Ghent University Faculty of Sciences, Department of Biology Research group of Protistology and Aquatic Ecology

Biogeography, species diversity and stress tolerance of aquatic and terrestrial

Š›˜•’—Žȱ˜žě›ŽŠž

‘Žœ’œȱœž‹–’ĴŽȱ’—ȱ™Š›’Š•ȱž•ę••–Ž—ȱ˜ȱ Promotor: Prof. Dr. Wim Vyverman the requirements for the degree of Doctor in Co-promotor: Prof. Dr. Koen Sabbe Sciences - Biology Exam Committee

Ž–‹Ž›œȱ˜ȱ‘Žȱ›ŽŠ’—ȱŒ˜––’ĴŽŽ Prof. Jens Boenigk (University of Duisburg-Essen, Germany) Dr. Eileen J. Cox (Natural History Museum, London, UK) Dr. Frederik Leliaert (Ghent University)

Ž–‹Ž›œȱ˜ȱ‘ŽȱŽ¡Š–’—Š’˜—ȱŒ˜––’ĴŽŽ Prof. Dr. Luc Lens (Chairman, Ghent University) Prof. Dr. Wim Vyverman (Promotor, Ghent University) Prof. Dr. Koen Sabbe (Co-promotor, Ghent University) Prof. Dr. Jens Boenigk (University of Duisburg-Essen, Germany) Dr. Eileen J. Cox (Natural History Museum, London, UK) Dr. Frederik Leliaert (Ghent University) Dr. Bart Van de Vijver (National Botanic Garden of Belgium) Dr. Elie Verleyen (Ghent University)

2011 Universiteit Gent In science we resemble children collecting a few pebbles at the beach of knowledge, while the wide ocean of the unknown unfolds itself in front of us. Isaac Newton

Contents

Chapter 1 General introduction 1

PART 1 PATTERNS IN DISTRIBUTION

Poles apart: Interhemispheric contrasts in diatom diversity driven Chapter 2 by climate and tectonics 29

Distance decay and species turnover in terrestrial and aquatic Chapter 3 diatom communities across multiple spatial scales in three sub- 45 Antarctic islands

PART 2 SPECIATION IN TIME AND SPACE

Time-calibrated multi-gene phylogeny of the diatom genus Chapter 4 73

Phylogenetic signals in the valve and plastid morphology of the Chapter 5 diatom genus Pinnularia 103

Molecular evidence for the existence of distinct Antarctic lineages Chapter 6 in the cosmopolitan terrestrial diatoms Pinnularia borealis and 149 Hantzschia amphioxys

PART 3 TOLERANCE LEVELS FOR DISPERSAL-RELATED STRESSES

Tolerance of benthic diatoms from temperate aquatic and Chapter 7 terrestrial habitats to experimental desiccation and temperature 177 stress

Resistance of freshwater benthic diatom resting stages Chapter 8 to experimental desiccation and freezing depends on the 205 temporality of their habitat

Chapter 9 General discussion 227

References 241

Summary 271

Samenvatting 276

Acknowledgments 283

1. General introduction

1.1 Biogeography 1.1.1 General biogeographical processes Biogeography studies the geographical distribution of species over space and time. While before the 20th century biogeography was part ˜ȱ—Šž›Š•ȱ‘’œ˜›¢ȱŠ—ȱ–Š’—•¢ȱŠȱŽœŒ›’™’ŸŽȱ›ŽœŽŠ›Œ‘ȱęȱŽ•ȱŠœœŽœœ’—ȱ “where” and “when” organisms live and had lived (e.g. Linnaeus, 1781; de Candolle, 1820; Wallace, 1876), it changed throughout the 20th century into a more explanatory research area, trying to answer the questions “why” a particular organism lives or had lived at a particular place, and “why not”. This change was stimulated by ‘Žȱ ęȱ—’—œȱ ‘Šȱ œ™ŽŒ’Žœȱ ›’Œ‘—Žœœȱ Œ˜ž•ȱ ‹Žȱ ™›Ž’ŒŽȱ ‹¢ȱ e.g. area, immigration and extinction rate (Arrhenius, 1921; MacArthur & Wilson, 1963) and the discovery of plate tectonics (Wegener, 1924), supplying explanatory mechanisms for the observed historical and ™›ŽœŽ—ȱ’œ›’‹ž’˜—ȱ™ŠĴȱŽ›—œȱ˜ȱ˜›Š—’œ–œǯȱ’—ŒŽȱ‘Ž—ǰȱ–žŒ‘ȱ‘Šœȱ‹ŽŽ—ȱ done to further understand the processes underlying biogeographical ™ŠĴȱŽ›—œǯȱ’–™•’¢’—ȱ‘Žȱ ‘˜•Žȱ™›˜ŒŽœœǰȱ‘Žȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ›Š—Žȱ of a species starts with its formation in a suitable habitat in a certain region, dispersal into and eventually colonization of new regions resulting in an expansion of its biogeographical range, further ›Š—Žȱ Œ˜—›ŠŒ’˜—œȱ Š—ȱ Ž¡™Š—œ’˜—œȱ ž—Ž›ȱ ’—ĚȱžŽ—ŒŽȱ ˜ȱ •Š›ŽȬœŒŠ•Žȱ environmental changes and biotic interactions, and ultimately ends with the extinction of the species or further evolution and œ™ŽŒ’Š’˜—ǯȱ ȱ’œȱŽ—Ž›Š••¢ȱŠŒŒŽ™Žȱ‘Šȱ ˜ȱ›˜ž™œȱ˜ȱŠŒ˜›œȱŠěȱŽŒȱ the distribution of an organism, namely historical factors and local environmental factors (Lomolino, 2010).

