<<

Indirect effects of river regulation: consequences for landbirds of reduced numbers of aquatic insects

DariusStrasevicius

Umeå2007

DepartmentofEcologyandEnvironmentalScience UmeåUniversity Sweden AKADEMISKAVHANDLING

SommedvederbörligttillståndavrektorsämbetetvidUmeåuniversitetför erhållandeavfilosofiedoktorsexameniekologikommerattoffentligen försvarasfredagenden25maj2007,kl.13.00iLillahörsalen,KBC.

Examinator:ProfessorChristianOtto,Umeåuniversitet Opponent:DocentTapioEeva,Åbouniversitet,Åbo,Finland ISBN: 978-91-7264-291-1 © Darius Strasevicius 2007

Printedby:VMCKBC Organization Document name UmeåUniversity DOCTORAL EcologyDISSERTATION DepartmentofEcologyandEnvironmentalScience Date of issue SE90187UmeåMay2007

Author :DariusStrasevicius Title: Indirecteffectsofriverregulation:consequencesforlandbirdsofreducednumbersof aquaticinsects Abstract : The effects of river regulation onblackfly (Diptera: Simuliidae) abundances and consequencesfortheavifaunainterrestrialenvironmentswerestudiedalongmultiplerivers innorthernSweden. Ifoundthatimpoundmentofrivers has detrimental effect to blackfly abundances.Thedensitiesoflargeriverbreedingblackfly species were severalfold higher alongfreeflowingthanalongregulatedrivers.Thedifferenceinabundanceswasmuchlarger inmalesthanbloodseekingfemales.Blackfliesattackedavarietyofmammalianandavian hosts and showed different levels of hostspecificity between species. I found higher prevalenceofhaemosporidianbloodparasites( Leucocytozoon )inalongthefreeflowing Vindel River in comparison to the regulated Ume River, where the lower densities of ornithophilicblackflieswerereduced.Bloodseekingblackfliespredominantlyattackedlarge and/abundanthosts. Assemblagesofbirdsdifferedbetweenvalleysofregulatedandfreeflowingrivers.Densities ofnoninsectivorousbirdstendedtodecreasealong freeflowing rivers in the postbreeding season, but increased along regulated rivers at thesametime. InsectivorousEuropeanpied flycatcher ( hypoleuca Pallas) showed greater fledging success along freeflowing thanregulatedrivers,whichprobablyreflectsthehigherinsectabundancesfoundalongfree flowingrivers. Key words Borealregion,Simuliidae, Leucocytozoon ,piedflycatcher,aquaticinsects,breedingsuccess, bloodparasites,communities,riverregulation,impoundment. Language: English ISBN: 978-91-7264-291-1 Number of pages: 31+5papers Signature:……………….. Date: 20 th April2007 To Jūrat÷

Medeina,EmilijaandKirnis

List of papers Thisthesisisbasedonthefollowingpapers,whichwillbereferredtointhetextbytheir Romannumbers. I. Malmqvist,B., Strasevicius, D. &Adler,P.H.Transfertoterrestrialecosystemsof animportantaquaticinsectpreyandparasitevectordecreasesfollowinghuman impact.(submittedmanuscript) II. Strasevicius, D. &Malmqvist,B.Areavianbloodparasitesreducedbecauseof degradedvectorbreedinghabitats?(submittedmanuscript) III. Malmqvist,B., Strasevicius, D., Hellberg,O.,Adler,P.H.&Bensch,S.2004. Vertebratehostspecificityofwildcaughtblackfliesrevealedbymitochondrial DNAinblood.ProceedingsoftheRoyalSociety(Suppl.)271:S152S155. IV. Strasevicius, D. &Malmqvist,B.Influencesofriverregulationonuplandbird assemblagesinnorthernSweden.(submittedmanuscript) V. Strasevicius, D., Nyholm,E.&Malmqvist,B.Doesriverregulationreduce fledgingsuccessofEuropeanpiedflycatchersviachangedaquaticinsect resources?(submittedmanuscript)

PaperIIIispublishedwiththekindpermissionofthepublisher. CONTENTS INTRODUCTION ……………………………………………………..………..…..6 • Riverregulation……………………………………………………..………..6 • Aquaticterrestrialtransfers………………………………………….……….7 • Blackflies……………………………………………………………..………8 • Leucocytozoon……………….……………………….………………..……10 • Birdcommunities………………………………………………………..…..10 • PiedFlycatcher………………………………………………………………12

AIMS OF THE THESIS ………………………………………….……………..…12 STUDY AREA ………………………………….…………………………...……...12 MAJOR RESULTS AND DISCUSSION ………………………………...………14 Densitiesofblackflies……………………………..………………….……..14 Bloodsucking…………………………………………………..…….….….17 Leucocytozoon infection………………………………………….…………18 Birddensities…………………………………………………….………….19 Breedingsuccess…………………………………………………….………20 CONCLUSIONS …………………………………………………………………...21 REFERENCES ……………………………………………….………………….....22 THANKS! …………………………………………………………………..…...…..30 Appendices: PapersIV

INTRODUCTION Humanshavesignificantlyinfluencednaturalprocessesallovertheworld.Freshwater resources are among those having the greatest importance for human beings. The extentusageofthefreshwaterisofteninseparablefromtheeconomicdevelopmentof countries. Water resources are used for multiple purposes including consumption, irrigation,energyproduction,transportandrecreation.Andtheriparianzoneisoften heavily used for residential, agricultural and industrial activities, which lead to disturbances,suchasorganicandchemicalpollution,riverregulationandcanalization. Theincreasingelectricenergyusageforcesustoseeknew“ecologicallyacceptable” energysourcesandhydropowerisoneofthem.Hence,riverregulationisoneofthe waystoexploitlargeriverstomeetthementionedneedsofhumanbeings. River regulation However, hydropower has a reputation for being one of the most dramatic and widespread, deliberate impacts of man on the natural environments (Petts 1984, McCully 1996, Nilsson and Berggren 2000). Striking changes in river hydrology caused by hydropower development often lead to chain reaction effects on the surroundingecosystems.Thedammingofriverscauseslargescaleimpactstoaquatic ecosystems,whichcanbeclassifiedinto: 1) Physical,chemicalandgeomorphologicconsequencesofblockingariverand alteringthenaturaldistributionandtimingofriverflow. 2) Changesinprimarybiologicalproductivityofecosystemsincludingeffectson riverineandripariancommunities. 3) Alterationstofaunacausedbybothmentionedabove. Althoughmostlargeriversintheworldareregulated(Petts1984),littleisyetknown aboutthelongtermecologicaleffectsofregulatinganentirerivertothesurrounding ecosystems (Nilsson etal. 1991). The impactsare often very complex and variable depending on the geographical location of a dam. Because of the complexity of its specificphysical,chemicalandbiologicalfeatures,eachriversystemistosomeextend unique(NilssonandBerggren2000).Therefore,itcanbedifficultgeneralizeaboutthe effectsofriverregulation. Commonly recognized effects of river impoundment causes some of the most dramatic changes to riparian plant communities (Nilsson et al. 1991, Jansson et al.

