CSS Preprocessing: Tools and Automation Techniques | HTML
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reflection, Zips, and Generalised Casts Abstract
Scrap More Boilerplate: Reflection, Zips, and Generalised Casts Ralf L a¨mmel Vrije Universiteit & CWI, Amsterdam Abstract Writing boilerplate code is a royal pain. Generic programming promises to alleviate this pain b y allowing the programmer to write a generic #recipe$ for boilerplate code, and use that recipe in many places. In earlier work we introduced the #Scrap y our boilerplate$ approach to generic p rogramming, which exploits Haskell%s exist- ing type-class mechanism to support generic transformations and queries. This paper completes the picture. We add a few extra #introspec- tive$ or #reflective$ facilities, that together support a r ich variety of serialisation and de-serialisation. We also show how to perform generic #zips$, which at first appear to be somewhat tricky in our framework. Lastly, we generalise the ability to over-ride a generic function with a type-specific one. All of this can be supported in Haskell with independently-useful extensions: higher-rank types and type-safe cast. The GHC imple- mentation of Haskell readily derives the required type classes for user-defined data types. Categories and Subject Descriptors D.2. 13 [Software Engineering]: Reusable Software; D.1.1 [Programming Techniques]: Functional Programming; D.3. 1 [Programming Languages]: Formal Definitions and Theory General Terms Design, Languages Keywords Generic p rogramming, reflection, zippers, type cast 1 Introduction It is common to find that large slabs of a program consist of #boil- erplate$ code, which conceals b y its b ulk a smaller amount of #in- teresting$ code. So-called generic p rogramming techniques allow Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or c ommercial advantage and that copies b ear this notice and the full citation on the first page. -
Template Meta-Programming for Haskell
Template Meta-programming for Haskell Tim Sheard Simon Peyton Jones OGI School of Science & Engineering Microsoft Research Ltd Oregon Health & Science University [email protected] [email protected] Abstract C++, albeit imperfectly... [It is] obvious to functional programmers what the committee did not realize until We propose a new extension to the purely functional programming later: [C++] templates are a functional language evalu- language Haskell that supports compile-time meta-programming. ated at compile time...” [12]. The purpose of the system is to support the algorithmic construction of programs at compile-time. Robinson’s provocative paper identifies C++ templates as a ma- The ability to generate code at compile time allows the program- jor, albeit accidental, success of the C++ language design. De- mer to implement such features as polytypic programs, macro-like spite the extremely baroque nature of template meta-programming, expansion, user directed optimization (such as inlining), and the templates are used in fascinating ways that extend beyond the generation of supporting data structures and functions from exist- wildest dreams of the language designers [1]. Perhaps surprisingly, ing data structures and functions. in view of the fact that templates are functional programs, func- tional programmers have been slow to capitalize on C++’s success; Our design is being implemented in the Glasgow Haskell Compiler, while there has been a recent flurry of work on run-time meta- ghc. programming, much less has been done on compile-time meta- This version is very slightly modified from the Haskell Workshop programming. The Scheme community is a notable exception, as 2002 publication; a couple of typographical errors are fixed in Fig- we discuss in Section 10. -
Style Sheets CSS
P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36 CHAPTER 3 Style Sheets CSS As we have learned, HTML markup can be used to indicate both the semantics of a document (e.g., which parts are elements of lists) and its presentation (e.g., which words should be italicized). However, as noted in the previous chapter, it is advisable to use markup predominantly for indicating the semantics of a document and to use a separate mechanism to determine exactly how information contained in the document should be presented. Style sheets provide such a mechanism. This chapter presents basic information about Cascading Style Sheets (CSS), a style sheet technology designed to work with HTML and XML documents. CSS provides a great deal of control over the presentation of a document, but to exercise this control intelligently requires an understanding of a number of features. And, while you as a software developer may not be particularly interested in getting your web page to look “just so,” many web software developers are members of teams that include professional web page designers, some of whom may have precise presentation require- ments. Thus, while I have tried to focus on what I consider key features of CSS, I’ve also included a number of finer points that I believe may be more useful to you in the future than you might expect on first reading. While CSS is used extensively to style HTML documents, it is not the only style- related web technology. -