Historical factors ’œ˜›’ŒŠ•ȱ ŠŒ˜›œȱ ’—Œ•žŽȱ ˜—ȱ ˜—Žȱ ‘Š—ȱ ‘Žȱ œ™Š’Š•ȱ Œ˜—ęȱž›Š’˜—ȱ ˜ȱœž’Š‹•Žȱ‘Š‹’Šȱ™ŠŒ‘Žœȱ’—ȱŠȱ›Ž’˜—ȱǻ’—ĚȱžŽ—Œ’—ȱ’œ™Ž›œŠ•ȱ›ŠŽœȱ among these patches), the geographical position and isolation of regions and larger geographical areas, and historical changes in

General introduction 1 ‘ŽœŽȱŒ˜—ęȱž›Š’˜—œȱžŽȱ˜ȱŒ•’–ŠŽȱŒ‘Š—Žȱǻ’—ĚȱžŽ—Œ’—ȱ•ŠŒ’Š’˜—ȱ and sea level changes) and plate tectonics. On the other hand, historical factors also include features of the species itself such as its area of origin, its evolutionary background and the resulting phylogenetic constraints on the characteristics of the species (stress tolerance levels, adaptive and competitive potential, environmental niche, etc.Ǽȱ ‘’Œ‘ȱ ’••ȱŠěȱŽŒȱ’œȱ’œ™Ž›œŠ•ȱŠ—ȱŒ˜•˜—’£Š’˜—ȱŠ‹’•’’Žœǯȱ The dispersal ability of a species depends on a whole range of factors, including its morphological and physiological characteristics (such as active locomotion or features enhancing passive motility, dormancy and tolerance levels for adverse conditions during ’œ™Ž›œŠ•Ǽǰȱ Š—ȱ ‘Žȱ œ™Š’Š•ȱ Œ˜—ęȱž›Š’˜—ȱ Š—ȱ Œ‘Š›ŠŒŽ›’œ’Œœȱ ˜ȱ ‘Žȱ medium or habitat they have to bridge during dispersal (physical barriers, heterogeneity, environmental factors, biotic interactions). The colonization ability of a species depends on its competitive strength, niche breadth and adaptive abilities. The combined action ˜ȱ‘Žȱ’—›’—œ’ŒȱŠ—ȱŽ¡›’—œ’Œȱ‘’œ˜›’ŒŠ•ȱŠŒ˜›œȱ ’••ȱž•’–ŠŽ•¢ȱŠěȱŽŒȱ the dispersal capacities and environmental niche of the species and thus its realized biogeographical range, but can also result in subsequent speciation or in extinction (Coyne & Orr, 2004).

Local environmental factors Local environmental factors comprise the present biotic and abiotic conditions in a habitat patch, including positive and negative interactions with other organisms and the chemical characteristics ˜ȱ‘ŽȱŽ—Ÿ’›˜—–Ž—ǯȱŽ•ŽŒ’˜—ȱ’–™˜œŽȱ‹¢ȱ‘ŽœŽȱ‹’˜’ŒȱŠ—ȱŠ‹’˜’Œȱ factors in a local patch is called “species sorting” (Leibold et al., 2004) and can result in the local extinction or unsuccessful colonization of species for which the habitat patch is not suitable. The interplay between local environmental factors (species œ˜›’—ǼȱŠ—ȱ‘Žȱœ™Š’Š•ȱŒ˜—ęȱž›Š’˜—ȱ˜ȱ‘Š‹’Šȱ™ŠŒ‘Žœȱ˜—ȱœ™ŽŒ’ŽœȂȱ occurrences and community structure is explicitly incorporated in the metacommunity concept (Leibold et al., 2004). A metacommunity ŒŠ—ȱ ‹Žȱ Žęȱ—Žȱ Šœȱ Šȱ œŽȱ ˜ȱ •˜ŒŠ•ȱ Œ˜––ž—’’Žœȱ ‘Šȱ Š›Žȱ •’—”Žȱ ‹¢ȱ dispersal of multiple potentially interacting species, which are available in the regional species pool. Using this concept, several studies have recently tried to estimate the relative contribution of •˜ŒŠ•ȱŽ—Ÿ’›˜—–Ž—Š•ȱŠŒ˜›œȱŠ—ȱ‘Žȱœ™Š’Š•ȱŒ˜—ęȱž›Š’˜—ȱ˜ȱ‘Š‹’Šȱ patches in determining contemporary local community composition, over a range of spatial scales and organism groups (e.g. Potapova &

