlantic Marine Mam- stocks are present. We developed the cause of the mixing of stocks during mal Commission (NAMMCO) Sci- model and used it in a case study fo- the migration and on the fall and win- entific Committee Working Group on cused on narwhals. the Population Status of Narwhal and Narwhals from the Baffin Bay popu- 3Watt, C. A., J. Orr, B. LeBlanc, P. Richard, and Beluga in the North Atlantic and the lation are part of the subsistence hunt S. H. Ferguson. 2012. Satellite tracking of nar- Canada-Greenland Joint Commission by a number of communities in the whals (Monodon monoceros) from Admiralty Inlet (2009) and Eclipse Sound (2010-2011). on Conservation and Management of Arctic in Canada and Greenland. This DFO Can. Sci. Advis. Sec. Res. Doc. 2012/046. Narwhal and Beluga (JCNB) Scientif- population of narwhals is estimated iii + 17 p. (https://waves-vagues.dfo-mpo.gc.ca/ ic Working Group developed a model at approximately 140,000 individuals Library/347206.pdf). that estimates the number of animals (Doniol-Valcroze et al.1), and spends 4Doniol-Valcroze, T., J.-F. Gosselin, D. Pike, J. Lawson, N. Asselin, K. Hedges, and S. Fer- removed from each stock, using infor- summers in the inlets and fjords of guson. 2015. Abundance estimates of nar- mation on movements of each stock northeastern Canada and western whal stocks in the Canadian High Arctic in 2013. DFO Can. Sci. Advis. Sec. Res. Doc. to determine which stocks are avail- Greenland (Dietz et al., 2001; Heide- 2015/060:v + 36 p. (http://waves-vagues.dfo- able to hunters in different hunting ar- Jørgensen et al., 2002, 2003; Laidre mpo.gc.ca/Library/362110.pdf).
Recommended publications
  • Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait
    Polarforschung 74 (1-3), 129 – 160, 2004 (erschienen 2006) In Search of the Wegener Fault: Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait by J. Christopher Harrison1 Abstract: A total of 28 geological-geophysical markers are identified that lich der Bache Peninsula und Linksseitenverschiebungen am Judge-Daly- relate to the question of strike slip motions along and bordering Nares Strait. Störungssystem (70 km) und schließlich die S-, später SW-gerichtete Eight of the twelve markers, located within the Phanerozoic orogen of Kompression des Sverdrup-Beckens (100 + 35 km). Die spätere Deformation Kennedy Channel – Robeson Channel region, permit between 65 and 75 km wird auf die Rotation (entgegen dem Uhrzeigersinn) und ausweichende West- of sinistral offset on the Judge Daly Fault System (JDFS). In contrast, eight of drift eines semi-rigiden nördlichen Ellesmere-Blocks während der Kollision nine markers located in Kane Basin, Smith Sound and northern Baffin Bay mit der Grönlandplatte zurückgeführt. indicate no lateral displacement at all. Especially convincing is evidence, presented by DAMASKE & OAKEY (2006), that at least one basic dyke of Neoproterozoic age extends across Smith Sound from Inglefield Land to inshore eastern Ellesmere Island without any recognizable strike slip offset. INTRODUCTION These results confirm that no major sinistral fault exists in southern Nares Strait. It is apparent to both earth scientists and the general public To account for the absence of a Wegener Fault in most parts of Nares Strait, that the shape of both coastlines and continental margins of the present paper would locate the late Paleocene-Eocene Greenland plate boundary on an interconnected system of faults that are 1) traced through western Greenland and eastern Arctic Canada provide for a Jones Sound in the south, 2) lie between the Eurekan Orogen and the Precam- satisfactory restoration of the opposing lands.