6

2000, Merritt and Cooper 2000), fish communities (Gehrke et al. 2002, Kruk and Penczak 2003), small mammals (Falck et al. 2003) and aquatic bird communities (Disler et al. 1990, Reitan and Sandvik 1996, Kingsford et al. 2004). Dams act as physical barriers for aquatic organisms disrupting the function of rivers as up downstreamcorridors(Nilssonetal.1991,Shieldsetal.2000,Malmqvist2002),but surroundingecosystemsmayalsobeeffectedindirectly.Forexample,largestorageof water influences air temperature, humidity and fog formation in surrounding ecosystems(Sundborg1977,Huntleyetal.1998).Riverdamminginevitablyincreases water volume and inundates terrestrial and riparian areas, which leads to permanent loss of habitats (Nilsson and Berggren 2000). However, as pointed out above, the effectsofriverregulationtoneighboringcommunitiesaretosomeextentuniquefor eachriversystem. TheimpoundmentofriversinnorthernSwedenprimarily has been for energy productionandonlypartlyforfloodcontrol(Nilsson1986).Thisexploitationhasbeen intensive,withmostdamsbuiltbetween1950and1970.Threeoutofthesevenlargest riversinVästerbottenandNorbottencountiesareheavilyimpounded;theUmeRiver by 17, and the Skellefte and Lule Rivers by 15 large dams each. These rivers has thereby become transformed into chains of lakes, with fastflowing stretches rarely present.Forinstance,theUmeRiverisabout450kminlengthanddropsabout445 meters,withtheestimatedfallinsidehydropowerstationsis440.5meters.Thoselarger riversthathaveremainedunregulatedwereclassifiedas“NationalRivers”in1993and are since protected by law from hydropower exploitation. Several aspects of the aquaticecologyoftheseriverecosystemshavebeenstudied,butfewextensivestudies onbirdcommunitiesorblackflypopulationshavebeenperformed(butseeCuadrado andHasselquist1994,Malmqvistetal.2001).Theshiftfromflowingtostandingwater severelyreducesotherwiseextremelyabundantfilterfeedinginsectsinnorthernrivers (Malmqvistetal.2004a). Aquatic-terrestrial transfers Acommonfeatureofaquaticsystemsisthehighprimaryandsecondaryproduction. Aquatic insects are one of the important links between aquatic and terrestrial environments,whereemergedadultssupportandattracthighdiversityofriparianand terrestrial consumers. Several studies show the importance of the flux of aquatic insects to riparian communities. For instance, midges support high densities of

7 shoreline(Henscheletal.2001,Collieretal.2002,Briersetal.2005,Paetzold etal.2005).Likewise,highdensitiesofinsectivorousbirdsoftenarefoundinriparian forests,wheretheconcentrationofaquaticinsectsishighest(MurakamiandNakano 2002,Iwataetal.2003).Mostaquaticinsectsdisperserelativelyshortdistancesinto theterrestrialsurroundings (JacksonandResh1989, Kovats et al. 1996, Malmqvist 2002, Petersen et al. 2004), although blackflies (Diptera: Simuliidae) can disperse manykilometers(sometimes>500km)awayfromthebreedinggrounds(Daviesand Roberts1980,Crosskey1990).However,theinfluence of aquaticprey on terrestrial biota often decreases rapidly with distance from the river (Naiman and Décamps 1997),anduplandsystemsarethereforelessstudied. Blackflies The damming of rivers may have significant impacts on a variety of insects. For instance, in the boreal region filterfeeding blackfly (Diptera: Simulidae) larvae are dominant insects in the rapids of large rivers (Malmqvist et al. 2004a) and may produceuptoabillionofblackflylarvaeperkmofriver(Malmqvistetal.2004a).As larvalblackfliesdependonrelativelyfastflowingwater,theirpopulationsandthoseof othercurrentlovingaquaticinsectsdwindlefollowingriverregulation,withpredicted negative consequences for insectfeeding and other consumers in the riparianzonethatdependonthisresource(Henscheletal.2001,SaboandPower2002, Baxteretal2005,Briersetal.2005). About 1800 validly named species of blackflies are described in the world (Crosskey2002).ThePalearcticregionis exceptionallyrichwith about 500species described (over 60 in Sweden) (Crosskey 1990, Crosskey and Howard 2004). However, the of blackflies is still under development and many more speciesaretobedescribed. Blackfliesdiffermarkedlyintermsofhabitatusedforreproduction(Malmqvist et al. 1999), fecundity (Malmqvist et al. 2004b) and preference of hosts (Crosskey 1990).Accordingtotheirrequirementofenergysourceforeggdevelopmentblackflies canbedividedintononhaematophagous(notfeedingonblood)andhaematophagous. Haematophagousblackfliescanbefurthersubdividedinto: Ornithophilic,feedingonbloodofbirds Mammalophilic,feedingonbloodofmammals(exceptman) Antropophilic,feedingonhumanblood

8

Haematophagousblackfliesmayhavetwoopposingeffectson:theymay serve as a food resource (positive) for insectivorous, but also act as predators (negative) for all endothermic vertebrates (Crosskey 1990). Many birds are insectivorous and are therefore expected to experience the dual effect of blackflies (Fig.1). Aquatic Terrestrial Freeflowing Rivers SIF Regulated Rivers Blackflies LISF Smaller streams Figure1. Aschematicviewoverthemaineffectsofriverstobirdcommunities.Whitearrows indicatepositive,blacknegative,effects.SIFstandsforsmallpreyinsectivores, LISFforlarge insectand/orseedeaters. Many blackflies emerge at the beginning of summer, when most boreal bird speciesbreed.Therefore,thetransferofaquaticpreytoterrestrialenvironmentsmay potentiallyhavehighimportanceforreproductivesuccessofinsectivorous, as for example the pied flycatchers ( Ficedula hypoleuca ) (Fig. 1). However, high abundances of blackflies may cancel or even reversethispositiveeffectbyharmful blood sucking (Ojanen et al. 2002, Malmqvist et al. 2004a), harassment, and transmissionofhaemosporidianbloodparasites(Bennettetal.1991(a,b),Valkiunaset al.2003,ScheuerleinandRicklefs2004).Approximatelyhalfoftheblackflyspecies present in Scandinavia are ornithophilic, i.e. they require bird blood for egg development (Adler et al. 1999), and attack a variety of terrestrial birds (Fig. 1 and PaperIII ).Blackfliesareabletotransmitbacteria,nematodes,protozoa,andviruses toavarietyofhosts,butarerelativelypoorlystudiedasvectorsofseveralofthese agents(Reevesetal.2007).

9

Leucocytozoon Haemosporidiansarebloodparasiteshavingimportantconsequencesfortheevolution and ecology of many host species (Clayton and Moore 1997) and potentially for ecosystems(cf.Loreauetal.2005).Theycanbeseriouspathogensofbothdomestic (KreierandBaker1987,Crosskey1990,AtkinsonandvanRiper1991,Bennettetal. 1993)andwildbirds(Hatchwelletal.2000).Forinstance,negativeeffectsonthelife history have been manifested in host reproductive effort (Siikamäki et al. 1997, Figuerolaetal.1999,FargalloandMerino2004),fledglingsuccess(Hunteretal.1997, Merinoetal.2000)andpostbreedingcondition(FargalloandMerino1999,Merinoet al. 2000, Tomas et al. 2005). Leucocytozoon is one of the most common haemosporidian parasites, predominantly transmitted by bloodsucking blackflies (KiszewskiandCupp1986,Crosskey1990),andthereforeislargelylimitedlargelyto blackflyinhabitedareas. Several factors may influence the transmission of Leucocytozoon . If different blackfly species are responsible for transmission of the different Leucocytozoon species, the variation in the prevalence of Leucocytozoon across landscapes is expected, because the larvae of different blackfly species inhabit different types of streams (Malmqvist et al. 1999) and bloodseeking females are partly host specific (PaperIII).Inaddition,highdensitiesofhostsincreasetheprobabilityoftheparasite toencounterahost(Hudsonetal.2001,Tella2002)andareimportantfortheparasite to successfully complete its life cycle, because each species of Leucocytozoon is typicallyspecifictofamilyorsinglehostspecies(Crosskey1990). Bird communities Riverregulationaffectsthelocalclimate,riparianvegetationstructureandproduction of aquatic organisms, which consequently may affect the entire bird community in surroundingecosystems.Changesinlocalclimatemayaffectthebreedingconditions of birds and the activity of insects; increased ground water levels affect vegetation structureandhencebreedinghabitats;reductionsintheproductionofaquaticinsects mayaffectthebreedingsuccessofinsectivorousbirds.Therefore,mostoftheeffects of river regulation on terrestrial bird communities can probably be considered as secondary.

