Are Humans Responsible for Global Warming?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS
atmosphere Article Aerosol Effective Radiative Forcing in the Online Aerosol Coupled CAS-FGOALS-f3-L Climate Model Hao Wang 1,2,3, Tie Dai 1,2,* , Min Zhao 1,2,3, Daisuke Goto 4, Qing Bao 1, Toshihiko Takemura 5 , Teruyuki Nakajima 4 and Guangyu Shi 1,2,3 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; [email protected] (H.W.); [email protected] (M.Z.); [email protected] (Q.B.); [email protected] (G.S.) 2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100029, China 4 National Institute for Environmental Studies, Tsukuba 305-8506, Japan; [email protected] (D.G.); [email protected] (T.N.) 5 Research Institute for Applied Mechanics, Kyushu University, Fukuoka 819-0395, Japan; [email protected] * Correspondence: [email protected]; Tel.: +86-10-8299-5452 Received: 21 September 2020; Accepted: 14 October 2020; Published: 17 October 2020 Abstract: The effective radiative forcing (ERF) of anthropogenic aerosol can be more representative of the eventual climate response than other radiative forcing. We incorporate aerosol–cloud interaction into the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System (CAS-FGOALS-f3-L) by coupling an existing aerosol module named the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) and quantified the ERF and its primary components (i.e., effective radiative forcing of aerosol-radiation interactions (ERFari) and aerosol-cloud interactions (ERFaci)) based on the protocol of current Coupled Model Intercomparison Project phase 6 (CMIP6). -
Climate Change and Human Health: Risks and Responses
Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Sam White the Real Little Ice Age Between C.1300 and C.1850 A.D
Journal of Interdisciplinary History, xliv:3 (Winter, 2014), 327–352. THE REAL LITTLE ICE AGE Sam White The Real Little Ice Age Between c.1300 and c.1850 a.d. the world became, on average, slightly but signiªcantly colder. The change varied over time and space, and its causes remain un- certain. Nevertheless, this cooling constitutes a meaningful climate event, with signiªcant historical consequences. Both the cooling trend and its effects on humans appear to have been particularly Downloaded from http://direct.mit.edu/jinh/article-pdf/44/3/327/1706251/jinh_a_00574.pdf by guest on 28 September 2021 acute from the late sixteenth to the late seventeenth century in much of the Northern Hemisphere. This article explains why climatologists and historians are conªdent that these changes occurred. On close examination, the objections raised in this issue of the journal by Kelly and Ó Gráda turn out to be entirely unfounded. The proxy data for early mod- ern global cooling (such as tree rings and ice cores) are robust, and written weather descriptions and observations of physical phenom- ena (such as glacial movements and river freezings) by and large of- fer independent conªrmation. Kelly and Ó Gráda’s proposed alter- native measures of climate and climate change suffer from serious ºaws. As we review the evidence and refute their criticisms, it will become clear just how solid the case for the Little Ice Age (lia) has become. the case for the little ice age The evidence for early modern global cooling comes, ªrst and foremost, from extensive research into physical proxies, including ice cores, tree rings, corals, and speleothems (stalagmites and stalactites). -
Statement Climate Change Greenhouse Effect
Western Region Technical Attachment No. 91-07 February 19, 1991 STATEMENT ON CLIMATE. CHANGE AND THE GREENHOUSE EFFECT STATEMENT ON CLIMATE CHANGE AND THE GREENHOUSE EFFECT by REGIONAL CLIMATE CENTERS High Plains Climate Center· University of Nebraska Midwestern Climate Center • Illinois State Water Survey Northeast Regional Climate Center - Cornell University Southern Regional Climate Center • Louisiana State University Southeastern Regional Climate Center • South Carolina Water Commission "'estern Regional Climate Center - Desert Research Institute March 1990 STATEMENT ON CLIMATE CHANGE AND THE GREENHOUSE EFFECT by Regional Climate Centers The Issue Many scientists have issued claims of future global climate changes towards warmer conditions as a result of the ever increasing global release of Carbon Dioxide (C02) and other trace gases from the burning of fossil fuels and from deforestation. The nation experienced an unexpected and severe drought in 1988 which continued through 1989 in parts of the western United States.Is there a connection between these two atmospheric issues? Was the highly unusual 1988-89 drought the first symptom of the climate change