    [Show full text]
  • Canada's Arctic Marine Atlas
    Lincoln Sea Hall Basin MARINE ATLAS ARCTIC CANADA’S GREENLAND Ellesmere Island Kane Basin Nares Strait N nd ansen Sou s d Axel n Sve Heiberg rdr a up Island l Ch ann North CANADA’S s el I Pea Water ry Ch a h nnel Massey t Sou Baffin e Amund nd ISR Boundary b Ringnes Bay Ellef Norwegian Coburg Island Grise Fiord a Ringnes Bay Island ARCTIC MARINE z Island EEZ Boundary Prince i Borden ARCTIC l Island Gustaf E Adolf Sea Maclea Jones n Str OCEAN n ait Sound ATLANTIC e Mackenzie Pe Ball nn antyn King Island y S e trait e S u trait it Devon Wel ATLAS Stra OCEAN Q Prince l Island Clyde River Queens in Bylot Patrick Hazen Byam gt Channel o Island Martin n Island Ch tr. Channel an Pond Inlet S Bathurst nel Qikiqtarjuaq liam A Island Eclipse ust Lancaster Sound in Cornwallis Sound Hecla Ch Fitzwil Island and an Griper nel ait Bay r Resolute t Melville Barrow Strait Arctic Bay S et P l Island r i Kel l n e c n e n Somerset Pangnirtung EEZ Boundary a R M'Clure Strait h Island e C g Baffin Island Brodeur y e r r n Peninsula t a P I Cumberland n Peel Sound l e Sound Viscount Stefansson t Melville Island Sound Prince Labrador of Wales Igloolik Prince Sea it Island Charles ra Hadley Bay Banks St s Island le a Island W Hall Beach f Beaufort o M'Clintock Gulf of Iqaluit e c n Frobisher Bay i Channel Resolution r Boothia Boothia Sea P Island Sachs Franklin Peninsula Committee Foxe Harbour Strait Bay Melville Peninsula Basin Kimmirut Taloyoak N UNAT Minto Inlet Victoria SIA VUT Makkovik Ulukhaktok Kugaaruk Foxe Island Hopedale Liverpool Amundsen Victoria King
    [Show full text]
  • Glaciated Landscapes Along Smith Sound, Ellesmere Island, Canada and Greenland
    Annals of Glaciology 28 1999 # International Glaciological Society Glaciated landscapes along Smith Sound, Ellesmere Island, Canada and Greenland Weston Blake, Jr Geological Survey of Canada, Ottawa, Ontario K1A 0E8, Canada ABSTRACT. Both the Ellesmere Island and Greenland coasts of Smith Sound, at 78³20' Nto 78³50 ' N, exhibit exceptionally well-sculptured and heavily striated Pre- cambrian bedrock.The glacial features were created by the southward flow of the ``Smith Sound Ice Stream'', which overrode Pim Island .550 m), where Smith Sound is 4500 m deep and 40 km wide. The Smith Sound Ice Stream was the drainageway to Baffin Bay for ice derived from the coalescence of the Innuitian and Greenland ice sheets over Kane Basin, the shallowest part .much of it 5200 m) of the Nares Strait system, in late-Wisconsinan .Weichselian) time. The north^south oriented glacial features along the outermost coasts of Smith Sound contrast markedly with the present-day eastward flow of outlet glaciers from the Prince of Wales Icefield .Ellesmere Island) and the westward flow of outlet glaciers from the Greenland ice sheet .Inglefield Land).The oldest 14C ages on marine shells and lake sediments show that glacier ice had receded from the Ellesmere Island coast of Smith Sound by 900014 CyrBP. The heads of the three longest fiords,120^140 km to the west and northwest, did not become ice-free until 450014CyrBP. INTRODUCTION .Carey Òer, Fig.1), 225 km south of Rice Strait in northern Baffin Bay, with the PearyAuxiliary Expedition in 1894: When Per Schei, geologist on the Second Norwegian Arctic ``Theyare very notably abraded by glacial action coming from Expedition in the Fram .1898^1902), reported on the results of the north.
