The Natural Link Between Europe and Africa – 2.1 Billion Birds on Migration

Total Page:16

File Type:pdf, Size:1020Kb

The Natural Link Between Europe and Africa – 2.1 Billion Birds on Migration Oikos 118: 624Á626, 2009 doi: 10.1111/j.1600-0706.2009.17309.x, # 2009 The Authors. Journal compilation # 2009 Oikos Subject Editor: Hamish McCallum. Accepted 3 November 2008 The natural link between Europe and Africa 2.1 billion birds on migration Á Steffen Hahn, Silke Bauer and Felix Liechti S. Hahn ([email protected]), S. Bauer and F. Liechti, Swiss Ornithological Inst., Luzernerstrasse 6, CHÁ6203 Sempach, Switzerland. SB also at: Dept of PlantÁAnimalÁInteractions, Centre for Limnology, Netherlands Inst. of Ecology (NIOO-KNAW), PO Box 1299, NLÁ3600 BG Maarssen, the Netherlands. The PalaearcticÁAfrican migration system comprises enormous numbers of birds travelling between Europe and Africa twice each year. Migratory birds may form strong links between the two continents given they can act as both transport vehicles for parasites and diseases as well as temporary consumers with increased food demand to fuel their flight. Knowing the number of migrating birds is crucial if such links are to be quantified. We estimate that today approximately 2.1 billion songbirds and near-passerine birds migrate from Europe to Africa in autumn, 73% of which are accounted for by just 16 species. This number is only half the estimate from the 1950s in the only other assessment to date. The discrepancy is mainly caused by the limited information on population sizes in the past. Our estimated number of migrants is highly dependent on the accuracy of the underlying estimates of breeding population sizes, as well as breeding parameters in species with relatively high reproductive output. The updated figures quantify and emphasize the strong natural connection between Africa and Europe, which has important implications for manifold research topics including those related to climate change, human health and biological conservation. ‘‘Let us now toss a few figures into the air.’’ With these between Europe and Africa in boreal autumn. Additionally, words Moreau (1972, p. 45) introduced his attempt to we reconsidered Moreau’s calculations to identify the cause estimate the number of birds involved in the world’s biggest of potential differences Á be they methodological or due to bird migration system, the PalaearcticÁAfrican flyway actual changes in populations sizes. (Newton 2008). Migratory birds connect the two con- tinents and their different biomes twice each year. Through the transportation of disease (Hubalek 2004) and disease Methods vectors (Comstedt et al. 2006), parasites (Waldenstrom et al. 2002), seeds (Sanchez et al. 2006), and the harvesting We focused on the autumn migration of birds from their of considerable amounts of food while preparing for flight European breeding grounds, within the geographical (Alerstam and Lindstro¨m 1990, Fransson et al. 2008) they borders of Europe including Turkey and European Russia seasonally alter the composition of local communities at (to approx. 608E), to their sub-Saharan African wintering their sites of origin, as well as stop-over and destination quarters. Bird populations were assumed to include sites. Estimating the number of birds migrating between breeders, their offspring and non-breeding adults. We Europe and Africa is of utmost importance when we strive considered 55 passerine and 13 near-passerine species, i.e. to quantify such links. Eurasian wryneck Jynx torquilla, European roller Coracias However, to date, the only estimate of how many birds garrulus, Eurasian hoopoe Upupa epops, bee-eaters Merops migrate between the two continents stems from Moreau’s sp., swifts Apus sp., Tachymarptis melba, nightjars Capri- pioneering work (Moreau 1972) that deduced the impress- mulgus sp., common cuckoo Cuculus canorus, European ive number of 5 billion migrating landbirds, dominated turtle dove Streptopelia turtur and common quail Coturnix by 4.3 billion passerines. Although this figure has been coturnix, all migrating to sub-Saharan regions (Supple- heavily used in subsequent works, it has not been revisited mentary material Appendix 1, Table A1). We used since its publication more than 30 years ago. published estimates of current population sizes of birds We used current data on breeding population sizes, breeding within the above mentioned region (BirdLife reproductive success, proportions of young and non- International 2004). We determined the proportion of breeders of species from Europe including Turkey and long-distance migrants within each population using European Russia to establish