atmospheric scientists had been talking about for the past 10 years? Most of the scientific community say "no." The 1988 drought was probably not tied to the ever increasing atmospheric burden of our waste gases. The 1988 drought fits within the historical range of climatic extremes over the past 100 years. Regardless, global climate. change due to the greenhouse effect is an issue of growing national and international concern. It joins the acid rain and ozone layer issues as major atmospheric problems arising primarily from human activities. The term "Greenhouse Effect" derives from the loose analogy between the behavior of the absorbing trace gases in the atmosphere and the window glass in a greenhouse. -
Agriculture, Forestry, and Other Human Activities
4 Agriculture, Forestry, and Other Human Activities CO-CHAIRS D. Kupfer (Germany, Fed. Rep.) R. Karimanzira (Zimbabwe) CONTENTS AGRICULTURE, FORESTRY, AND OTHER HUMAN ACTIVITIES EXECUTIVE SUMMARY 77 4.1 INTRODUCTION 85 4.2 FOREST RESPONSE STRATEGIES 87 4.2.1 Special Issues on Boreal Forests 90 4.2.1.1 Introduction 90 4.2.1.2 Carbon Sinks of the Boreal Region 90 4.2.1.3 Consequences of Climate Change on Emissions 90 4.2.1.4 Possibilities to Refix Carbon Dioxide: A Case Study 91 4.2.1.5 Measures and Policy Options 91 4.2.1.5.1 Forest Protection 92 4.2.1.5.2 Forest Management 92 4.2.1.5.3 End Uses and Biomass Conversion 92 4.2.2 Special Issues on Temperate Forests 92 4.2.2.1 Greenhouse Gas Emissions from Temperate Forests 92 4.2.2.2 Global Warming: Impacts and Effects on Temperate Forests 93 4.2.2.3 Costs of Forestry Countermeasures 93 4.2.2.4 Constraints on Forestry Measures 94 4.2.3 Special Issues on Tropical Forests 94 4.2.3.1 Introduction to Tropical Deforestation and Climatic Concerns 94 4.2.3.2 Forest Carbon Pools and Forest Cover Statistics 94 4.2.3.3 Estimates of Current Rates of Forest Loss 94 4.2.3.4 Patterns and Causes of Deforestation 95 4.2.3.5 Estimates of Current Emissions from Forest Land Clearing 97 4.2.3.6 Estimates of Future Forest Loss and Emissions 98 4.2.3.7 Strategies to Reduce Emissions: Types of Response Options 99 4.2.3.8 Policy Options 103 75 76 IPCC RESPONSE STRATEGIES WORKING GROUP REPORTS 4.3 AGRICULTURE RESPONSE STRATEGIES 105 4.3.1 Summary of Agricultural Emissions of Greenhouse Gases 105 4.3.2 Measures and -
Albedo, Climate, & Urban Heat Islands
Albedo, Climate, & Urban Heat Islands Jeremy Gregory and CSHub research team: Xin Xu, Liyi Xu, Adam Schlosser, & Randolph Kirchain CSHub Webinar February 15, 2018 (Slides revised February 21, 2018) Albedo: fraction of solar radiation reflected from a surface Measured on a scale from 0 to 1 High Albedo http://www.nc-climate.ncsu.edu/edu/Albedo Earth’s average albedo: ~0.3 Slide 2 Climate is affected by albedo Three main factors affecting the climate of a planet: Source: Grid Arendal, http://www.grida.no/resources/7033 Slide 3 Urban heat islands are affected by albedo Slide 4 Urban surface albedo is significant In many urban areas, pavements and roofs constitute over 60% of urban surfaces Metropolitan Vegetation Roofs Pavements Other Areas Salt Lake City 33% 22% 36% 9% Sacramento 20% 20% 45% 15% Chicago 27% 25% 37% 11% Houston 37% 21% 29% 12% Source: Rose et al. (2003) 20%~25% 30%~45% Global change of urban surface albedo could reduce radiative forcing equivalent to 44 Gt of CO2 with $1 billion in energy savings per year in US (Akbari et al. 2009) Slide 5 Cool pavements are a potential mitigation mechanism for climate change and UHI heatisland.lbl.gov https://www.nytimes.com/2017/07/07/us/california-today-cool-pavements-la.html Slide 6 Evaluating the impacts of pavement albedo is complicated Regional Climate Radiative forcing Urban Buildings Energy Demand Climate feedback Earth’s Energy Balance Incident radiation Ambient Temperature Pavement life cycle environmental impacts Materials Design & Use End-of-Life Production Construction Slide 7 Contexts vary significantly Location Urban morphology Climate Building properties Electricity grid Slide 8 Key research questions 1. -
Reforestation in a High-CO2 World—Higher Mitigation Potential Than