2 General introduction ‘Š›•ŽœǰȱŘŖŖŘDzȱ˜ĴȱŽ—’ŽǰȱŘŖŖśDzȱ£’—Šȱet al.ǰȱŘŖŖśDzȱŠ—ȱŽ›ȱ žŒ‘ȱet al., 2007).

Speciation and extinction ™ŽŒ’Š’˜—ȱŠ—ȱŽ¡’—Œ’˜—ȱŠ›Žȱ ˜ȱ•ŽŠ’—ȱ™›˜ŒŽœœŽœȱ’—ȱ‹’˜Ž˜›Š™‘¢ǯȱ ™ŽŒ’Š’˜—ȱ’œȱ‘ŽȱŽŸ˜•ž’˜—ȱ˜ȱŠȱ’œ’—ŒȱŽ—Ž’Œȱ•’—ŽŠŽȱǻŽȱžŽ’›˜£ǰȱ ŘŖŖŝǼǰȱŠ—ȱ˜ŒŒž›œȱ ‘Ž—ȱŽ—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱ™˜™ž•Š’˜—œȱ˜ȱŠȱœ’—•Žȱ species is reduced or prevented by a geographical, reproductive and/or ecological barrier (Cook, 1906, 1908; Coyne & Orr, 2004). The geographical distance between populations or the occurrence of a physical barrier (any unsuitable habitat type such as oceans, continents, rivers or mountains) can reduce dispersal and thus gene Ěȱ˜ ȱ‹Ž ŽŽ—ȱ™˜™ž•Š’˜—œǯȱ‘Ž—ȱŽ—ŽȱĚȱ˜ ȱ’œȱœžĜȱȱŒ’Ž—•¢ȱ›ŽžŒŽǰȱ random genetic drift and/or ecological will occur and eventually result in the formation of genetically separated lineages, which will become reproductive isolated over time (allopatric and ™Ž›’™Š›’Œȱœ™ŽŒ’Š’˜—ǰȱ˜¢—Žȱǭȱ››ǰȱŘŖŖŚǼǯȱŽžŒ’˜—ȱ˜ȱŽ—ŽȱĚȱ˜ ȱ can also occur inside a single area when populations get ecologically Š—ȱ›Ž™›˜žŒ’ŸŽ•¢ȱœŽ™Š›ŠŽǰȱ›Žœž•’—ȱ’—ȱŠȱ‹Š››’Ž›ȱ˜›ȱŽ—ŽȱĚȱ˜ ȱ ’—Ž™Ž—Ž—ȱ˜ȱŽ˜›Š™‘¢ǰȱ ’‘ȱœž‹œŽšžŽ—ȱŽ—Ž’Œȱ’ěȱŽ›Ž—’Š’˜—ȱ (sympatric speciation, Cook, 1908; Coyne & Orr, 2004). Because of the crucial position of dispersal in , which is supposed to be the main mode of speciation (Coyne and Orr, 2004), ‘Žȱ•ŽŸŽ•ȱ˜ȱ’œ™Ž›œŠ•ȱŒ˜ž•ȱŠ•œ˜ȱŠěȱŽŒȱ˜Š•ȱœ™ŽŒ’Žœȱ’ŸŽ›œ’¢ǯȱŠ”Ž—ȱ ˜Ž‘Ž›ǰȱ’œ™Ž›œŠ•ȱ‘ŠœȱŠ—ȱ’–™˜›Š—ȱ’—ĚȱžŽ—ŒŽȱ˜—ȱŠȱ•Š›Žȱ›Š—Žȱ˜ȱ processes including biogeography (Macarthur & Wilson, 1963), population dynamics (Johst & Brandl, 1997) and genetics (Hanski, 1999), metacommunity dynamics (Leibold et al., 2004), and speciation (Coyne & Orr, 2004).