a current estimate of the information derived from Glutz von Blotzheim and Bauer number of passerine and near-passerine birds migrating (1987) and Cramp (1998). In five species, bluethroat 624 Luscinia svecica, common chiffchaff Phylloscopus collybita, Results Eurasian blackcap Sylvia atricapilla, Eurasian hoopoe and common quail, considerable parts of the European breed- Based on the size of breeding populations of European ing population undertake partial migrations with several species (BirdLife International 2004), we estimated that in sub-populations wintering north of the Sahara. For these total, between 1.52 and 2.91 (average 2.1) billion passerine species we assumed complete residency in Mediterranean and near-passerine birds cross the Sahara each autumn to populations and/or a mixed migration strategy, with 50% spend the non-breeding season in sub-Saharan Africa. of individuals in populations along a corridor throughout Passerines account for 95% of all individuals. Moreover, central Europe over-winter north of the Sahara. The 73% of these long-distance migrants belong to 16 species resulting numbers of birds, which don’t migrate to (Fig. 1) of which the willow warbler Phylloscopus trochilus is sub-Saharan Africa, have been subtracted from their the most numerous (15.8%), followed by tree pipit Anthus European migrant population size (Supplementary Mate- trivialis (7.3%), common chiffchaff and barn swallow rial Appendix 1, Table A2). Hirundo rustica (both 6.5%). Population composition The number of first-year birds on migration was derived varied between species according to their mean breeding from data of mean annual breeding success (no. of success. On average, 47% of migrants were adults (minÁ fledglings per nest), the average number of breeding max: 30Á63%), 46% juveniles (27Á66%) and 7% non- attempts per season and the estimated survival from breeders (4Á10%, Fig. 1). fledging until departure. Data on reproduction were derived The accuracy of these estimates is principally reliant from Glutz von Blotzheim and Bauer (1987) and Cramp upon published data of the species’ breeding population (1998); some missing values were substituted with averages sizes; varying this parameter for all species by 10% would, from the closest relatives. Survival estimates for the post- of course, also change the estimated total number of fledging period were lacking for most species. Therefore, we migrants by 10%. Similarly, variations in clutch size, used a median survival rate of 0.6 for all species by taking breeding success and fledging survival entail changes of the average fledgling survival of the six passerine species for 4.9% each (at species level: minimum 2.71%, maximum: which data were available (Naef-Daenzer et al. 2001, 6.58%). Less important were the proportions of non- Kershner et al. 2004, Gru¨ebler 2007, Wells et al. 2007). breeders and resident birds in the total population, which Finally, the proportion of non-breeders within a population change the overall estimate by only 0.9% and 0.6%, was estimated to be 15%, the median of seven passerines respectively (species: minÁmax: 0.45Á0.95%). Finally, (Newton 1998). assuming that a long-distance migration strategy is em- Because parameter estimates might be subject to in- ployed by the entire population for all species would accuracy, we determined the sensitivity of the output increase the total number of migrants by 7.9%. (number of migrating birds) to variation in each parameter. Therefore, we subsequently changed all parameters by 910%, re-calculated the output and, finally related the Discussion changes in the focal parameter to the resulting changes in the output value (Hamby 1994). Moreau (1972) based his calculations on population-size All population-relevant averages are geometric means. estimates of Finnish birds from the 1950s (Merikallio willow warbler tree pipit common chiffchaff* barn swallow spotted flycatcher garden warbler common whitethroat common house martin European pied flycatcher common redstart wood warbler Eurasian blackcap* northern wheatear western yellow wagtail breeding adults greater short-toed lark juveniles common nightingale non-breeding adults 0 100 200 300 400 No. birds (× 106) Figure 1. The 16 most abundant long-distance migratory species crossing the Mediterranean Sea and the Sahara desert, representing 73% of all European passerines and near-passerines during autumn migration. Bar length gives the geometric mean number of breeding adults, their juveniles and the non-breeding adults per species; the error bars indicate minimum and maximum numbers. Asterisks mark species with partially migratory populations. 625 1958), and estimated that 4.3 billion passerines and 200 E. (ed.), Bird migration: physiology and ecophysiology. million near-passerines migrate to Africa in autumn. Our Springer, pp. 331Á351. calculations result in numbers that are only half these earlier BirdLife International 2004. Birds in Europe: population esti- estimates. For almost all of Moreau’s 16 most abundant mates, trends and conservation