10

Birds constitute the majority of the terrestrial vertebrates in most boreal communities(Niemietal.1998).InFinland,forinstance,birdsmakeupabout75%of all terrestrial vertebrates (Mönkkönen 1994). Therefore, the conservation of bird populationsisparticularlyimportantforthemaintenanceandsustainabilityofboreal ecosystems. Brawnetal.(2001)intheirreviewpostulatedthatproximatecuesusedbybirds todiscriminateamonghabitatsprobablyinvolvefactorsthatinfluencetheavailability offood,riskofandavailabilityofsites.Inaddition,naturalecological processes and, increasingly, anthropogenic disturbance can modify the landscape framework and therefore influence species diversity at landscape or regional scales (Brawn et al. 2001). Largescale studies involving entire bird communities are importantforunderstandingtheconsequencesofnaturalandanthropogenicimpacts. Manystudieshaveproducedmodelsrelatingbirdspeciesdistributionorrichness to environmental variables, highlighting a variety of factors across different environmental scales, covering smallscale habitats to broader landuse scale (BucklandandElston1993,Tuckeretal.1997,Siriwardenaetal.1998,Saab1999). Thestudiesfromdifferentlandscapesandgeographicalzonesindicategreaterspecies richnessandtotalabundanceofbirdsinriparianversusnonriparianzones,whichis probablyrelatedtohigherfoodandhabitatdiversity(Woinarskietal.2000,Iwataetal. 2003). Floodplainscreateanextraordinarydiversityofhabitatsandthereforehavethe richestbirdcommunities(Terborghetal.1990).Birdspeciesrichnessandabundance are higher along large than smaller rivers (Lock and Naiman 1998). Particular plant speciesassociatedwithaviannestingandfeedingneedsmayhighlyinfluencebreeding bird communities. For instance, willowcottonwood plant communities are highly dependent on flood disturbance and reduction of disturbance by damming cause a decline in many bird species depending upon these communities (Strong and Bock 1990,Askins2000).Preferencesoftreesusedforforagingwerealsodocumentedin floodplain forests, where twelve of 13 studied bird species foraged selectively with respecttotreespecies(Gabbeetal.2001).However,littleattentionhasbeenpaidto theimpactsofaquaticecosystemstomoreremoteterrestrialenvironments.

11

Pied flycatcher The Pied flycatcher is a small (1213g), exclusively insectivorous and a common migratoryspecies,breedingextensivelyinEuropeanwoodlands(Lundberg&Alatalo, 1992). Pied flycatchers feed on a variety of insects, such as , flies, , ,woodlice,millipedesand,catchingthemintheairorpickingthemfrom vegetation.Theyarewidespreadindeciduousormixedforestsandespeciallycommon in areas where nest boxes are provided. The preference for nest boxes over natural cavitiesmakesthepiedflycatcherasuitableandpopularspeciesfortestingecological hypotheses(Lundberg&Alatalo,1992). AIMSOFTHETHESIS The purpose of this thesis was to gain a better understanding of the processes underlyingriverregulationeffectsonuplandbirdcommunities,byaffectingbreeding possibilitiesforotherwisehighlyabundantinsectspeciesintheborealzone.Themain questionsaddressedareasfollows: • Doesriverregulationaffectdensitiesandspeciescompositionofblackflies?If they do, river regulation may be seen as a manipulation of blackfly communities( PapersI,II,IV and V) • Do blackflies have influences bird communities negatively by biting and transmittingbloodparasites?( PapersII and III ) • Do bird communities differ between valleys of regulated and freeflowing rivers?( PaperIV ) • Can river regulation indirectly reduce the breeding success of insectivorous birdsduetoreductionoffoodresources?( PaperV ) STUDYAREA All studies were conducted in northern Sweden (6466 0 N), where bird and blackfly sampling (Paper I, II and IV ) was performed along seven large rivers: Ume, Vindel, Skellefte,Pite,Lule,KalixandTorne(datafromTorneRiverwasnotincludedin Paper I) (Fig.2).Thenestboxexperiment( Paper III )wasconductedalongfourrivers(Ume, Vindel,SkellefteandPite),whereasthestudyon Leucocytozoon parasitism( PaperV ) wasdonealongtworivers(theUmeandVindel).Threeofthestudiedriversarehighly regulated,withlargereservoirsinthemountainsandrunofriverregulationin

12

N LK T U P S 1 2 V 200 km 20km 3 Figure2. Locationsofstudyareas(blackboxes)andrivers:Ume(U),Vindel(V),Skellefte(S), Pite(P),Lule(L),Kalix(K)andTorne(T). downstream parts, while four rives are free flowing. Every other river is regulated allowingustostudythemasapairwithoneregulatedandonefreeflowingriver.The riversinthesouthernmostpair(theUmeandVindelRivers)runparalleltoeachother forabout450km,lessthan56kmapart.Theyjoin30kmbeforeenteringtheGulfof Bothnia.The17largedamshavechangedtheUmeRiverconsiderably,whiletheVindel Riverremainsfreeflowing.Inaddition,theserivershavesimilarcatchmentsarea,water dischargeandproportionofforestcover(Table1.).Giventhesimilarbackground(SMHI 1999),thesetworiversofferanexcellentopportunitytoinvestigatetheeffectsoflarge riverregulationwithinonewatershed. Table1. Catchmentcharacteristicsofstudiedrivers.DatafromRaab(1995)andSMHI(1999). Water Forest Hydroelectric Catchment discharge cover Lakes powerstations Rivers Status area(km 2) (m 3s 1) (%) (%) (No.) Ume Regulated 13838 231 60 10 17 Vindel Freeflowing 12625 173 63 6 0 Skellefte Regulated 11731 155 58 15 15 Pite Freeflowing 11285 160 58 8 1 Lule Regulated 25240 490 44 10 15 Kalix Freeflowing 18130 290 55 4 0 Torne Freeflowing 40157 390 53 5 0

13

The catchments and discharges of the middle pair of rivers, the Skellefte (regulated) and Pite (freeflowing), are somewhat smaller than others in the study. Thesetwoweredistinguishablebythehighestproportionsofuniformforest (predominantly pine Pinus sylvestris )andmirewhencomparedtotheotherstudied pairs.Agricultureisgenerallyrarealongthesetworivers.ThePiteRiverdoeshave onehydroelectricpowerstationlocatednearitsoutfallintotheGulfofBothnia,butit is treated as an unregulated river here, because this construction is unlikely to influenceourstudyarea,whichislocatedabout60kmupstream. TheLule(regulated),KalixandTorne(freeflowing)Riversarethelargestinthe study(Table1.).WiththeexceptionoftheKalixRiver, the catchment of which is dominatedbypineforests,they allhaveahigh proportion of mixed and deciduous forests,with( Betula pendula )beingthedominantbroadleaftree.Also,similarto theUmeVindelRiverbasin,theLule,KalixandTorneRiversflowthroughvalleys usedrelativelyextensiveforagriculture. MAJORRESULTSANDDISCUSSION Largescale studies often suffer from the problem ofreplication,andassociatedlow statisticalpower,andmystudiesarenoexception. Thepaucity of large unregulated rivers,aswellaseconomiclimitationsrestrictedthestudytothreeregulatedandfour freeflowing rivers. The all seven rivers were used for studies of upland bird communities (PaperIV) ,andsixforstudyofblackflies (PaperI) .Thesetwolarge studiesconfirmedsimilarpatternsbetweenriversof the same status and differences between rivers of different status (regulated versus freeflowing) in terms of the densitiesandcommunitystructureofblackfliesanduplandbirds.Therefore,Ibelieve thatthepatternsobservedinsmallerstudies(e.g. Leucocytozoon infection, PaperII andbreedingsuccess, PaperV )canalsobeexpectedinbroadergeographicalarea. Densities of blackflies ( PaperI ) Blackflies tend to occur in masses in both aquatic and terrestrial environments throughout the northern hemisphere ( Paper III ). Large rivers in northern Sweden providefavourableconditionsformassdevelopmentoffilterfeedinglarvalblackflies. Suchconditionsareparticularlywellmetinlakeoutletstreams(Carlssonetal.1977, Wotton1987),largeriverrapids(Crosskey1990,Malmqvist1999,Malmqvistetal.