    [Show full text]
  • Canada Topographical
    University of Waikato Library: Map Collection Canada: topographical maps 1: 250,000 The Map Collection of the University of Waikato Library contains a comprehensive collection of maps from around the world with detailed coverage of New Zealand and the Pacific : Editions are first unless stated. These maps are held in storage on Level 1 Please ask a librarian if you would like to use one: Coverage of Canadian Provinces Province Covered by sectors On pages Alberta 72-74 and 82-84 pp. 14, 16 British Columbia 82-83, 92-94, 102-104 and 114 pp. 16-20 Manitoba 52-54 and 62-64 pp. 10, 12 New Brunswick 21 and 22 p. 3 Newfoundland and Labrador 01-02, 11, 13-14 and 23-25) pp. 1-4 Northwest Territories 65-66, 75-79, 85-89, 95-99 and 105-107) pp. 12-21 Nova Scotia 11 and 20-210) pp. 2-3 Nunavut 15-16, 25-27, 29, 35-39, 45-49, 55-59, 65-69, 76-79, pp. 3-7, 9-13, 86-87, 120, 340 and 560 15, 21 Ontario 30-32, 40-44 and 52-54 pp. 5, 6, 8-10 Prince Edward Island 11 and 21 p. 2 Quebec 11-14, 21-25 and 31-35 pp. 2-7 Saskatchewan 62-63 and 72-74 pp. 12, 14 Yukon 95,105-106 and 115-117 pp. 18, 20-21 The sector numbers begin in the southeast of Canada: They proceed west and north. 001 Newfoundland 001K Trepassey 3rd ed. 1989 001L St: Lawrence 4th ed. 1989 001M Belleoram 3rd ed.
    [Show full text]
  • Publications in Biological Oceanography, No
    National Museums National Museum of Canada of Natural Sciences Ottawa 1971 Publications in Biological Oceanography, No. 3 The Marine Molluscs of Arctic Canada Elizabeth Macpherson CALIFORNIA OF SCIK NCCS ACADEMY |] JAH ' 7 1972 LIBRARY Publications en oceanographie biologique, no 3 Musees nationaux Musee national des du Canada Sciences naturelles 1. Belcher Islands 2. Evans Strait 3. Fisher Strait 4. Southampton Island 5. Roes Welcome Sound 6. Repulse Bay 7. Frozen Strait 8. Foxe Channel 9. Melville Peninsula 10. Frobisher Bay 11. Cumberland Sound 12. Fury and Hecia Strait 13. Boothia Peninsula 14. Prince Regent Inlet 15. Admiralty Inlet 16. Eclipse Sound 17. Lancaster Sound 18. Barrow Strait 19. Viscount Melville Sound 20. Wellington Channel 21. Penny Strait 22. Crozier Channel 23. Prince Patrick Island 24. Jones Sound 25. Borden Island 26. Wilkins Strait 27. Prince Gustaf Adolf Sea 28. Ellef Ringnes Island 29. Eureka Sound 30. Nansen Sound 31. Smith Sound 32. Kane Basin 33. Kennedy Channel 34. Hall Basin 35. Lincoln Sea 36. Chantrey Inlet 37. James Ross Strait 38. M'Clure Strait 39. Dease Strait 40. Melville Sound 41. Bathurst Inlet 42. Coronation Gulf 43. Dolphin and Union Strait 44. Darnley Bay 45. Prince of Wales Strait 46. Franklin Bay 47. Liverpool Bay 48. Mackenzie Bay 49. Herschel Island Map 1 Geographical Distribution of Recorded Specimens CANADA DEPARTMENT OF ENERGY, MINES AND RESOURCES CANADASURVEYS AND MAPPING BRANCH A. Southeast region C. North region B. Northeast region D. Northwest region Digitized by tlie Internet Archive in 2011 with funding from California Academy of Sciences Library http://www.archive.org/details/publicationsinbi31nati The Marine Molluscs of Arctic Canada Prosobranch Gastropods, Chitons and Scaphopods National Museum of Natural Sciences Musee national des sciences naturelles Publications in Biological Publications d'oceanographie Oceanography, No.