Recommended publications
  • Timing Manipulations Reveal the Lack of a Causal Link Across Timing of Annual-Cycle Stages in a Long-Distance Migrant Barbara M
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb201467. doi:10.1242/jeb.201467 RESEARCH ARTICLE Timing manipulations reveal the lack of a causal link across timing of annual-cycle stages in a long-distance migrant Barbara M. Tomotani1,2,*, Iván de la Hera1,3, Cynthia Y. M. J. G. Lange1, Bart van Lith1, Simone L. Meddle4, Christiaan Both5 and Marcel E. Visser1,5 ABSTRACT and Wingfield, 2000; Wingfield, 2008). Annual cycles vary in Organisms need to time their annual-cycle stages, like breeding and complexity in a species-specific way: from simple breeding/non- migration, to occur at the right time of the year. Climate change has breeding transitions to the inclusion of other energetically demanding shifted the timing of annual-cycle stages at different rates, thereby stages like migration or moult (Wingfield, 2008). As the total time tightening or lifting time constraints of these annual-cycle stages, a available for the allocation of these seasonal stages is 1 year, more rarely studied consequence of climate change. The degree to which complex annual cycles will necessarily involve a concomitant increase these constraints are affected by climate change depends on whether in time constraints. This is especially true if these different stages are consecutive stages are causally linked (scenario I) or whether the all energetically demanding and need to be temporally segregated timing of each stage is independent of other stages (scenario II). (Dietz et al., 2013). Complex annual cycles would thus result in low Under scenario I, a change in timing in one stage has knock-on timing flexibility as further shortening or overlapping stages would lead to effects on subsequent stages, whereas under scenario II, a shift in the fitness costs (Jacobs and Wingfield, 2000; Wingfield, 2008).
    [Show full text]
  • Tracing the Evolutionary History of the Atlas Flycatcher (Ficedula Speculigera) - a Molecular Genetic Approach
    Tracing the evolutionary history of the Atlas flycatcher (Ficedula speculigera) - A molecular genetic approach Torbjørn Bruvik Master of Science thesis Centre for Ecological and Evolutionary Synthesis Department of Biology University of Oslo 2007 1 Forord Blindern, 14.03.07 Da var tiden ute og oppgaven ferdig. Men det er selvsagt mange som bør takkes. Av alle som bør takkes er selvsagt min veileder Glenn-Peter Sætre først. Han har gitt meg en spennende oppgave, vært delaktig i alle deler av prosessen og gitt god veiledning hele veien. Thomas Borge, har hjulpet meg på laben i det skjulte, og har kommet med uvurderlig hjelp i analyse- og skriveprosessen. Stein Are Sæther har vært viktig i felt, og lært meg omtrent alt jeg kan i felt, men dessverre ikke alt han kan. Og sist, en stor takk til Gunilla Andersson, som har guidet meg gjennom laben, og gitt meg god faglig og ikke-faglig veiledning. Lesesalen har vært et fantastisk sted å være disse drøye to årene, med rom for faglige diskusjoner, fussball og andre ballspill, insektoppdrett og ellers mye tant og fjas (ikke så mye tant, da). Så jeg må takke de gamle storhetene Jostein, Petter, Irja, Kristina og Jens Ådne, og også mine likemenn Kjetil og Gry, og de senere ankomne jentene Silje, Elianne, Adine og Therese, som jeg har blitt som en far for. Også en takk til Guri som ofte har gitt meg den koffeinen, de beroligende ordene eller den ”sårende” mobbingen jeg trenger. Jeg må også takke mamma og pappa for noe økonomisk og mye moralsk støtte, og Hanne for litt korrekturlesing og mye råd fra sin rikholdige livserfaring.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Bird Checklists of the World Country Or Region: Ghana
    Avibase Page 1of 24 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Ghana 2 Number of species: 773 3 Number of endemics: 0 4 Number of breeding endemics: 0 5 Number of globally threatened species: 26 6 Number of extinct species: 0 7 Number of introduced species: 1 8 Date last reviewed: 2019-11-10 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Ghana. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=gh [26/09/2021]. Make your observations count! Submit your data to ebird.