14

2001)andchalkstreams(Ladleetal.1972),wherelarvaldensitiesofblackfliesmay exceedonemillionpermetresquare(Wotton1987,Malmqvist1994)andexceedthat ofanyotherstreaminsects(HurynandWallace2000). I found that blackflies are indeed very important insects in the terrestrial environmentinnorthernSweden.Threehundredandthirtytwosamplesofflying

20

16

12 Regulated Free-flowing 8 Insects/km 4

0 Ornith Mammal Others Figure 3. Densities (± SE) of blackfly males (BF M), blackfly females (BF F) and other flyinginsectsalongfreeflowingandregulatedrivers. insectscollectedalongstudiedriversshowthatonaverageblackfliescanaccountfor upto39%ofallflyinginsectsalongfreeflowingrivers,whereasblackfliescomprise only12.9%(Fig.3)alongregulatedrivers.Moreover,averagedensitiesofinsectsother thanblackfliesweresimilaratthetwotypesofrivers(48insects/kmalongregulated, vs.52insects/kmalongfreeflowing). Blackfliescontributed the most to the 35.6% higher densities of flying insects that can be observed along freeflowing rivers in comparisontoregulatedrivers(Fig.3).

60

50

40 Regulated 30 Free-flowing

Insects/km 20

10

0 BF M BF F Other insects Figure 4. Densities (± SE) of ornithophilic (Ornith), mammalophilic (Mammal) and other (Others)blackfliesalongfreeflowingandregulatedrivers.

15

The ratio of mammalophilic and ornithophilic blackflies did not differ substantiallywithrespecttoriverregulation,despitethedifferencesintheirdensities observed between freeflowing (59.7% and 39.5% respectively) and regulated rivers (61.9% and 36.3% respectively) (Fig. 4). Densities of nonbiting and unidentified blackflieswerelow generally.Theseresultsshow,thatriverregulationhasanequal effectonbothmammalophilicandornithophilicblackflies. Blackfly species breeding primarily in large rivers dominated samples: Metacnephia lyra , Simulium annulus , S. murmanum , S. reptans , S pusillum/subpusillum and S. vulgare/annulitarse/tuberosum (morphologically undistinguishable).Inaddition,nonbitingspecieswerenotabundant,comprisingonly aboutonepercentofallsampledblackflies. Data for the entire blackfly material show that densities of males on average wereabout14timeshigheralongfreeflowingthenregulatedrivers,whereasdensities of females along freeflowing rivers exceeded only 1.5 times those observed along regulatedrivers.Thispatternmaybeexplainedbythedifferencesbetweenmaleand female behavior. Males staying near the native rivers have a higher probability of meetingunmatedfemales,andthereforethehighestaccumulationsofmaleblackflies are foundalongriversthey originatedfrom. In contrast, females, after mating, start their search for a blood meal needed for egg development, and to this end begin dispersing to a maximum distance of several hundred of kilometers. These observationssuggestthat,thebreedinglocationofblackfliesisbetterrevealedbythe presenceofmalesthenfemales.

40

30

Regulated 20 Free-flowing Insects/km 10

0 Large river Medium stream Small stream Figure 5. D ensities (± SE) of males and females of blackflies according their habitat preferences.

16

Blackflyspeciesbreedinginsmallerstreams,andthereforenotdirectlyaffected byriverregulation,mayconfoundtheseresults.Inthepresentstudy,blackflyspecies breeding in small and medium streams were not very abundant (on average 8.8%), however,largeriverspeciesmightbeoverrepresentedbecauseoftheselectivityofthe methodused(seeMalmqvistetal.2007).Malesofspeciesbreedinginmediumand smallstreamsmadeupjust5.2%ofallmalescaughtalongfreeflowingversus37.5% along regulatedrivers(Fig.5). Femalesshow asimilar pattern, species breeding in medium and small streams comprised just 13.1% of all females caught along free flowing,versus35.9%alongregulatedrivers(Fig.5). Such high densities of adult blackflies as those shown in this study have a potentially great importance to terrestrial consumers. However, due to the host specificityofblackfliestheirimportancetoandeffectonaviancommunitiesisdifficult tostudy.Whileadultmalessimplycanbeseenasa food resource in the terrestrial environment,adultfemaleshavemorecomplexeffects:positiveasfoodresourceand negative because of their blood sucking, harassment, and transmission of haemosporidianbloodparasites.Therefore,tosomeinsectivorousspeciesthepositive effectofblackfliesmightbecancelledbynegativeones,whereasonlynegativeeffects probablyprevailamongbirdspecieswhichdonotconsumeblackflies(Fig.1). Blood sucking ( PaperIII ) The search for hosts and the biting strategy of blackflies are still not very well understood.Itisbelieved,thatthehostseekingblackflyfemaleusestwomainstimuli: chemicalandvisual.Thestimulususedprobablydependsonthedistancetothehost

(Crosskey1990).Inlongdistancehostlocationchemicalstimulus(CO 2)isprobably prioritized,whereasvisualstimulusisusedforexactlocationofthehost(Bradburyand Bennet,1974).Itisthoughtthathostfindingbymammalophilicspeciesdependsmore uponsightandlessonthedetectionofCO2 ascomparedtoornithophilicspecies. DNA analysis of blood samples collected from engorged blackfly females showed that blackflies could be divided into either mammalophilic or ornithophilic speciesassuggestedbyCrosskey(1990).However,wealsoobservedthatsomecross bitingmightoccur,assomeornithophilicblackfliescarriedmammalianbloodandvice versa. Moreover, mammalophilic species indicated higher hostspecificity than ornithophilicspecies,howeverthedegreeofspecializationvariedamongspecies.This pattern might be a consequence of the potentially greater availability of avian than