1.1.2 Microbial biogeography Knowledge of the general processes determining the biogeographical range of species mainly comes from studies on macroorganisms (see for example the classic studies compiled in Lomolino et al., 2004). For microorganisms, much less is known on their biogeographies, mainly because their small sizes require the use of microscopes, culturing or molecular techniques to detect them and because it was Šœœž–Žȱ ‘Šȱ –’Œ›˜˜›Š—’œ–œȱ ˜ž•—Ȃȱ œ‘˜ ȱ Šȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ structure anyway (Martiny et al., 2006). The combination of high local population abundances (and thus a higher chance to get dispersed) and small sizes (and thus low weight, increasing the

General introduction 3 chance and distance of passive transport) was believed to increase the dispersal probabilities of microorganisms to such an extent that no geographical barriers would exist and only species sorting would ŠěȱŽŒȱ‘Ž’›ȱ’œ›’‹ž’˜—ȱǻŽ’“Ž›’—Œ”ǰȱŗşŗřDzȱŠŠœȬŽŒ”’—ǰȱŗşřŚǼǯ ŽŠ— ‘’•Žǰȱ ‘Žȱ ›’œŽȱ ˜ȱ œŽŸŽ›Š•ȱ ŽŒ‘—˜•˜’Žœȱ ’—Œ•ž’—ȱ ȱ œŽšžŽ—Œ’—ȱ Š—ȱ Ž•ŽŒ›˜—ȱ –’Œ›˜œŒ˜™¢ȱ ‘Šœȱ Š••˜ Žȱ ŽĴȱ’—ȱ Šȱ ‹ŽĴȱŽ›ȱ understanding of the ecology and evolution of microorganisms. ŠœŽȱ ˜—ȱ Ž—Ž’Œȱ ŠŠǰȱ œž’Žœȱ ˜ȱ ›ŽŸŽŠ•ȱ Šȱ Ž˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—ȱ in several eukaryotic (e.g. Fawley et al.ǰȱ ŘŖŖŚDzȱ ›ŽŽ—ȱ et al., 2004; Pringle et al.ǰȱ ŘŖŖśDzȱ ˜Ž—’”ȱ et al., 2006; Taylor et al., 2006; Evans et al., 2009; Boo et al., 2010; Casteleyn et al., 2010) and prokaryotic microorganisms (e.g.ȱ‘˜ȱǭȱ’Ž“ŽǰȱŘŖŖŖDzȱŠ™”Žȱet al., 2003; Whitaker et al., 2003), while other species turn out to have cosmopolitan distributions (e.g.ȱ •˜Œ”—Ž›ȱ et al., 2000; Brandao et al., 2002; Ward ǭȱȂ–ž••Š—ǰȱŘŖŖŘDzȱŒ‘ŽŒ”Ž—‹ŠŒ‘ et al.ǰȱŘŖŖśDzȱ˜˜ȱet al., 2010). This indicates that microbial biogeographies are very likely shaped by the same processes as assessed for macroorganisms (Martiny et al., 2006), being history and dispersal limitation, next to species sorting.

Problems related to studying microbial biogeography Besides the geographical component, these recent studies also ‘’‘•’‘ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ ŠŒ˜›œȱ ‘Šȱ ™›ŽŸŽ—Žȱ ‘Žȱ ŽŽŒ’˜—ȱ ˜ȱ ‘ŽœŽȱ Ž˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—œȱ Š—ȱ ‘ŠŸŽȱ ‹’ŠœŽȱ ˜ž›ȱ ’—Ž›™›ŽŠ’˜—ȱ ˜ȱ –’Œ›˜‹’Š•ȱ‹’˜Ž˜›Š™‘¢ȱ˜ Š›œȱŠȱ™ŠĴȱŽ›—ȱž—’šžŽ•¢ȱŽŽ›–’—Žȱ‹¢ȱ species sorting. First and most importantly, the taxonomic resolution used in microbial studies is usually much lower compared to the studies on macroorganisms (Martiny et al., 2006). Indeed, leading Ž—Ž’Œȱ–Š›”Ž›œȱ’—ȱ–’Œ›˜‹’Š•ȱŽ˜›Š™‘’Œȱœž’ŽœȱŠ›Žȱȱ›ȱǻe.g. Fawley et al., 2004; Boenigk et al.ǰȱ ŘŖŖŜǼȱ ˜›ȱ ‘Žȱ ŽŸŽ—ȱ Œ˜Š›œŽ›ȱ ȱ ęȱ—Ž›™›’—ȱ ŽŒ‘—’šžŽœȱ ˜—ȱ ‘ŽœŽȱ –Š›”Ž›œȱ ǻe.g.ȱ ›ŽŽ—ȱ et al., 2004), ‘’•Žȱ’ȱ‘Šœȱ‹ŽŽ—ȱ›Ž™˜›Žȱ‘Šȱ˜›ȱŽ¡Š–™•Žȱ˜›ȱ’Š˜–œȱȱ›ȱ’œȱ too conservative to distinguish closely related species (Behnke et al., ŘŖŖŚǼǯȱž›‘Ž›–˜›Žǰȱ’Ž—’ęȱŒŠ’˜—ȱ˜ȱœ™ŽŒ’Žœȱ‹ŠœŽȱ˜—ȱ–˜›™‘˜•˜’ŒŠ•ȱ characteristics is commonly used in eukaryotic microorganisms. However, many studies have reported within single morphospecies the presence of distinct genetic lineages or species without or with ˜—•¢ȱŸŽ›¢ȱœž‹•Žȱ–˜›™‘˜•˜’ŒŠ•ȱ’ěȱŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱ‘Ž–ȱǻŒ›¢™’Œȱ and pseudocryptic species, respectively; e.g.ȱ •Š™ŽŠȱ et al., 2006; Beszteri et al.ǰȱ ŘŖŖŝDzȱ ’–˜—ȱ et al., 2008). The oldest lineages of the ĚȱŠŽ••ŠŽȱ›ŽŽ—ȱŠ•Š•ȱ–˜›™‘˜œ™ŽŒ’ŽœȱMicromonas pusilla (Butcher) Š—˜—ȱǭȱŠ›”ŽȱŠ™™ŽŠ›Žȱ˜ȱ‘ŠŸŽȱŠ—ȱŠŽȱ˜ȱ—˜ȱ•Žœœȱ‘Š—ȱŜśȱ–’••’˜—ȱ