    [Show full text]
  • Progress in the Development of an Eurasian-African Bird Migration Atlas
    CONVENTION ON UNEP/CMS/COP13/Inf.20 MIGRATORY 10 February 2020 SPECIES Original: English 13th MEETING OF THE CONFERENCE OF THE PARTIES Gandhinagar, India, 17 - 22 February 2020 Agenda Item 25 PROGRESS IN THE DEVELOPMENT OF AN EURASIAN-AFRICAN BIRD MIGRATION ATLAS (Submitted by the European Union of Bird Ringing (EURING) and the Institute of Avian Research) Summary: The African-Eurasian Bird Migration Atlas is being developed under the auspices of CMS in the framework of a Global Animal Migration Atlas, of which it constitutes a module. The African-Eurasian Bird Migration Atlas is being developed and compiled by the European Union of Bird Ringing (EURING) under a Project Cooperation Agreement (PCA) between the CMS Secretariat and the Institute of Avian Research, acting on behalf of EURING. The development of the African-Eurasian Bird Migration Atlas is funded with the contribution granted by the Government of Italy under the Migratory Species Champion Programme. This information document includes a progress report on the development of the various components of the project. The project is expected to be completed in 2021. UNEP/CMS/COP13/Inf.20 Eurasian-African Bird Migration Atlas progress report February 2020 Stephen Baillie1, Franz Bairlein2, Wolfgang Fiedler3, Fernando Spina4, Kasper Thorup5, Sam Franks1, Dorian Moss1, Justin Walker1, Daniel Higgins1, Roberto Ambrosini6, Niccolò Fattorini6, Juan Arizaga7, Maite Laso7, Frédéric Jiguet8, Boris Nikolov9, Henk van der Jeugd10, Andy Musgrove1, Mark Hammond1 and William Skellorn1. A report to the Convention on Migratory Species from the European Union for Bird Ringing (EURING) and the Institite of Avian Research, Wilhelmshaven, Germany 1. British Trust for Ornithology, Thetford, IP24 2PU, UK 2.
    [Show full text]
  • 1 ID Euring Latin Binomial English Name Phenology Galliformes
    BIRDS OF METAURO RIVER: A GREAT ORNITHOLOGICAL DIVERSITY IN A SMALL ITALIAN URBANIZING BIOTOPE, REQUIRING GREATER PROTECTION 1 SUPPORTING INFORMATION / APPENDICE Check list of the birds of Metauro river (mouth and lower course / Fano, PU), up to September 2020. Lista completa delle specie ornitiche del fiume Metauro (foce e basso corso /Fano, PU), aggiornata ad Settembre 2020. (*) In the study area 1 breeding attempt know in 1985, but in particolar conditions (Pandolfi & Giacchini, 1985; Poggiani & Dionisi, 1988a, 1988b, 2019). ID Euring Latin binomial English name Phenology GALLIFORMES Phasianidae 1 03700 Coturnix coturnix Common Quail Mr, B 2 03940 Phasianus colchicus Common Pheasant SB (R) ANSERIFORMES Anatidae 3 01690 Branta ruficollis The Red-breasted Goose A-1 (2012) 4 01610 Anser anser Greylag Goose Mi, Wi 5 01570 Anser fabalis Tundra/Taiga Bean Goose Mi, Wi 6 01590 Anser albifrons Greater White-fronted Goose A – 4 (1986, february and march 2012, 2017) 7 01520 Cygnus olor Mute Swan Mi 8 01540 Cygnus cygnus Whooper Swan A-1 (1984) 9 01730 Tadorna tadorna Common Shelduck Mr, Wi 10 01910 Spatula querquedula Garganey Mr (*) 11 01940 Spatula clypeata Northern Shoveler Mr, Wi 12 01820 Mareca strepera Gadwall Mr, Wi 13 01790 Mareca penelope Eurasian Wigeon Mr, Wi 14 01860 Anas platyrhynchos Mallard SB, Mr, W (R) 15 01890 Anas acuta Northern Pintail Mi, Wi 16 01840 Anas crecca Eurasian Teal Mr, W 17 01960 Netta rufina Red-crested Pochard A-4 (1977, 1994, 1996, 1997) 18 01980 Aythya ferina Common Pochard Mr, W 19 02020 Aythya nyroca Ferruginous