17 mammalianhostspecies.Anotherclearpatternwasthatbothornithophilic(seeFig.1. in Paper III ) and mammalophilic (see Table 1. in Paper III ) blackfly species preferred the large hosts. Moreover, the density of the hosts also appeared to be importantforornithophilicblackflies. Moose, the largest in Sweden was attracted by all 10 investigated mammalophilic blackfly species, and 66% of identified blood samples indicated feedingonmoose.Anexceptionwas Simulum tuberosum , which demonstrated high specializationonrodents(96%ofsamples).Similarly,largebirdsdominatedthehost listofornithophilicspecies:capercaille(34%)andblackgrouse(18%).Interestingly, Metacnephia lyra ,themostcommonblackflyspeciesshowedlowesthostspecificity (Shannonindex2.07),as21analyzedsamplescontainedbloodfromninebirdspecies belongingtosixfamilies(onesamplecontainedhumanblood). Noneoftheinvestigatedblackflyspeciesspecializedonhumans.Therefore,the classification of haematophagous blackflies into three groups, as recommended by Crosskey (1990),hasnofoundationinthisstudy. Interestingly, just two out of 132 samples (two blackfly species) of mammalophilic species were confirmed to have humanblood(1.5%),whereassixoutof68samples(fivespecies)fromornithophilic blackfliescontainedhumanblood(~9%).Possibly,thelowerhostspecificityamong ornithophilic blackflies might explain why humans are more frequently attacked by thiscategoryofblackflies. Leucocytozoon infection ( PaperII ) Theanalysisofbloodsmearsfrom433terrestrialbirdssampledinthevalleysofUme andVindelRiversshowedthatover15%ofthebirdswereinfectedby Leucocytozoon parasite.Twomainpatternswerefound.First,largerbirdspecieshadhigherparasite prevalence (see Fig. 1. in Paper II ). This result is in line with the previous study (PaperIII ),wherefemalesofblackfliesmorefrequentlyattackedhostsoflargersize. Hostdensityontheotherhandhadnoeffectonparasiteprevalencewhichcontradicts the results in Paper III . However, this discrepancy emerged probably because differenthostspecieswereinvestigated.Inparticular,Iwasnotabletocollectblood samplesfromcapercaille,blackgrouseorotherlargebirdspecies,whicharethemost common host of ornithophilic blackflies ( Paper III ). Therefore, birds screened for Leucocytozoon infection were much smaller than those most frequently attacked (PaperIII) .

18

The second main finding was that assemblages of birdslivingalongthefree flowingVindelRivertendtohaveahigherriskofLeucocytozoon infectionthanbirds livingalongregulatedtheUmeRiver,despiteshortdistance(~20km)betweenthe samplingsitescompared.Higherinfectionprevalence,howevernotsignificant(Chi square [1] =2.195,P=0.098),wasfoundforallfourspecies,forwhichsamplesizewas large enough (>20) to allow analysis: willow warbler ( Phylloscopus trochilus ), Europeanpiedflycatcher( Ficedula hypoleuca ),Europeanrobin( Erithacus rubecula ) andgreattit( Parus major ).

Bird densities ( PaperIV ) Average bird densities and species richness did not significantly differed between regulatedandfreeflowingriversineitherbreedingorpostbreeding.However,species richnesswasmarginallyhigheralongregulatedriversthenfreeflowingriversatboth investigatedseasons,whereasbirddensitiesweremarginallyhigheralongfreeflowing rivers. Afterclassifyingbirdsintosmallpreyinsectivores(SIF)andlargeinsectand/or seedeaters(LISF),acontrastingpatternbetweentheregulatedandfreeflowingrivers emerged.TheaccumulateddensitiesofLISFmarkedlydecreasedinthefreeflowing rivervalleysinthepostbreedingseason,whiledensitiesofSIFincreased.Incontrast, densitiesofbothLISFandSIFspeciesincreasedintheregulatedrivervalleysinthe postbreeding season. These observations support our prediction that birds with different food requirements should respond differently to the summer emergence of aquatic insects, such as biting blackflies, although further investigations involving largehostspecieswouldberequiredfortheconfirmationofthishypothesis. TheMDSanalysesbasedonlyonbirdobservationsrevealedadivergenceinthe positioning of regulated and freeflowing rivers in space where regulated rivers appearedmoreinlowerandleftpositionsrelativetotheirfreeflowing“partner”river. The divergence between rivers of different status increased even more in the post breedingseason(seeFig.3,in PaperIV ).TheMDSanalysesindicated,thatterrestrial bird assemblages are more similar between rivers of the same status than between geographically proximal rivers. Therefore, a common factor seems to exist, that influencesthedivergenceofbirdcommunitiesatregulatedandfreeflowingrivers,and althoughnotshown,thebundanceofblackfliesmightbeapartlycontributingfactor. TheCCAanalysesindicatedthathabitatparameters,especiallyagriculturelandscape

19 and vegetation structure, together with altitude, are the most important factors determiningaviancommunitystructure.Nevertheless,theCCAanalysesinvolving31 environmental factors, showed that river regulation also has importance for the structure of bird species composition. Moreover, the impact of river regulation increasedinthepostbreedingseason,andtherefore,indicatedtheexistenceofother, more dynamic factors than simply differences in habitat structure caused by river regulation (Nilsson and Jansson 1995). Once again, blackflies together with other aquaticinsectsmaybegoodcandidatestoexplainresultsfromCCAanalyses,because thepostbreedingseasonofbirdscoincideswiththetimewhenmostaquaticinsectsare ontheirwings.

Figure 6. Mean survival (± SE) of nestlings at regulated and freeflowing river sites in differentyears.Datafrom2001arebasedonsitesfromtheUmeandVindelRiversonly. Breeding success (PaperV ) I found that pied flycatchers breeding along free flowing rivers had higher fledging successthanthosebreedingalongregulatedrivers.Thebetternestlingsurvivalalong freeflowing rivers, was consistent across years and river pairs and increased the successby1015%(Fig.6).Despitethefactthatbirdsbreedingalongregulatedrivers initiated their earliest clutches two days earlier then those at freeflowing rivers, the medianclutchinitiationdatewasonaverageonedayearlieralongfreeflowingrivers (Fig.2in PaperV ).Therefore,thetimeneededforpiedflycatchersalongfreeflowing rivers to lay their eggs was two days shorter, which indicates some uncertainty in flycatchersalongregulatedriverswhentolayeggs(Fig.3in PaperV ).Ontheother hand, shortage of food resources might also extend the time needed for egg development(Perrins1970).

20

Therewasnodifferenceinclutchsizeornumberofnestlingsbetweenregulated andfreeflowingrivers,however,Ifoundsignificantlyhighernumberoffledglingsat the freeflowing river sites. This difference emerged due to the higher mortality of nestlingsalongregulatedrivers(Fig.6).Survivalofnestlingsalongfreeflowingrivers reached97%attheVindelRiverand95.3%atthePiteRiver,ascomparedto89.6%at regulatedUmeRiverand77.5%atregulatedSkellefteRiver.Especiallylowfledgling success occurred along the Skellefte River (77.5%), where the breeding result (4.3 fledged youngs per pair) was just below the critical level for pied flycatcher populationstobeselfsustaining(4.4perpair;Järvinen1983).As,inmostcasesjusta part of the nestlings died, I believe that the higher mortality of nestlings along regulatedriverscouldhavebeencausedbyfoodshortage.Ifallnestlingsdiedatonce, the predation or infection might be the cause, however, such mortalities were rare. Moreover, in extreme conditions, parents might abandon their youngs (Lundberg & Alatalo,1992). Thehypothesisthatpiedflycatchersalongregulatedriversexperiencelowerfood availabilitywassupportedbytheweightlossoffemales(Fig.7in PaperV )andlower abundance of insects (Fig. 8 in Paper V ). I found that flycatchers breeding along regulatedriversattheendofthebreedingseasonwereonaverageby9%lighterthan thosebreedingalongfreeflowingrivers.Also,alowerabundanceofflyinginsectswas observedalongregulatedrivers,especiallyattheperiodoffeedingofnestlings. Betterbreedingsuccessofpiedflycatcheralongfreeflowingriverssupportsand partlyexplainsthefindingsreportedinthewholebirdcommunitystudy( PaperIV ), wherehigherinsectivorousbirddensitywasfoundalongfreeflowingriversalongwith higherflyinginsectabundance.Ibelievethatthefindingsonbreedingsuccessofpied flycatchercanalsobevalidforotherinsectivorousbirdsbreedingintheborealregion. CONCLUSION Numerous studies have been conducted in order to evaluate the effects of river regulationtoplantandanimalcommunitiesinaquaticandripariansystems.Effectsof river regulation that have been highlighted include reduction of floods and current velocity,fragmentation,changesintemperatureandhumidityetc.Sucheffectscanbe attributed to direct impacts, however, little is known about the secondary effects of riverregulation,e.g.theeffectsofreducedproductivityofriversystemsandassociated