    [Show full text]
  • Of Licenced Research Northwest Territories
    ' ·· I I I J 1 T J Index of Licenced Research II Northwest Territories • j '\I 1985 { J j Science Advisor J P.o. Box 1617 I Government of the Northwest Territories J ~ - I January 1986 Q 179.98 .C66 1985 copy2 I. -] INTRODUCTION l Scientific Research Licenses are mandatory for all research conducted in the N.W.T. There are three categories. Wildlife Research is licensed by the Department of Renewable Resources, J Archaeology is licensed by the Prince of Wales Northern Heritage Centre and all other research is licensed by the Science Advisor under the Scientists Act. A description of the procedures is J appended to the Index. l During the 1985 calendar year 260 li'cences to carry out scientific research were issued to scientists. Ninety-four 1985 licences were 1 issued to scientists directly affiliated with educational institutions. Of these 94 licences, 79 were issued to scientists from Canadian universities, 13 to scientists from U.S. universities, and 2 to scientists from other foreign universities. Of the 79 licences J granted to scientists from Canadian universities: Ontario received ............. 40 0 A1 berta received ..•..•.... , . 13 Quebec recetved . • . • . 9 Bri'tish Columbia received .... l Manitoba received ............ 5 J Newfoundland received ....•..• 3 J Saskatchewan received ..•..... 2 J The. i.ndex of 1 icenced research gi-ves the followi.ng information on each project: licence number, name and address of affi.liation of 1icen~ee. objective of the research and its location. I.t should be noted that i.nves ti,gators are ob'l i gated by the Ordinance to supply a report to the Commissi.oner withtn a stated ti"me.
    [Show full text]
  • A Catch History for Atlantic Walruses (Odobenus Rosmarus Rosmarus)
    A catch history for Atlantic walruses (Odobenus rosmarus rosmarus ) in the eastern Canadian Arctic D. Bruce Stewart 1,* , Jeff W. Higdon 2, Randall R. Reeves 3, and Robert E.A. Stewart 4 1 Arctic Biological Consultants, Winnipeg, Manitoba, R3V 1X2, Canada * Corresponding author; Email: [email protected] 2 Higdon Wildlife Consulting, 912 Ashburn Street, Winnipeg, Manitoba, R3G 3C9, Canada 3 Okapi Wildlife Associates, 27 Chandler Lane, Hudson, Quebec, J0P 1H0, Canada 5 501 University Crescent, Freshwater Institute, Fisheries and Oceans Canada, Central and Arctic Region, Winnipeg, Manitoba, R3T 2N6, Canada ABSTRACT Knowledge of changes in abundance of Atlantic walruses ( Odobenus rosmarus rosmarus ) in Canada is important for assessing their current population status. This catch history collates avail - able data and assesses their value for modelling historical populations to inform population recov - ery and management. Pre-historical (archaeological), historical (e.g., Hudson’s Bay Company journals) and modern catch records are reviewed over time by data source (whaler, land-based commercial, subsistence etc.) and biological population or management stock. Direct counts of walruses landed as well as estimates based on hunt products (e.g., hides, ivory) or descriptors (e.g., Peterhead boatloads) support a minimum landed catch of over 41,300 walruses in the eastern Canadian Arctic between 1820 and 2010, using the subsample of information examined. Little is known of Inuit catches prior to 1928, despite the importance of walruses to many Inuit groups for subsistence. Commercial hunting from the late 1500s to late 1700s extirpated the Atlantic walrus from southern Quebec and the Atlantic Provinces, but there was no commercial hunt for the species in the Canadian Arctic until ca.