    [Show full text]
  • Best of the Baltic - Bird List - July 2019 Note: *Species Are Listed in Order of First Seeing Them ** H = Heard Only
    Best of the Baltic - Bird List - July 2019 Note: *Species are listed in order of first seeing them ** H = Heard Only July 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th Mute Swan Cygnus olor X X X X X X X X Whopper Swan Cygnus cygnus X X X X Greylag Goose Anser anser X X X X X Barnacle Goose Branta leucopsis X X X Tufted Duck Aythya fuligula X X X X Common Eider Somateria mollissima X X X X X X X X Common Goldeneye Bucephala clangula X X X X X X Red-breasted Merganser Mergus serrator X X X X X Great Cormorant Phalacrocorax carbo X X X X X X X X X X Grey Heron Ardea cinerea X X X X X X X X X Western Marsh Harrier Circus aeruginosus X X X X White-tailed Eagle Haliaeetus albicilla X X X X Eurasian Coot Fulica atra X X X X X X X X Eurasian Oystercatcher Haematopus ostralegus X X X X X X X Black-headed Gull Chroicocephalus ridibundus X X X X X X X X X X X X European Herring Gull Larus argentatus X X X X X X X X X X X X Lesser Black-backed Gull Larus fuscus X X X X X X X X X X X X Great Black-backed Gull Larus marinus X X X X X X X X X X X X Common/Mew Gull Larus canus X X X X X X X X X X X X Common Tern Sterna hirundo X X X X X X X X X X X X Arctic Tern Sterna paradisaea X X X X X X X Feral Pigeon ( Rock) Columba livia X X X X X X X X X X X X Common Wood Pigeon Columba palumbus X X X X X X X X X X X Eurasian Collared Dove Streptopelia decaocto X X X Common Swift Apus apus X X X X X X X X X X X X Barn Swallow Hirundo rustica X X X X X X X X X X X Common House Martin Delichon urbicum X X X X X X X X White Wagtail Motacilla alba X X
    [Show full text]
  • Bird Number Dynamics During the Post-Breeding Period at the Tömörd Bird Ringing Station, Western Hungary
    THE RING 39 (2017) 10.1515/ring-2017-0002 BIRD NUMBER DYNAMICS DURING THE POST-BREEDING PERIOD AT THE TÖMÖRD BIRD RINGING STATION, WESTERN HUNGARY József Gyurácz1*, Péter Bánhidi2, József Góczán2, Péter Illés2, Sándor Kalmár2, Péter Koszorús2, Zoltán Lukács1, Csaba Németh2, László Varga2 ABSTRACT Gyurácz J., Bánhidi P., Góczán J., Illés P., Kalmár S., Koszorús P., Lukács Z., Németh C. and Varga L. 2017. Bird number dynamics during the post-breeding period at the Tömörd Bird Ringing Station, western Hungary. Ring 39: 23-82. The fieldwork, i.e. catching and ringing birds using mist-nets, was conducted at Tömörd Bird Ringing Station in western Hungary during the post-breeding migration seasons in 1998-2016. Altogether, 106,480 individuals of 133 species were ringed at the station. The aim of this paper was to publish basic information on passerine migration at this site. Migration phenology was described through annual and daily capture frequencies. Further- more, we provide the median date of the passage, the date of the earliest or latest capture, the peak migration season within the study period, and the countries where the birds monitored at the site were ringed or recovered abroad. To compare the catching dynamics for the fifty species with total captures greater than 200, a reference period was defined: from 5 Aug. to 5 Nov. 2001-2016. Some non-passerines that are more easily caught with mist-nets or that are caught occasionally were listed as well. The two superdominant spe- cies, the European Robin and the Eurasian Blackcap, with 14,377 and 13,926 total cap- tures, made up 27% of all ringed individuals.