21 ratesoftransfertoterrestrialconsumers.Thisstudyisastepforwardinordertobetter understand linkages between different ecosystems and also the effects of largescale riverregulationonprocessestakingplaceinuplandsbeyondtheriparianzone. Riverregulationmarkedlyreducesthedensitiesofblackflies,theperhapsmost abundantflyinginsectsintheborealregion.Therefore,riverregulationhasanegative effectontheoveralldensitiesofflyinginsects.This effect appears to cascade on to breedingconditionsandsuccessofinsectivorousbirds.Hereby,riverregulationplays animportantroleinthestructuringoftheentirebirdcommunityenvironment. Leucocytozoon weremorefrequentlyfoundinbloodsamplesfrombirdsbreeding along the freeflowing Vindel River, implying that a higher incidence of blackflies biting resulted in more frequent transmission of parasite. The larger size and most abundant hosts were prioritized by bloodseeking females of blackflies. As, large sizedhostsmostlikelyarenotsmallinsecteaters,theirrelationshipwithblackfliesis probablymainlynegative,whereassmallerbirdsaremorelikelybenefitingfromthe abundance of insects as a food resource and experiencing less negative effect of blackflies. Additional studies are required in order to better understand the consequencesofriverregulationtoavianbirdcommunities.Westillhavetoolimited data to be able to evaluate the consequences of river regulation for different bird communitiesindifferentlandscapes.Wealsolackinformationontheimportanceof blackflies for a number of terrestrial consumers, and the effect of transmitted Leucocytozoon onthehealthofwildbirds. Thecurrentstudysuggeststhatriverregulationhasanimportanteffectforbird communitieseveninterrestrialenvironmentsdistantfromtherivers,andthatthemajor part of this effect must be attributed to the reduced densities of aquatic insects, in particularblackflies. REFERENCES Adler,P.H.,Malmqvist,B.,andZhang,Y.X.1999.Blackflies(Diptera:Simuliidae) of northern Sweden: taxonomy, chromosomes, and bionomics. Entomologica Scandinavica,29:361382. Askins, R.A. 2000. Restoring North America’s Birds. Lessons from Landscape Ecology.NewHaven,CT:YaleUniv.Press.288pp.

22

Atkinson, C.T., and van Riper, C. 1991. Pathogenity and epizootology of avian haematozoa: Plasmodium , Leucocytozoon ,and Haemoproteus . In Bird–parasite interactions:ecology,evolutionandbehavior. Edited by J.E.LoyeandM.Zuk. OxfordUniversityPress,Oxford,pp.1948. Baxter,C.V.,Fausch,K.D.,andSaunders,W.C.2005.Tangledwebs:reciprocalflows of invertebrate prey link streams and riparian zones. Freshwater Biology, 50: 201220. Bennett, G.F., Earle, R.A., and Peirces, M.A. 1991a. Avian Leucocytozoidae the leucocytozoids of the Phasianidae sensulato. Journal of Natural History, 25: 14071428. Bennett,G.F.,Stotts,V.D.,andBateman,M.C.1991b.Bloodparasitesofblackducks andotheranatidsfromLabradorandinsularNewfoundland.CanadianJournalof Zoology,69:14051407. Bennett,G.F.,Peirce,M.A.,andAshford,R.W.1993. Avian haematozoa: mortality andpathogenicity.JournalofNaturalHistory,27(5):9931001. Bradbury,W.C.,andBennett,G.F.1974.BehaviorofadultSimuliidae(Diptera). II. Vision and olfaction in nearorientation and landing. Canadian Journal of Zoology,52:13551364. Brawn,J.D.,Robinson,S.K.,andThompsonIII,F.R.2001.Theroleofdisturbancein the ecology and conservation of birds. Annual Review of Ecology and Systematics,32:251276. Briers,R.A.,Cariss,H.M.,Geoghegan,R.andGee,J.H.R.2005.Thelateralextentof thesubsidyfromanuplandstreamtoriparianlycosidspiders.Ecography,28: 165170. Buckland,S.T.,andElston,D.A.1993.Empiricalmodelsforthespatialdistributionof wildlife.JournalofAppliedEcology,30:478495. Carlsson,M.,Nilsson,L.M.,Svensson, B.S.,Ulfstrand, S., and Wotton, R.S. 1977. Lascustrine seston and other factors influencing the blackflies (Diptera: Simuliidae)inhabitinglakeoutletsinSwedishLapland.Oikos,29:229238. Clayton,D.H., andMoore,J.1997.Hostparasiteevolution. General principles and avianmodels.OxfordUniversityPress,Oxford. Collier, K.J., Bury, S., and Gibbs, M. 2002. A stabile isotope study of linkages betweenstreamandterrestrialfoodwebsthroughpredation.Freshwater Biology,47:16511659.

23

Crosskey, R.W. 1990. The natural history of blackflies. British Museum (Natural History).JohnWiley&SonsLtd,Chichester. Crosskey,R.W.2002.Secondupdatetothetaxonomicandgeographicalinventoryof worldblackflies(Diptera:Simuliidae).London:TheNaturalHistoryMuseum. Crosskey, R.W., and Haword, T.M. 2004. A revised taxonomic and geographical inventory of world blackflies (Diptera : Simuliidae). (available on the web: http://www.nhm.ac.uk/researchcuration/projects/blackflies). Cuadrado, M., and Hasselquist, D. 1994. Agerelated difference in return rate of Willow Warbler Phylloscopus trochilus at 2 breeding sites in Sweden. Ornis Fennica,71:137143. Davies, L., and Roberts, D.M. 1980. Flight activity of female blackflies (Diptera: Simuliidae)studiedwithavehiclemountednetinnorthernEngland.Journalof NaturalHistory,14:116. Disler, E., Gomer, D., Obrdlik, P., Petermann, P., and Schneider, E. 1990. Water management and ecological perspectives of the Upper Rhine`s floodplains. RegulatedRiversResearch&Management,5:115. Fargallo,J.A.,andMerino,S.1999.Broodsizemanipulationmodifiestheintensityof infectionbyHaematozoainfemalebluetits Parus caeruleus .Ardea,87(2):261 268. Fargallo,J.A.,andMerino,S.2004.Clutchsizeandhaemoparasitespeciesrichnessin adultandnestlingbluetits.Ecoscience,11(2):168174. Falck,M.J.,Wilson,K.R.,andAndersen,D.C.2003.Smallmammalswithinriparian habitatsofaregulatedandunregulatedaridlandriver.WesternNorthAmerican Naturalist,63:3542. Figuerola, J., Munoz, E., Gutierrez, R., and Ferrer, D. 1999. Blood parasites, leucocytes and plumage brightness in the cirl bunting, Emberiza cirlus . FunctionalEcology,13(5):596601. Gebbe, A.P., Robinson, S.K., and Brawn, J.D. 2001. Treespecies preferences of foraging insectivorous birds: implications for floodplain forest restoration. ConservationBiology,16(2):462470. Gehrke,P.C.,Gilligan,D.M.,andBarwick,M.2002.Changesinfishcommunitiesof the Shoalhaven River 20 years after construction of Tallowa Dam, Australia.RiverResearchandApplications,18:265286.