    [Show full text]
  • An Aircraft-Based Study of Strong Gap Flows in Nares Strait, Greenland
    NOVEMBER 2018 H E I N E M A N N 3589 An Aircraft-Based Study of Strong Gap Flows in Nares Strait, Greenland GÜNTHER HEINEMANN Department of Environmental Meteorology, University of Trier, Trier, Germany (Manuscript received 16 May 2018, in final form 29 August 2018) ABSTRACT Gap flows and the stable boundary layer were studied in northwest Greenland during the aircraft-based Investigation of Katabatic Winds and Polynyas during Summer (IKAPOS) experiment in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI; Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors and a turbulence measurement system. In the area of Smith Sound at the southern end of the Nares Strait, a stable, but fully turbulent, boundary layer with strong winds of 2 up to 22 m s 1 was found during conditions of synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100–200 m. As a consequence of channeling effects, a well-pronounced low-level jet system was documented for each of four flights. The wind maximum is located at 20–50-km distance from the exit of Smith Sound. The 3D boundary layer structure past this gap is studied in detail. The channeling process is consistent with gap flow theory. The flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow. The orographically channeled flow through Smith Sound plays a key role for the formation of the North Water polynya being the largest ice-producing polynya in the Arctic.
    [Show full text]
  • Publications
    PUBLICATIONS April 1982 avril Publications listed are those published by the Les ouvrages cites ont ete publies par le Service des Marine Environmental Data Services Branch donnees sur le milieu marin (SDMM) du Ministere (MEDS) of the Department of Fisheries and des Peches et Oceans de 1973 a 1982. Les rapports Oceans from 1973 to 1982. Also included are the manuscrits de la Direction generale de !'information et Marine Sciences and Information Directorate des sciences de la mer et des rapports des donnees du Manuscript Report Series, and the Canadian Centre canadien des donnees oceanographiques sont Oceanographic Data Centre's Data Record egalement inclus. Series. This publication is an update of the "Marine Cette publication est une mise-a-jour de "Publications Environmental Data Service Publications, April Service des donnees sur le milieu marin, avril 1981 ", 1981 " Cat. No. MEDS8100301 RB. numero de catalogue MEDS8100301RB. Requests for copies should be sent to: Des copies peuvent etre obtenues de: Marine Environmental Data Services Branch , Service des donnees sur le milieu marin, Ocean Science and Surveys, Sciences et !eves oceaniques, Department of Fisheries and Oceans, Ministere des Peches et des Oceans, Ottawa, Ontario. K 1 A OE6 Ottawa (Ontario) K 1A OE6 ©Minister of Supply and Services Canada 1982 ©Ministre des Approvisionnements et Services Canada 1982 MEDS8200301 RB MEDS820030 I RB Marine Environmental Ser-vice des donnees sur Data Service le milieu marin PUBLICATIONS April 1982 avril Contents/Table des matieres 3 Technical
    [Show full text]
  • Evidence from Driftwood Records for Century-To-Millennial Scale Variations of the Arctic and Northern North Atlantic Atmospheric Circulation During the Holocene
    1 Evidence from driftwood records for century-to-millennial scale variations of the Arctic and northern North Atlantic atmospheric circulation during the Holocene L.-B. Tremblay and L. A. Mysak Department of Atmospheric and Oceanic Sciences and Centre for Climate and Global Change Research, McGill University, Montr´eal,Qu´ebec, Canada A. S. Dyke Terrain Sciences Division, Geological Survey of Canada, Ottawa, Ontario, Canada Short title: ARCTIC CLIMATE VARIABILITY DURING HOLOCENE 2 Abstract. Different Holocene sea-ice drift patterns in the Arctic Ocean have been hypothesized by Dyke et al. from radiometric analyses of driftwood collected in the Canadian Arctic Archipelago. A dynamic-thermodynamic sea-ice model is used to simulate the modes of Arctic Ocean ice circulation for different atmospheric forcings, and hence determine the atmospheric circulations which may have accounted for the inferred ice drift patterns. The model is forced with the monthly mean wind stresses from 1968 (a year with very large ice export) and 1984 (very low ice export), two years with drastically different winter sea level pressure patterns and with different phases of the NAO index. The simulations show that for the 1968 wind stresses, a weak Beaufort Gyre with a broad Transpolar Drift Stream (TDS) shifted to the east are produced, leading to a large ice export from the Arctic. Similarly, the 1984 wind stresses lead to an expanded Beaufort Gyre with a weak TDS shifted to the west and a low ice export. These results correspond to the patterns inferred by Dyke et al. Based on the simulations, the driftwood record suggests that for centuries to millennia during the Holocene, the high latitude average atmospheric circulation may have resembled that of 1968, 1984 and today’s climatology, with abrupt changes from one state to the other.