4 General introduction ¢ŽŠ›œȱǻ•Š™ŽŠȱet al., 2006). This further biases our understanding of microbial biogeography. ŽŒ˜—•¢ǰȱ ‘Ž›Žȱ ’œȱ Šȱ •ŠŒ”ȱ ˜ȱ ”—˜ •ŽŽȱ ˜—ȱ ‘Žȱ ’œ™Ž›œŠ•ȱ Š‹’•’’Žœȱ of microorganisms (Martiny et al., 2006). The dispersal rates and distances of an organism depend on one hand on intrinsic factors such as the number of cells dispersing (and thus population sizes), their morphology (weight and special structures promoting transport) and their physiological tolerance to the adverse conditions encountered during transport and colonization; and ˜—ȱ ‘Žȱ ˜‘Ž›ȱ ‘Š—ȱ ˜—ȱ ‘Š‹’ŠȬ›Ž•ŠŽȱ ŠŒ˜›œȱ œžŒ‘ȱ Šœȱ ‘Žȱ Ž›ŽŽȱ ˜ȱ ‘Š‹’Šȱ ›Š–Ž—Š’˜—ȱ ‘’Œ‘ȱ ’••ȱ ’—ĚȱžŽ—ŒŽȱ ‘Žȱ Œ‘Š—ŒŽȱ ˜ȱ ‹Žȱ picked up by a dispersal vector and the chance to land in a suitable habitat patch. Apart from that, successful dispersal also depends on organism characteristics allowing it to compete with the local communities and populations already established in a patch (such as competitive ability, dormancy, adaptive potential). Of all these ŠŒ˜›œǰȱ ‘˜ ŽŸŽ›ǰȱ •’Ĵȱ•Žȱ ’œȱ ”—˜ —ȱ ˜›ȱ –’Œ›˜˜›Š—’œ–œǯȱ ’›œǰȱ ‘’•Žȱ microorganisms certainly can have extremely large population sizes, this is most probably not the case for all microbial species (see ˜›ȱŽ¡Š–™•Žȱ ˜—ŽœȱǭȱŽ——˜—ǰȱŘŖŗŖǼǯȱŽŒ˜—•¢ǰȱ’ȱ’œȱ—˜ȱŒŽ›Š’—ȱ‘Šȱ the dispersal probabilities of all microorganisms are high enough to overcome genetic divergence between populations (Martiny et al., 2006). Many bacteria and eukaryotic microorganisms do form dormant stages (Hutchinson, 1967; Hargraves & French, ŗşŞřDzȱ’Œ‘˜•œ˜—ȱet al., 2000; Anderson, 2010), but this is for several taxa still unknown and there are not always data available on the ˜•Ž›Š—ŒŽȱ˜ȱ‘ŽœŽȱœŠŽœȱ˜›ȱ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱœ›ŽœœŽœǯȱ —ȱŠ’’˜—ǰȱ variation in niche breadth, competitiveness and adaptive capacities ‘ŠŸŽȱ—Ž’‘Ž›ȱ‹ŽŽ—ȱœž’Žȱ’—ȱ–žŒ‘ȱŽŠ’•ǯȱŽŸŽ›‘Ž•Žœœǰȱ’ȱ’œȱŒ•ŽŠ›ȱ ‘Šȱ’—Ž›œ™ŽŒ’ęȱŒȱŸŠ›’Š’˜—ȱ˜ŽœȱŽ¡’œȱ˜›ȱ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱ›Š’œȱǻe.g. ŸŠ—œǰȱŗşśŞDzȱ•œŽ›ȱet al., 2008; Müller et al., 2010), suggesting that taxa will also vary in their dispersal probabilities, dispersal rates and realized biogeographies (Martiny et al.ǰȱŘŖŖŜǼǯȱ‘’œȱ ˜ž•ȱęȱȱ‘Žȱ ›Š—Žȱ ˜ȱ ’œ›’‹ž’˜—ȱ ™ŠĴȱŽ›—œȱ ›Ž™˜›Žȱ ’—ȱ –’Œ›˜˜›Š—’œ–ȱ Š—ȱ ‘Žȱ range of scales on which geographical structure has been detected, and would further corroborate the current opinion that microbial biogeography is dictated by the same processes as macroorganisms ǻ ›ŽŽ—ȱǭȱ˜‘Š——Š—ǰȱŘŖŖŜDzȱŠ›’—¢ et al., 2006).