24

Hatchwell,B.J.,Wood,M.J.,Anwar,M.,andPerrins,C.M.2000.Theprevalenceand ecology of the haematozoan parasites of European blackbirds, Turdus merula . CanadianJournalofZoology,78(4):684687. Henschel, J.R., Mahsberg, D., and Stumpf, H. 2001. Allochthonous aquatic insects increasepredationanddecreaseherbivoryinrivershorefoodwebs.Oikos,93: 429438. Hudson,P.J.,Rizzoli,A.,Grenfell,B.T.,Heesterbeek,H.,andDobson,A.P.2001.The ecologyofwildlifediseases.OxfordUniversityPress,Oxford. Hunter,D.B.,Rohner,C.,andCurrie,D.C.1997.Mortalityinfledglinggreathorned owls from black fly hematophaga and leucocytozoonosis. Journal of Wildlife Diseases,33(3):486491. Huntley, B., Baxter, R., Lewthwaite, K.J., Willis, S.G., and Adamson, J.K. 1998. Vegetation responses to local climatic changes inducted by a waterstorage reservoir.GlobalEcologyandBiogeographyLetters7:214257. Huryn,A.D. andWallace,J.B.2000. Lifehistory and production of stream insects. AnnualReviewofEntomology,45:83110. Iwata, T., Nakano, S., and Murakami, M. 2003. Stream meanders increase insectivorousbirdabundanceinripariandeciduousforests.Ecography,26:325 337. Jackson, J.K., and Resh, V.H. 1989. Distribution and abundance of adult aquatic insects in the forest adjacent to a northern California stream. Environmental Entomology,18:278283. Jansson, R., Nilsson, C., Dynesius, M., and Andersson, E. 2000. Effects of river regulation on rivermargin vegetation: A comparison of eight boreal rivers. EcologicalApplications,10:203224. Järvinen,A.1983.BreedingstrategiesofholenestingpasserinesinnorthernLapland. AnnalesZoologiciFennici,20:129149. Kingsford,R.T.,Jenkins,K.M.,andPorter,J.L.2004.Imposedhydrologicalstability onlakesinaridAustraliaandeffectsonwaterbirds.Ecology,85:24782492. Kiszewski, A.E., and Cupp, E.W. 1986. Transmission of Leucocytozoon smithi (Sporozoa, Leucocytozoidae )byblackflies(Diptera, Simuliidae )inNewYork, USA.JournalofMedicalEntomology,23:256262. Kovats, Z.E., Ciborowski, J.J.H., and Corkum, L.D. 1996. Inland dispersal of adult aquaticinsects.FreshwaterBiology,36(2):265276.

25

Kreier,J.P.,andBaker,J.R.1987.Parasiticprotozoa.AllenandUnwin,Boston. Kruk,A.,andPenczak,T.2003.Impoundmentimpact on populations of facultative riverine fish. Annales de LimnologieInternational Journal of Limnology, 39: 197210. Lock,P.A.,andNaiman,R.J.1998.Effectsofstreamsizeonbirdcommunitystructure in coastal temperate forests of the pacific Northwest, U.S.A. Journal of Biogeography,25:773782. Loreau,M.,Roy,J.,andTilman,D.2005.Linkingecosystemandparasiteecology. In Parasitism and ecosystems. Edited by F.Thomas,J.F.GuéganandF.Renaud. OxfordUniversityPress,Oxford,pp.1321. Lundberg,A.,andAlatalo,R.V.1992.ThePiedFlycatcher.London:T&ADPoyser. Malmqvist,B.1994.Preimaginalblackflies(Diptera:Simuliidae)andtheirpredatorsin acentralScandinavianlakeoutletstream.AnnalesZoologiciFennici,31:245 255. Malmqvist,B.1999.Lifehistoryof Metacnephia lyra ,ablackflyhighlycharacteristic of large Swedish river rapids at the time of maximum discharge (Diptera: Simuliidae).AquaticInsects,21:8999. Malmqvist,B.2002.Aquaticinvertebratesinriverinelandscapes.FreshwaterBiology, 47:679694. Malmqvist, B., Zhang, Y., and Adler, P.H. 1999. Diversity, distribution and larval habitatsofNorthSwedishblackflies(Diptera:Simuliidae).FreshwaterBiology, 42(2):301314. Malmqvist, B., Wotton, R.S., and Zhang, Y.X. 2001. Suspension feeders transform massiveamountsofsestoninlargenorthernrivers.Oikos,92:3543. Malmqvist, B., Adler, P.H., Kuusela, K., Merritt, R.W., and Wotton, R.S. 2004a. Black fliesintheborealbiome,keyorganismsinboth terrestrial and aquatic environments:Areview.Ecoscience,11:187200. Malmqvist,B.,Adler,P.H.,andStrasevicius,D.2004b. Testing hypotheses on egg numberandsizeinblackflies(Diptera:Simuliidae).JournalofVectorEcology, 29:248256. Malmqvist, B., Strasevicius, D., and Adler, P.H. 2007. Catches of bloodsucking blackflies (Diptera: Simuliidae) tell different stories depending on sampling method.EntomologicaFennica,18(inpress).

26

McCully, P. 1996. Silenced Rivers. The ecology and politics of large dams. Zed Books,London. Merino,S.,Moreno,J.,Sanz,J.J.,andArriero, E. 2000. Are avian blood parasites pathogenicinthewild?Amedicationexperimentinbluetits( Parus caeruleus ). Proceedings of the Royal Society of London Series B Biological Sciences, 267(1461):25072510. Merritt, D.M., and Cooper, D.J. 2000. Riparian vegetation and channel change in responsetoriverregulation:acomparativestudyof regulated and unregulated streams in the Green River Basin, USA. Regulated RiversResearch & Management,16:543564. Murakami,M.,andNakano,S.2002.Indirecteffectofaquaticinsectemergenceona terrestrialinsectpopulationthroughpredationbybirds.EcologyLetters,5:333 337. Mönkkönen, M. 1994. Diversity patterns in palearctic and nearctic forest bird assemblages.JournalofBiogeography.21:183–195. Naiman, R.J., and Décamps, H. 1997. The ecology of interfaces: Riparian zone. AnnualReviewofEcologyandSystematics,28:621658. Niemi,G.,Honowski,J.,Helle,P.,Howe,R.,Mönkkönen,M.,Venier,L.,andWelsh, D. 1998. Ecological sustainability of birds in boreal forests. Concervation Ecology(online),2.17. Nilsson,C.1986.Changeinriparianplantcommunitycompositionalong2riversin northernSweden.CanadianJournalofBotany,64:589592. Nilsson,C.,andJansson,R.1995.Floristicdifferencesbetweenripariancorridorsof regulated and freeflowing boreal rivers. Regulated RiversResearch & Management,11:5566. Nilsson, C., Ekblad, A., Gardfjell, M., and Carlberg, B. 1991. Longterm effects of riverregulationonrivermarginvegetation.JournalofAppliedEcology,28:963 987. Nilsson,C.,andBerggren,K.2000.Alterationsofriparianecosystemscausedbyriver regulation.Bioscience,50:783792. Ojanen,U.,Ratti,O.,Adler,P.H.,Kussela, K., Malmqvist, B., and Helle, P. 2002. Bloodfeedingbyblackflies(Diptera:Simuliidae)onblackgrouse( Tetrao tetrix ) inFinland.EntomologicaFennica,13:153158.