    [Show full text]
  • EUROPEAN BIRDS of CONSERVATION CONCERN Populations, Trends and National Responsibilities
    EUROPEAN BIRDS OF CONSERVATION CONCERN Populations, trends and national responsibilities COMPILED BY ANNA STANEVA AND IAN BURFIELD WITH SPONSORSHIP FROM CONTENTS Introduction 4 86 ITALY References 9 89 KOSOVO ALBANIA 10 92 LATVIA ANDORRA 14 95 LIECHTENSTEIN ARMENIA 16 97 LITHUANIA AUSTRIA 19 100 LUXEMBOURG AZERBAIJAN 22 102 MACEDONIA BELARUS 26 105 MALTA BELGIUM 29 107 MOLDOVA BOSNIA AND HERZEGOVINA 32 110 MONTENEGRO BULGARIA 35 113 NETHERLANDS CROATIA 39 116 NORWAY CYPRUS 42 119 POLAND CZECH REPUBLIC 45 122 PORTUGAL DENMARK 48 125 ROMANIA ESTONIA 51 128 RUSSIA BirdLife Europe and Central Asia is a partnership of 48 national conservation organisations and a leader in bird conservation. Our unique local to global FAROE ISLANDS DENMARK 54 132 SERBIA approach enables us to deliver high impact and long term conservation for the beneit of nature and people. BirdLife Europe and Central Asia is one of FINLAND 56 135 SLOVAKIA the six regional secretariats that compose BirdLife International. Based in Brus- sels, it supports the European and Central Asian Partnership and is present FRANCE 60 138 SLOVENIA in 47 countries including all EU Member States. With more than 4,100 staf in Europe, two million members and tens of thousands of skilled volunteers, GEORGIA 64 141 SPAIN BirdLife Europe and Central Asia, together with its national partners, owns or manages more than 6,000 nature sites totaling 320,000 hectares. GERMANY 67 145 SWEDEN GIBRALTAR UNITED KINGDOM 71 148 SWITZERLAND GREECE 72 151 TURKEY GREENLAND DENMARK 76 155 UKRAINE HUNGARY 78 159 UNITED KINGDOM ICELAND 81 162 European population sizes and trends STICHTING BIRDLIFE EUROPE GRATEFULLY ACKNOWLEDGES FINANCIAL SUPPORT FROM THE EUROPEAN COMMISSION.
    [Show full text]
  • Stopover Dynamics of 12 Passerine Migrant Species in a Small Mediterranean Island During Spring Migration
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Open Archive Journal of Ornithology (2020) 161:793–802 https://doi.org/10.1007/s10336-020-01768-7 ORIGINAL ARTICLE Stopover dynamics of 12 passerine migrant species in a small Mediterranean island during spring migration Ivan Maggini1 · Marta Trez1 · Massimiliano Cardinale2 · Leonida Fusani1,3 Received: 16 September 2019 / Revised: 1 February 2020 / Accepted: 12 March 2020 / Published online: 30 March 2020 © The Author(s) 2020 Abstract Small coastal islands ofer landing opportunities for large numbers of migratory birds following long sea crossings. However, they do not always provide sufcient refueling opportunities, thus raising questions about their importance for the success of migratory journeys. Here we analyzed a large dataset collected during 3 years of captures and recaptures of 12 species on the island of Ponza, central Italy, to determine the importance of the island for refueling. Despite the very large amount of birds on the island, only a very small fraction (usually below 2%) stayed on the island for longer than 1 day. These birds had low energy stores and, in most cases, they were not able to successfully refuel on Ponza. Only two species (Subalpine Warbler and Common Chifchaf) had a positive fuel deposition rate, possibly as a result of the better suitability of the island’s habitat to these two species. We underline that the large use of the island despite the relatively low refueling opportunities may be due to other aspects that it may ofer to the birds. Possibly, birds just landed after a long sea crossing may require a short rest or sleep and can fnd opportunities to do that on the islands, reinitiating their onward fight after just a few hours.