General introduction 5 Dispersal mechanisms and dispersal barriers of microorganisms ’œ™Ž›œŠ•ȱ ’œȱ ‘Žȱ ›Š—œ™˜›ȱ ˜ȱ Š—ȱ ˜›Š—’œ–ȱ ›˜–ȱ ˜—Žȱ Ž˜›Š™‘’ŒŠ•ȱ location to another, away from its parental population. An individual of a species can disperse from its parental population into another population, or disperse from its parental population towards an empty patch, colonize this patch and start a new population (if propagating asexually) or await a second individual of opposite mating type and start a new population (for sexual organisms). For ‹’˜Ž˜›Š™‘¢ǰȱ’œ™Ž›œŠ•ȱ‘Šœȱ‹˜‘ȱŠ—ȱ’—ĚȱžŽ—ŒŽȱ ‘Ž—ȱ‘Žȱ–˜ŸŽ–Ž—ȱ ’œȱ ˜ Š›œȱ Š—ȱ Š•Ž›—Š’ŸŽȱ ™˜™ž•Š’˜—ȱ ǻ‘žœȱ ™›˜Ÿ’’—ȱ Ž—Žȱ Ěȱ˜ ȱ ‹Ž ŽŽ—ȱ ™˜™ž•Š’˜—œȱ Š—ȱ Š’—ȱ œŠ‹’•’¢ȱ ’—ȱ Šȱ –ŽŠȬ™˜™ž•Š’˜—ȱ system) and when the movement is towards a new patch (thus expanding a biogeographical range or enhancing the number of •˜ŒŠ•ȱ™˜™ž•Š’˜—œǼǯȱ –™˜›Š—•¢ǰȱŠ—ȱŽěȱŽŒ’ŸŽȱ’œ™Ž›œŠ•ȱŽŸŽ—ȱ›Žšž’›Žœȱ subsequent reproduction and the onset of a population. Two main types of dispersal mechanisms are generally recognized, being active and passive dispersal. Active dispersal will depend on local factors (local population size, resource limitation, habitat size, etc.) forcing organisms to actively move out of a œ™ŽŒ’ęȱŒȱ™ŠŒ‘ȱǻ˜ •Ž›ȱǭȱŽ—˜—ǰȱŘŖŖśǼǯȱ‘Ž—ȱ™Šœœ’ŸŽ•¢ȱ’œ™Ž›œŽǰȱ however, organisms depend on the kinetic energy occurring in the environment (animal and plant vectors, wind, water currents, gravity) for their movement (Maguire, 1963). For microorganisms, the active movement of a single individual will be spatially restricted and unlikely to bridge the gap between populations. Therefore, passive dispersal is the main dispersal type of microorganisms. Microorganisms are thus dispersed through animal and plant vectors, wind and water currents. ’œ™Ž›œŠ•ȱ ‹Š››’Ž›œȱ ™›ŽŸŽ—ȱ ‘Žȱ –˜ŸŽ–Ž—ȱ ˜ȱ Šȱ ™Š›’Œž•Š›ȱ organism and include geographical barriers and physiological ‹Š››’Ž›œǯȱ˜‘ȱŠ›Žȱ’ĜȱȱŒž•ȱ˜ȱ’œŽ—Š—•ŽǰȱŠœȱŽ˜›Š™‘’ŒŠ•ȱ‹Š››’Ž›œȱ (rivers, oceans, land barriers, mountains, etc.) only preclude the dispersal of an individual because of physiological restrictions. ‘Ž›Ž˜›Žǰȱ’œ™Ž›œŠ•ȱ‹Š››’Ž›œȱŠ›Žȱœ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒȱǻŠ—ȱ ’••ȱŠ•œ˜ȱŸŠ›¢ȱ ‹Ž ŽŽ—ȱ’—’Ÿ’žŠ•œǼǯȱž›’—ȱ’œ™Ž›œŠ•ǰȱœŽŸŽ›Š•ȱ–˜›Žȱ˜›ȱ•Žœœȱ‘˜œ’•Žȱ conditions will be encountered, ranging from among others an ŠŸŽ›œŽȱ’œ™Ž›œŠ•ȱ–Ž’ž–ȱǻŠ—’–Š•œȂȱžǰȱŠ’›ȱ˜›ȱ ŠŽ›ȱ˜›ȱŽ¡Š–™•ŽǼǰȱ adverse environmental conditions in the crossed habitat patches, to ‹’˜’Œȱ’—Ž›ŠŒ’˜—œǯȱ˜•Ž›Š—ŒŽȱ•ŽŸŽ•œȱ˜›ȱ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱŠŒ˜›œȱ ’••ȱ ‘Ž›Ž˜›Žȱ’—ĚȱžŽ—ŒŽȱ‘Žȱœ™Š’Š•ȱœŒŠ•Žȱ˜ȱ’œ™Ž›œŠ•ȱŠ—ȱ‘Žȱ™›˜‹Š‹’•’¢ȱ of surviving a dispersal event. Besides this, the availability