Metaprogramming Concepts of Programming Languages
Metaprogramming Concepts of Programming Languages Alexander Schramm Institut für Softwaretechnik und Programmiersprachen 2. November 2015 A. Schramm 2. November 2015 1/39 Table of Contents Introduction Runtime Reflection in Java Runtime Metaprogramming in Ruby C++ Templates Haskell Templates Lisp Macros Conclusion A. Schramm 2. November 2015 2/39 Outline Introduction Runtime Reflection in Java Runtime Metaprogramming in Ruby C++ Templates Haskell Templates Lisp Macros Conclusion A. Schramm 2. November 2015 3/39 Motivation Which issues do we want to tackle? I Avoid writing boilerplate code I Write code that shows our intention I Expand the syntax of languages I Write type independent code in strongly typed languages A. Schramm 2. November 2015 4/39 What is Metaprogramming Definition: Metaprogramming Metaprograming describes different ways to generate and manipulate code Differentations: I Compile time vs. runtime metaprogramming I Domain language vs. host language A. Schramm 2. November 2015 5/39 Differentations of Metaprograms Compile time Metaprogramming Ways to manipulate or generate code during compilation, e.g: Macros, Templates Runtime Metaprogramming Ways to manipulate or generate code, while it is executed, e.g: dynamic methods, Reflections A. Schramm 2. November 2015 6/39 Differentations of Metaprograms Domain Language The Programming Language, in which the metaprogram is written Host Language The Programming Language of the generated code I Can be different (YACC, Compilers) I Domain language can be a subset of the host language (C++ Templates) I Domain language can be an integral part of the host language (Ruby) A. Schramm 2. November 2015 7/39 Outline Introduction Runtime Reflection in Java Runtime Metaprogramming in Ruby C++ Templates Haskell Templates Lisp Macros Conclusion A. -
Paul M. Graffam Email: [email protected] ● Website: Paulgraffix.Com
Paul Graffam Resume Paul M. Graffam Email: [email protected] ● Website: paulgraffix.com Professional Profile ● 7+ years of work experience in programming and 4 years in agency. ● Ability to work collaboratively with colleagues across disciplines. Enthusiastic, positive attitude and self-starter. ● Eager to meet challenges and quickly assimilate newest technologies, skills, concepts, and ideas. ● Self-motivated and detail orientated with strong ability to multitask. ● Superior computer skills. Proficiency with many applications as well as hand coding with a variety of IDEs. Highly capable with either PC or Mac. ● Creative troubleshooter/problem-solver who works hard and loves a challenge. ● Bilingual: fluent in both English and Spanish. Skills Front End Back End Other ● XHTML & HTML5 ● PHP ● Windows ● CSS3 & CSS4 (postCSS) ● Python ● Mac ● Javascript (ES5 & ES6) ● Ruby & Rails/ERB ● Linux ● jQuery ● VB/C# .NET ● Adobe CS ● LESS/SASS/Stylus ● SQL/NoSQL (mongoDB) ● Visual Studio ● Grunt/Gulp/Browserify ● XML & XSL ● Sublime Text/Atom ● Webpack ● Apache/Google App Engine ● WebStorm ● React/Angular/Backbone ● Heroku/Firebase/Azure/AWS ● Git/SVN ● Bower/NPM ● Node.js & Express ● SQL Server ● Bootstrap/Foundation ● CMSes (Craft, Contentful, ● Unity3D ● Handlerbars/Moustache Drupal, Sharepoint, Wordpress) ● Bash/SH ● Jade/HAML ● Social APIs ● Premiere/Final Cut ● WebGL/Three.js Pro Work Experience Interactive Developer for Stinkdigital - Dumbo, NY Oct ‘15 – Jul ‘16 ● Immersed into a massive project for Spotify’s Year in Music on the first day, working on both the front and back end. Consisting of a responsive WebGL experience via pixi.js and tied to Spotify’s API, translated into 35 languages all managed by a custom CMS. Received multiple Webbys, FWA and Awwwards winners. -
Expressive and Strongly Type-Safe Code Generation
Expressive and Strongly Type-Safe Code Generation Thomas Winant, Jesper Cockx, and Dominique Devriese imec-DistriNet, KU Leuven [email protected] Meta-programs are useful to avoid writing boilerplate code, for polytypic programming, etc. However, when a meta-program passes the type checker, it does not necessarily mean that the programs it generates will be free of type errors, only that generating object programs will proceed without type errors. For instance, this well-typed Template Haskell [5] meta-program generates the ill-typed object program not 'X'. notX :: Q Exp notX = [j not 'X' j] Fortunately, Template Haskell will type-check the generated program after generation, and detect the type error. We call such meta-programming systems weakly type-safe. Even though weakly type-safe meta-programming suffices for guaranteeing that the resulting program is type-safe, it has important downsides. Type errors in the generated code are presented to the application developer, who may simply be a user of the meta-program. If the meta-program is part of a library, the developer has little recourse other than contacting the meta-program authors about the bug in their code. Moreover, composing weakly type-safe meta-programs can be brittle because the type of generated programs is not specified in a machine-checked way. We are interested in what we call strongly type-safe meta-programming, which offers a stronger guarantee: when a meta-program is strongly type-safe, all generated programs are guaranteed to be type-safe too. As such, bugs in meta-programs are detected as early as possible. -