Geophysical Research Letters RESEARCH LETTER Reforestation in a high-CO2 world—Higher mitigation 10.1002/2016GL068824 potential than expected, lower adaptation Key Points: potential than hoped for • We isolate effects of land use changes and fossil-fuel emissions in RCPs 1 1 1 1 •ClimateandCO2 feedbacks strongly Sebastian Sonntag , Julia Pongratz , Christian H. Reick , and Hauke Schmidt affect mitigation potential of reforestation 1Max Planck Institute for Meteorology, Hamburg, Germany • Adaptation to mean temperature changes is still needed, but extremes might be reduced Abstract We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Supporting Information: Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario • Supporting Information S1 Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those Correspondence to: of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the S. Sonntag, reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is [email protected] higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in Citation: 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in Sonntag, S., J. -
Global Dimming
Agricultural and Forest Meteorology 107 (2001) 255–278 Review Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences Gerald Stanhill∗, Shabtai Cohen Institute of Soil, Water and Environmental Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel Received 8 August 2000; received in revised form 26 November 2000; accepted 1 December 2000 Abstract A number of studies show that significant reductions in solar radiation reaching the Earth’s surface have occurred during the past 50 years. This review analyzes the most accurate measurements, those made with thermopile pyranometers, and concludes that the reduction has globally averaged 0.51 0.05 W m−2 per year, equivalent to a reduction of 2.7% per decade, and now totals 20 W m−2, seven times the errors of measurement. Possible causes of the reductions are considered. Based on current knowledge, the most probable is that increases in man made aerosols and other air pollutants have changed the optical properties of the atmosphere, in particular those of clouds. The effects of the observed solar radiation reductions on plant processes and agricultural productivity are reviewed. While model studies indicate that reductions in productivity and transpiration will be proportional to those in radiation this conclusion is not supported by some of the experimental evidence. This suggests a lesser sensitivity, especially in high-radiation, arid climates, due to the shade tolerance of many crops and anticipated reductions in water stress. Finally the steps needed to strengthen the evidence for global dimming, elucidate its causes and determine its agricultural consequences are outlined. -
1 I Vestigati G Late Holoce E Orth Atla Tic Climate
S. Gaurin – dissertation prospectus UMass Geosciences IVESTIGATIG LATE HOLOCEE ORTH ATLATIC CLIMATE VARIABILITY THROUGH SPELEOTHEM PALEOPROXY AD HISTORICAL WEATHER DATA FROM BERMUDA INTRODUCTION Recent trends in hurricane frequency and intensity, a continually growing coastal population, and the presence of wide-reaching climatic patterns all underscore the importance of understanding changes in North Atlantic climate. Numerous paleoclimate studies have identified the North Atlantic as a region of importance in regulating global climate through meridional overturning circulation and other processes. The study proposed herein is focused on using stable isotope data from Bermuda speleothem calcium carbonate to help reconstruct dominant low-frequency modes of North Atlantic climate variability through the mid-Holocene (the last several thousand years). This period is replete with climate changes, from the warm hypsithermal peak of ~6000 years ago, followed by the slow overall cooling of the neoglacial, punctuated by rapid change “events” and century-scale periods like the Medieval Warm Period and Little Ice Age. Recent warming from the start of the 20 th century to the present has been attributed largely to the build-up of atmospheric greenhouse gases (Mann et al., 1998, 1999) and may herald the beginning of a possibly rapid transition to a new, warmer climate regime. The more we learn about the natural workings of the climate system on time scales of decades to centuries, which are of particular relevance as they are on the scale of a human lifetime, the better prepared we can be for warming-induced changes, some of which may already be afoot, such as the possibility that warmer ocean temperatures are increasing hurricane frequency (Goldenberg et al., 2001; Knight et al., 2006) or intensity (Knutson and Tuleya, 2004). -
Consideration of Land Use Change-Induced Surface Albedo Effects in Life-Cycle Analysis of Biofuels† Cite This: Energy Environ