6 General introduction of individuals (and thus population size) and morphological Œ‘Š›ŠŒŽ›’œ’Œœȱ ’••ȱ ž›‘Ž›ȱ ’—ĚȱžŽ—ŒŽȱ ‘Žȱ Œ‘Š—ŒŽȱ ˜ȱ Šȱ œ™ŽŒ’Žœȱ ˜ȱ ‹Žȱ dispersed passively, while the availability of suitable habitat patches Š—ȱŒ˜•˜—’£Š’˜—ȱ™˜Ž—’Š•ȱ ’••ȱŠěȱŽŒȱ‘Žȱ™›˜‹Š‹’•’¢ȱ˜ȱŠ››’ŸŽȱ’—ȱŠȱ œž’Š‹•Žȱ‘Š‹’Šȱ™ŠŒ‘ȱŠ—ȱŒ˜•˜—’£Žȱ’ǯȱ ˜ ŽŸŽ›ǰȱ•’Ĵȱ•Žȱ’œȱ”—˜ —ȱ˜—ȱ the extent in which dispersal limitation occurs in microorganisms Š—ȱ˜—ȱ‘Žȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ˜›ȱ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱŠŒ˜›œǯ

1.2 Organisms under study: benthic freshwater and terrestrial diatoms 1.2.1 Diatoms: general introduction ’Š˜–œȱ ǻŠŒ’••Š›’˜™‘¢ŒŽŠŽǰȱ ŽŽ›˜”˜—˜™‘¢ŠǼȱ Š›Žȱ Šȱ ›˜ž™ȱ ˜ȱ unicellular microalgae characterized by a siliceous cell wall (the ) consisting of two “valves” connected by girdle elements (Fig. 1.1), and a diplontic life cycle involving gradual cell size reduction by vegetative divisions followed by cell size restitution through sexual reproduction (Round et al., 1990; Chepurnov et al., ŘŖŖŚǼǯȱ ’Š˜–œȱ Š›Žȱ ‹Žœȱ ”—˜ —ȱ ˜›ȱ ‘Ž’›ȱ ’—›’ŒŠŽ•¢ȱ ˜›—Š–Ž—Žȱ siliceous cell walls, which have traditionally been used to delineate species (Round et al., 1990). Moreover, as this silica wall is relatively resistant to corrosion, diatoms have an extensive fossil record, going ‹ŠŒ”ȱ ˜ȱ ‘Žȱ ž›Šœœ’Œǰȱ ŗşŖȱ –’••’˜—ȱ ¢ŽŠ›œȱ Š˜ȱ ǻ˜‘™•Žĵȱǰȱ ŗŞşŜǰȱ ŗşŖŖȱ ’—ȱ ’–œȱ et al., 2006). Within the more than 200,000 extant species Žœ’–ŠŽȱ˜ȱŽ¡’œȱǻŠ——ȱǭȱ›˜˜™ǰȱŗşşŜǼǰȱ ˜ȱ•Š›Žȱ–˜›™‘˜•˜’ŒŠ•ȱ groups are traditionally delineated (Fig. 1.1), being the “centric” diatoms with radially organized valves and the “pennate” diatoms with bilaterally organized valves. A subgroup of pennate diatoms has evolved a longitudinal slit along the apical axis of the valve, called the raphe (Fig. 1.1), through which strands can be extruded onto the substrate, allowing the movement over Šȱ œž‹œ›ŠŽȱ ǻ›ž–ȱ ǭȱ ˜™”’—œǰȱ ŗşŜŜǼǯȱ ‘’•Žȱ ŒŽ—›’Œȱ Š—ȱ Š›Š™‘’ȱ pennate diatoms (having no raphe) are immotile and live suspended Šœȱ ™•Š—”˜—ȱ ˜›ȱ ŠĴȱŠŒ‘Žȱ ˜ȱ œž›ŠŒŽœǰȱ ‘Žȱ ›Š™‘’ȱ ™Ž——ŠŽȱ ’Š˜–œȱ are motile and live mostly benthic in sediments and on substrates. ’—ŒŽȱ‘Ž’›ȱ˜›’’—ȱ–˜›Žȱ‘Š—ȱŝŖȱŠȱŠ˜ȱǻ’ĴȱǰȱŗŞŞŜDzȱŠ—˜ŒœŽ”ǰȱŗŞŞşDzȱ ‘ŠŒ˜—ȬŠŒŠ et al.ǰȱ ŘŖŖŘDzȱ ’—‘ȱ et al., 2006), raphid diatoms have ’ŸŽ›œ’ęȱŽȱŽ—˜›–˜žœ•¢ȱ’—ȱ‹Ž—‘’ŒȱŽ—Ÿ’›˜—–Ž—œȱŠ—ȱ—˜ ȱŠŒŒ˜ž—ȱ ˜›ȱ‘ŽȱŸŠœȱ–Š“˜›’¢ȱ˜ȱ‘ŽȱŽ¡Š—ȱ’Š˜–ȱœ™ŽŒ’Žœǰȱ’—’ŒŠ’ŸŽȱ˜ȱ‘Žȱ