Sample Webpage Using Html
Sample Webpage Using Html If necrophiliac or protective Paul usually incenses his gibbons jettison shoreward or hedge quirkily and nutritionally, how schizogonous is Skelly? Nealon never calumniates any Beelzebub amounts hydraulically, is Zacherie heterotypic and other enough? Symbolical and rhinocerotic Duffie never slags languishingly when Wendell dunt his etherealisation. Dup is using html documents have no one troubling me how about html tags you can be Example HTML Document. HTML Hyperlink Codes. Trydo Creative Agency and Portfolio Bootstrap Template. How to use a webpage using a particular group multiple selectors. Corporation for html commands and percentage value pairs within the webpage document to push it is to the internet, like the only. Just add a webpage using two things, java servlets and expand your webpages are a blog and its incredible portfolio. Create various simple contact form in HTML and CSS by some our HTML contact form code tutorial However remind you margin to build your contact-us page create a jiffy. W3CSS Templates. 13 cool tricks for HTML Freelancercom. Appco has a good understanding how to amend the first step is all about getting familiar with pictures and implement content or anything else that focuses your studies! Believe it or addict that is all i need to create a basic web page letter of hero it's foreign to. HTML Tags Chart source wwwweb-sourcenet Tag Name Code Example Browser View. Another advantage exactly as a little more time and creativity makes a no one above, sierra provides all the information is it is it. You wonder look its the underlying HTML of any document by clicking on View and then select Source in Netscape You first use thrift to learn a new tags Using. -
Webpack Cheatsheet
12/25/18, 655 PM Page 1 of 1 ! Edit Webpack cheatsheet — Proudly sponsored by — Airbrake.io Full-stack error tracking & analytics for Python developers. Try it Free! ethical ads via CodeFund This is a very basic “getting started with Webpack” guide for use with Webpack v3. This doesnʼt cover all features, but it should get you started in understanding the config file format. Basic config webpack.config.js module.exports = { context: __dirname, entry: 'src/app.js', output: { path: __dirname + '/public', filename: 'app.js' } } Terminal npm install --save-dev webpack webpack build webpack -- -p build production webpack -- --watch compile continuously This compiles src/app.js into public/app.js. (Note: you may need to use ./node_modules/.bin/webpack as a command if youʼre not invoking Webpack via npm scripts.) Multiple files webpack.config.js module.exports = { entry: { app: 'src/app.js', vendor: 'src/vendor.js' }, output: { path: __dirname + '/public', filename: '[name].js' } } This creates app.js and vendor.js. # Loaders Babel Terminal npm install --save-dev \ babel-loader \ babel-preset-env \ babel-preset-react webpack.config.js module.exports = { ··· module: { rules: [ { test: /\.js$/, exclude: /node_modules/, use: [ { loader: 'babel-loader' } ] } ] } } .babelrc { "presets": [ "env", "react" ] } Adds support for Babel. CSS Terminal npm install --save-dev \ css-loader \ style-loader webpack.config.js module.exports = { ··· module: { rules: [ { test: /\.css$/, exclude: /node_modules/, use: [ { loader: 'style-loader' }, { loader: 'css-loader' -
Open Source Licenses Visionize Lab Suite the Software of Visionize Lab Suite Contains Open Source Licenses Included in This Document
Open Source Licenses VisioNize Lab Suite The software of VisioNize Lab Suite contains open source licenses included in this document. Package name License Website/Repository Publisher/Author @angular-devkit/[email protected] MIT https://github.com/angular/angular-cli Angular Authors @angular-devkit/[email protected] MIT https://github.com/angular/angular-cli Angular Authors @angular-devkit/build-optimiz- MIT https://github.com/angular/angular-cli Angular Authors [email protected] @angular-devkit/build-web- MIT https://github.com/angular/angular-cli Angular Authors [email protected] @angular-devkit/[email protected] MIT https://github.com/angular/angular-cli Angular Authors @angular-devkit/[email protected] MIT https://github.com/angular/angular-cli Angular Authors @angular/[email protected] MIT https://github.com/angular/angular angular @angular/[email protected] MIT https://github.com/angular/angular-cli Angular Authors @angular/[email protected] MIT https://github.com/angular/angular angular @angular/[email protected] MIT https://github.com/angular/angular @angular/[email protected] MIT https://github.com/angular/angular angular @angular/[email protected] MIT https://github.com/angular/angular angular @angular/[email protected] MIT https://github.com/angular/angular angular @angular/[email protected] MIT https://github.com/angular/angular angular @angular/platform-browser-dynam- MIT https://github.com/angular/angular angular [email protected] @angular/[email protected] MIT https://github.com/angular/angular angular @angular/[email protected] MIT https://github.com/angular/angular angular -
Advanced-Java.Pdf