Energy & Environmental Science View Article Online PAPER View Journal | View Issue Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels† Cite this: Energy Environ. Sci., 2016, 9,2855 H. Cai,*a J. Wang,b Y. Feng,b M. Wang,a Z. Qina and J. B. Dunna Land use change (LUC)-induced surface albedo effects for expansive biofuel production need to be quantified for improved understanding of biofuel climate impacts. We addressed this emerging issue for expansive biofuel production in the United States (U.S.) and compared the albedo effects with greenhouse gas emissions highlighted by traditional life-cycle analysis of biofuels. We used improved spatial representation of albedo effects in our analysis by obtaining over 1.4 million albedo observations from the Moderate Resolution Imaging Spectroradiometer flown on NASA satellites over a thousand counties representative of six Agro-Ecological Zones (AEZs) in the U.S. We utilized high-spatial-resolution, crop-specific cropland cover data from the U.S. Department of Agriculture and paired the data with the albedo data to enable consideration of various LUC scenarios. We simulated the radiative effects of LUC-induced albedo Creative Commons Attribution-NonCommercial 3.0 Unported Licence. changes for seven types of crop covers using the Monte Carlo Aerosol, Cloud and Radiation model, which employs an advanced radiative transfer mechanism coupled with spatially and temporally resolved meteorological and aerosol conditions. These simulations estimated the net radiative fluxes at the top of the atmosphere as a result of the LUC-induced albedo changes, which enabled quantification of the albedo effects on the basis of radiative forcing defined by the Intergovernmental Panel on Climate Change for CO2 and other greenhouse gases effects. -
Chapter 1 Ozone and Climate
1 Ozone and Climate: A Review of Interconnections Coordinating Lead Authors John Pyle (UK), Theodore Shepherd (Canada) Lead Authors Gregory Bodeker (New Zealand), Pablo Canziani (Argentina), Martin Dameris (Germany), Piers Forster (UK), Aleksandr Gruzdev (Russia), Rolf Müller (Germany), Nzioka John Muthama (Kenya), Giovanni Pitari (Italy), William Randel (USA) Contributing Authors Vitali Fioletov (Canada), Jens-Uwe Grooß (Germany), Stephen Montzka (USA), Paul Newman (USA), Larry Thomason (USA), Guus Velders (The Netherlands) Review Editors Mack McFarland (USA) IPCC Boek (dik).indb 83 15-08-2005 10:52:13 84 IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Contents EXECUTIVE SUMMARY 85 1.4 Past and future stratospheric ozone changes (attribution and prediction) 110 1.1 Introduction 87 1.4.1 Current understanding of past ozone 1.1.1 Purpose and scope of this chapter 87 changes 110 1.1.2 Ozone in the atmosphere and its role in 1.4.2 The Montreal Protocol, future ozone climate 87 changes and their links to climate 117 1.1.3 Chapter outline 93 1.5 Climate change from ODSs, their substitutes 1.2 Observed changes in the stratosphere 93 and ozone depletion 120 1.2.1 Observed changes in stratospheric ozone 93 1.5.1 Radiative forcing and climate sensitivity 120 1.2.2 Observed changes in ODSs 96 1.5.2 Direct radiative forcing of ODSs and their 1.2.3 Observed changes in stratospheric aerosols, substitutes 121 water vapour, methane and nitrous oxide 96 1.5.3 Indirect radiative forcing of ODSs 123 1.2.4 Observed temperature -
Energy Budget: Earth’S Most Important and Least Appreciated Planetary Attribute by Lin Chambers (NASA Langley Research Center) and Katie Bethea (SSAI)
© 2013, Astronomical Society of the Pacific No. 84 • Summer 2013 www.astrosociety.org/uitc 390 Ashton Avenue, San Francisco, CA 94112 Energy Budget: Earth’s most important and least appreciated planetary attribute by Lin Chambers (NASA Langley Research Center) and Katie Bethea (SSAI) asking in the Sun on a warm day, it’s easy for know some species of animals can see ultraviolet people to realize that most of the energy on light and portions of the infrared spectrum. NASA Earth comes from the Sun; students know satellites use instruments that can “see” different Bthis as early as elementary school. We all know parts of the electromagnetic spectrum to observe plants use this energy from the Sun for photosyn- various processes in the Earth system, including the thesis, and animals eat plants, creating a giant food energy budget. web. Most people also understand the Sun’s energy The Sun is a very hot ball of plasma emitting large drives evaporation and thus powers the water cycle. amounts of energy. By the time it reaches Earth, this But many people do not realize the Sun’s energy it- energy amounts to about 340 Watts for every square self is also part of an important interconnected sys- meter of Earth on average. That’s almost 6 60-Watt tem: Earth’s energy budget or balance. This energy light bulbs for every square meter of Earth! With budget determines conditions on our planet — just all of that energy shining down on the Earth, how like the energy budget of other planets determines does our planet maintain a comfortable balance that conditions there.