    [Show full text]
  • Retreat of the Smith Sound Ice Stream in the Early Holocene
    bs_bs_banner Retreat of the Smith Sound Ice Stream in the Early Holocene ANNE E. JENNINGS , JOHN T. ANDREWS , BRETT OLIVER, MAUREEN WALCZAK AND ALAN MIX Jennings, A. E., Andrews, J. T., Oliver, B., Walczak, M. & Mix, A.: Retreat of the Smith Sound Ice Stream in the Early Holocene. Boreas. https://doi.org/10.1111/bor.12391. ISSN 0300-9483. Nares Strait, a major connection between the Arctic Ocean and Baffin Bay, was blocked by coalescent Innuitian and Greenlandice sheets duringthe last glaciation.This paper focuses on the eventsandprocesses leading to the openingofthe strait and the environmental response to establishment of the Arctic-Atlantic throughflow. The study is based on sedimentological, mineralogical and foraminiferal analyses of radiocarbon-dated cores 2001LSSL-0014PC and TC from northern Baffin Bay. Radiocarbon dates on benthic foraminifera were calibrated with DR = 220Æ20 years. Basal compact pebbly mud is interpreted as a subglacial deposit formed by glacial overriding of unconsolidated marine sediments. It is overlain by ice-proximal (red/grey laminated, ice-proximal glaciomarine unit barren of foraminifera and containing >2 mm clasts interpreted as ice-rafted debris) to ice-distal (calcareous, grey pebbly mud with foraminifera indicative of a stratified water column with chilled Atlantic Water fauna and species associated with perennial and then seasonal sea ice cover) glacial marine sediment units. The age model indicates ice retreat into Smith Sound as early as c. 11.7 and as late as c. 11.2 cal. ka BP followed by progressively more distal glaciomarine conditions as the ice margin retreated toward the Kennedy Channel. Wehypothesize that a distinctIRD layerdeposited between 9.3 and 9 (9.4–8.9 1r) cal.
    [Show full text]
  • Walrus Movements in Smith Sound: a Canada – Greenland Shared Stock Mads Peter Heide-Jørgensen,1,2 Janne Flora,3 Astrid O
    ARCTIC VOL. 70, NO. 3 (SEPTEMBER 2017) P. 308 – 318 https://doi.org/10.14430/arctic4661 Walrus Movements in Smith Sound: A Canada – Greenland Shared Stock Mads Peter Heide-Jørgensen,1,2 Janne Flora,3 Astrid O. Andersen,3 Robert E.A. Stewart,4 Nynne H. Nielsen1 and Rikke G. Hansen1 (Received 19 April 2016; accepted in revised form 27 March 2017) ABSTRACT. Fifty of 58 walruses (Odobenus rosmarus rosmarus) instrumented with satellite-linked transmitters in four areas in eastern Smith Sound, Northwest Greenland, during May and June of 2010 – 13 and 2015 provided data for this study. These animals departed from the feeding banks along the Greenland coast in June – July (average 14th June), simultaneously with the disappearance of sea ice from these areas. Most of them moved to Canadian waters in western Smith Sound. The most frequently used summering grounds were along the coasts of Ellesmere Island: on the eastern coast, the area around Alexandra Fiord, Buchanan Bay, and Flagler Bay (west of Kane Basin) and Talbot Inlet farther south, and on the southern coast, Craig Harbour. This distribution of tagged walruses is consistent with prior understanding of walrus movements in summer. In addition, however, nine tracks of these tagged animals entered western Jones Sound and four entered the Penny Strait- Lancaster Sound area, crossing two putative stock boundaries. Since these 13 tracks were made by 12 animals, one walrus entered both areas. It is possible that some of the tracked walruses used terrestrial haul-out sites in the largely ice-free areas of Jones Sound and Lancaster Sound for short periods during the summer, though this cannot be confirmed with certainty.
    [Show full text]