    [Show full text]
  • Identifying the Paths of Climate Effects on Population Dynamics
    Oecologia (2021) 195:525–538 https://doi.org/10.1007/s00442-020-04817-3 GLOBAL CHANGE ECOLOGY – ORIGINAL RESEARCH Identifying the paths of climate efects on population dynamics: dynamic and multilevel structural equation model around the annual cycle Vesa Selonen1 · Samuli Helle2 · Toni Laaksonen1 · Markus P. Ahola3 · Esa Lehikoinen1 · Tapio Eeva1 Received: 10 June 2020 / Accepted: 24 November 2020 / Published online: 18 January 2021 © The Author(s) 2021 Abstract How environmental factors infuence population dynamics in long-distance migrants is complicated by the spatiotemporal diversity of the environment the individuals experience during the annual cycle. The efects of weather on several diferent aspects of life history have been well studied, but a better understanding is needed on how weather afects population dynam- ics through the diferent associated traits. We utilise 77 years of data from pied fycatcher (Ficedula hypoleuca), to identify the most relevant climate signals associated with population growth rate. The strongest signals on population growth were observed from climate during periods when the birds were not present in the focal location. The population decline was associated with increasing precipitation in the African non-breeding quarters in the autumn (near the arrival of migrants) and with increasing winter temperature along the migration route (before migration). The number of fedglings was associ- ated positively with increasing winter temperature in non-breeding area and negatively with increasing winter temperature in Europe. These possible carry-over efects did not arise via timing of breeding or clutch size but the exact mechanism remains to be revealed in future studies. High population density and low fedgling production were the intrinsic factors reducing the breeding population.
    [Show full text]
  • September 2019 Tour Report Birding in Krakow & the Carpathians
    Tour Report Poland – Birding in Krakow & the Carpathians 7 - 14 September 2019 Silver-washed fritillary Lesser spotted woodpecker Marsh harrier Painted lady Compiled by: Andrzej Petryna 01962 302086 [email protected] www.wildlifeworldwide.com Tour Leader: Andrzej Petryna with 5 participants Day 1: Arrive in Kacwin, Pieniny Mts. Saturday 7 September 2019 The group arrived on time, on an evening flight from London Heathrow. It was already past 8pm, so after meeting in the arrivals hall and a brief introduction, we took a short drive to the nearby hotel, where we ate a late dinner. The transfer to the Pieniny Mountains took approximately two hours, and when we finally reached our small guesthouse in Kacwin, it was almost midnight. We decided to take a proper rest before an early morning wake up and everyone went to their rooms upon arrival. Day 2: Pieniny Mts. Sunday 8 September 2019 Weather: sunny, 20°C We gathered again early in the morning for a walk in the vicinity of our guesthouse. The local road took us along a small river, the Kacwinanka, towards the Slovakian border. As we walked through the broad valley’s gentle grassy slopes, we spotted migrating birds of prey (honey and common buzzards, kestrel, sparrowhawk and lesser spotted eagle), and also a black stork. We also noticed few nutcrackers moving down from the wooded slopes to hazelnut bushes in the valley. In the mild September weather we still met some red-backed shrike, redstart and spotted flycatcher. After a homemade breakfast back at our guesthouse, we next moved to the northern parts of the Pieniny Mountains, where we observed raptor migration with numerous common buzzards, kestrels, sparrowhawks and marsh harriers flying in circles above the mountain slopes.
    [Show full text]