27

Paetzold,A.,Schubert,C.J.,andTockner,K.2005.Aquaticterrestriallinkagesalonga braidedriver:Riparianarthropodsfeedingonaquaticinsects.Ecosystems,8(7): 748759. Perrins,C.M.1970.Thetimingofbirds’breedingseason.Ibis,112:242255. Petersen, I., Masters, Z., Hildrew, A.G., and Ormerod,S.J.2004.Dispersalofadult aquaticinsectsincatchmentsofdifferinglanduse.JournalofAppliedEcology, 41:934950. Petts,G.E.1984. Impounded rivers .Chichester:JohnWiley&Sons. Raab,B.,andVedin,H.1995.Klimat,sjöarochvattendrag.Sverigesmeteorologiska ochhydrologiskainstitut.SverigesNationalatlas,(inSwedish). Reeves, W.K., Adler, P.H., Rätti, O., Malmqvist, B., and Strasevicius, D. 2007. Molecular detection of Trypanosoma (Kinetoplastida: Trypanosomatidae) in BlackFlies(Diptera:Simuliidae).ComparativeParasitology,74(1):171175. Reitan, O., and Sandvik, J. 1996. An assessment of retaining dams in hydropower reservoirs for enhancing bird habitat.Regulated RiversResearch & Management,12:523534. Saab,V.1999.Importanceofspatialscaletohabitatusebybreedingbirdsinriparian forests:ahierarchicalanalysis.EcologicalApplications,9:135151. Sabo,J.L.,andPower,M.E.2002.Numericalresponseoflizardstoaquaticinsectsand shorttermconsequencesforterrestrialprey.Ecology,83:30233036. Scheuerlein,A.,andRicklefs,R.E.2004.Prevalence ofbloodparasites in European passeriform birds. Proceedings of the Royal Society of London Series B BiologicalSciences,271:13631370. Shields, F.D., Simon, A., and Steffen, L.J. 2000. Reservoir effects on downstream riverchannelmigration.EnvironmentalConservation,27:5466. SMHI hydrology. 1999. Svensk Vattenarkiv : Avrinningsområden i Sverige, (in Swedish). Siikamäki, P., Rätti, O., Hovi, M., and Bennett, G.F. 1997. Association between haematozoan infections and reproduction in the pied flycatcher. Functional Ecology,11(2):176183. Siriwardena,G.M.,Baillie,S.R.,Buckland,S.T.,Fewster,R.M.,Marchant,J.H.,and Wilson,J.D. 1998. Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census indices. Journal of Applied Ecology,35:2443.

28

Strong, T.R., and Bock, C.E. 1990. Bird species distribution patterns in riparian habitatsinsoutheasternArizona.Condor,92(4):866885. Sundborg, Å. 1977. Älv, kraft, miljö. Vattenkraftutbyggnadens miljöeffekter, (in Swedish).SwedishEnvironmentalProtectionAgency,Stockholm,Sweden. Tella, J.L. 2002. The evolutionary transition to coloniality promotes higher blood parasitisminbirds.JournalofEvolutionaryBiology,15(1):3241. Terborgh, J., Robinson, S.K., Parker, T.A., Munn, C.A., and Pierpont, N. 1990. StructureandorganizationofanAmazonianforestbirdcommunity.Ecological Monographs,60(2):213238. Tomas,G.,Merino,S.,Martinez,J.,Moreno,J.,andSanz,J.J.2005.Stressprotein levelsandbloodparasiteinfectioninbluetits( Parus caeruleus ):amedication fieldexperiment.AnnalesZoologiciFennici,42(1):4556. Tucker, K., Rushton, S.P., Sanderson, R.A., Martin, E.B., and Blaiklock, J. 1997. Modelling bird distributions a combined GIS and Bayesian rulebased approach.LandscapeEcology,12:7793. Valkiunas, G., Iezhova, T.A., and Shapova, A.P. 2003. High prevalence of blood parasitesinhawfinch Coccothraustes coccothraustes .JournalofNaturalHistory, 37:26472652. Woinarski,J.C.Z.,Brock,C.,Armstrong,M.,Hempel,C.,Cheal,D.,andBrennan,K. 2000.Birddistributioninriparianvegetationintheextensivenaturallandscape of Australia’s tropical savanna: a broadscale survey and analysis of a distributionaldatabase.JournalofBiogeography,27:843868. Wotton,R.S.1987.Lakeoutletblackfliesthedynamicsoffilterfeedersatveryhigh populationdensities.HolarcticEcology,10:6572.

29

ACKNOWLEDGEMENTS Firstoffall,IwouldliketothankmysupervisorBjörnMalmqvist .Ihavebeenlucky tohaveasupervisorthatfromthestartbelievedinmeandthisproject.Yournever ending enthusiasm kept me going through the tuff years off my PhD period. You introducedmetothewonderfulworldofEcology,aworldofneverendingquestions and complicated answers. Thanks for all encouragement, and always taking time to listentomeandevenreadingmy“English”. Allmembers,presentandpast,IwouldliketothankforsharingtheyearsthatIhave been at EMG. The “old “ members of the group PerOla Hoffsten (for all nice discussions),ÅsaEriksson (extraliveinparties)andMicaelJonsson (nevershowing rarestbirds)youintroducedmeintoStreamEcologygroup.Specialthanksto PerOla Hoffstenforsharingallsecretsoffishing.The newermembersofthe group Zlatko Petrin (one of the most warmhearted persons I met), Fabio Lepori (flyfishing expert) and Brendan McKie (neverendinghumour),thankyousomuchforallthe helpthroughthelast years.Itwaspleasuretoworkwithallofyou. ThankstoalldearfriendsandcolleaguesattheEcologydepartment.Allthestudentsat thedepartmentthatIhavemetthroughtheyearsandmadethistotheniceplaceithas been;itwillbehardtofindanotherbunchofnicepeoplelikeyouguys!!!!!!!!!Special thanks to my brother in arms, Tomas Brodin , without you all fun at department, parties and out in the fields will be minimal. Many thanks to all “ringers” at department; Katarina Stenman , Frank Johansson , Jonas Gustafsson , and other birders; Antoine Bos , Jörgen Olsson , Martin Lind formanyhoursspendwiththe BIRDS. Thank you Johanna Öhman and Karin Nilsson , my roommate and “labmate”,forstimulatingandwilddiscussionsoneverythingfrom……toscience.I definitivelyhaveenjoyedyourpresencein“myroomandlab”.Thankevery“Friday pub” member (especially Martin Frenkel ) for relaxation after long week. Many thankstoformerandpresentmembersofthestaffatthedepartment, intheleadwith Sussi and Ylva ,withoutyouwillbenotpossibletoswiminthelakeofbureaucracy. Thanksto“old”friendsfromMicro, ÅsaGylfe forwonderfultriptoFøroyar, Mikael Wikström forsharing“BirdRace”secrets.

30

IamverygratefultopastandpresentmembersofLithuaniancommunity Arūnas ir

Ramun÷ , Karolis and Rima , Ignas ir Kotryna , Ernestas ir Egl÷, Ramūnas ir

Kristina , Aidas ir Rūta, Algis , Jaunius , Aurelija , Aust÷ . D÷kingas už visus

susitikimus,vakarienes,baliusirkeliones. Karoliui ir Rimai užvaikupriežiūrą, Ignui

ir Kotrynai užfantastiškuspasis÷d÷jimus ,Ernestui ir Eglei užKal÷das(žąsųdarbus),

Ramūnui užnuostabiasžvejybas ,Arūnui,JauniuiirAidui užkrepšinį, Aurelijai už

linksmaskavospertrauk÷les.

ThankstoRussianfrends Gennady(Gena) and Olga ☺,Michael( Miša)andEvgenya

(Ženia)( foroutstandingdinners ), Nina,Lena , Dennis forkeepingmyrussiangoing.

Mydeepestthanksto Jūrat÷ and Medeina , Emilija and Kirnis .Thankyou Jūrate for

allyourloveandsupport.AčiūTauužmanosvajoniųišpildymą–Kirnį ir Emiliją .O,

vaikučiamsužnuolatinįrūpestį”Kaipsekasi,t÷te?”

Didelis d÷kui t÷vams už tai, kad netrukdomai leidote dom÷tis paukščiais, už jūsų paramąirsupratimą,užtai,kadvisuometesamelaukiami. Broliui ,užrūpestiirkartu praleistąvaikystę.

ThankstoallwhomIdidnotmention,buthavebeenapartofmylifeforsixyears. Thankstoallofyou, Yours, Das

31