Advanced java i Advanced java Advanced java ii Contents 1 How to create and destroy objects 1 1.1 Introduction......................................................1 1.2 Instance Construction.................................................1 1.2.1 Implicit (Generated) Constructor.......................................1 1.2.2 Constructors without Arguments.......................................1 1.2.3 Constructors with Arguments........................................2 1.2.4 Initialization Blocks.............................................2 1.2.5 Construction guarantee............................................3 1.2.6 Visibility...................................................4 1.2.7 Garbage collection..............................................4 1.2.8 Finalizers...................................................5 1.3 Static initialization..................................................5 1.4 Construction Patterns.................................................5 1.4.1 Singleton...................................................6 1.4.2 Utility/Helper Class.............................................7 1.4.3 Factory....................................................7 1.4.4 Dependency Injection............................................8 1.5 Download the Source Code..............................................9 1.6 What’s next......................................................9 2 Using methods common to all objects 10 2.1 Introduction...................................................... 10 2.2 Methods equals and hashCode........................................... -
Automated Large-Scale Multi-Language Dynamic Program
Automated Large-Scale Multi-Language Dynamic Program Analysis in the Wild Alex Villazón Universidad Privada Boliviana, Bolivia [email protected] Haiyang Sun Università della Svizzera italiana, Switzerland [email protected] Andrea Rosà Università della Svizzera italiana, Switzerland [email protected] Eduardo Rosales Università della Svizzera italiana, Switzerland [email protected] Daniele Bonetta Oracle Labs, United States [email protected] Isabella Defilippis Universidad Privada Boliviana, Bolivia isabelladefi[email protected] Sergio Oporto Universidad Privada Boliviana, Bolivia [email protected] Walter Binder Università della Svizzera italiana, Switzerland [email protected] Abstract Today’s availability of open-source software is overwhelming, and the number of free, ready-to-use software components in package repositories such as NPM, Maven, or SBT is growing exponentially. In this paper we address two straightforward yet important research questions: would it be possible to develop a tool to automate dynamic program analysis on public open-source software at a large scale? Moreover, and perhaps more importantly, would such a tool be useful? We answer the first question by introducing NAB, a tool to execute large-scale dynamic program analysis of open-source software in the wild. NAB is fully-automatic, language-agnostic, and can scale dynamic program analyses on open-source software up to thousands of projects hosted in code repositories. Using NAB, we analyzed more than 56K Node.js, Java, and Scala projects. Using the data collected by NAB we were able to (1) study the adoption of new language constructs such as JavaScript Promises, (2) collect statistics about bad coding practices in JavaScript, and (3) identify Java and Scala task-parallel workloads suitable for inclusion in a domain-specific benchmark suite. -
Model Oriented Programming: Bridging the Code-Model Divide
Model Oriented Programming: Bridging the Code-Model Divide Omar Badreddin Timothy C. Lethbridge School of Electrical Engineering and Computer Science School of Electrical Engineering and Computer Science University of Ottawa University of Ottawa Ottawa, Canada Ottawa, Canada [email protected] [email protected] Abstract—Model Driven Engineering proposes the use of models as the main development artifacts. This methodology II. STATE OF THE ART MODELING PRACTICES involves generating code from models and then perhaps adding Modeling enables developers to work at a higher level of some details to the generated code. Frequently, it is required to abstraction. This view seems to be well accepted in both also reverse-engineer code to generate models. Despite the wide academia and industry. However, the overwhelming majority acceptance of modeling benefits, the use of Model Driven Engineering practices remains limited. We present model of developers still treat source code as their primary work oriented programming as a new paradigm to reduce the ever- medium [2]. Software engineers may draw diagrams when present tension between model-centric and code-centric explaining concepts in design meetings, and include some of development styles. The core of this approach is to add UML them in design documents, but relatively few use models to abstractions such as associations and state machines directly into actually drive development effort. Some communities, like the a high-level programming language code. In this approach, model open source developers, remain entirely code-centric. diagrams become just another abstract view of the code. The need for reverse engineering is eliminated, since everything in the A.