General introduction 7 Fig. 1.1 Living diatom cells as visualized by light microscopy (A-B) and the cleaned siliceous frustule visualized by scanning electron microscopy (C-D). Diatoms can be elongated and bilateral symmetric (A-C) and termed pennate diatoms, or radially symmetric (B-D) and termed centric diatoms. The “raphe” is the longitudinal slit running over the apical axis of the valve of raphid pennate diatoms, such as in C. A) ¢›˜œ’–Šȱœ™ǯ, B) Cyclotella sp., C) Pinnularia borealis, D) a multipolar centric. ŽŒ˜•˜’ŒŠ•ȱŠŸŠ—ŠŽœȱ˜ěȱŽ›Žȱ‹¢ȱ‘ŽȱŽŸ˜•ž’˜—ȱ˜ȱ‘Žȱ›Š™‘Žȱǻ’–œȱet al., 2006). Being photoautotrophic, diatoms thrive worldwide in the photic zone of the marine and freshwater plankton and benthos (Round et al., 1990). They are ecologically very important as primary ™›˜žŒŽ›œǰȱŠ—ȱŠ›ŽȱŽœ’–ŠŽȱ˜ȱŠŒŒ˜ž—ȱ˜›ȱŘŖȬŘśȱƖȱ˜ȱ‘Žȱ•˜‹Š•ȱ primary production in oceans (Werner, 1977). To a lesser extent, diatoms also occur in terrestrial habitats and live in and on soils and on wet rocks, mosses, tree barks and other humid substrates (Round et al., 1990). However, not much is known about the ecology of terrestrial diatoms, as most ecological, physiological, biochemical and molecular studies have focused on marine or freshwater diatoms. Concerning biogeography and dispersal, several studies have been performed and some general trends and work hypotheses can be ŽžŒŽȱ ›˜–ȱ ‘Ž–ȱ ǻœŽŽȱ œŽŒ’˜—ȱ ŗǯŘǯŘǼǯȱ ŽŸŽ›‘Ž•Žœœǰȱ ‘Žȱ œ™ŽŒ’ęȱŒȱ mechanisms controlling diatom distributions are still unknown, and many questions remain. Moreover, similar to other microbial taxa,

8 General introduction several species complexes containing (pseudo)cryptic species have been reported (e.g.ȱŠ›—˜ȱet al.ǰȱŘŖŖśDzȱŽœ£Ž›’ȱet al., 2007; Mann & ŸŠ—œǰȱŘŖŖŝDzȱŠ—˜›–Ž•’—Ž—ȱet al.ǰȱŘŖŖŞDzȱ›˜‹Š“˜ȱet al., 2009). Because cryptic diversity hampers the interpretation of geographical ranges, this issue has to be taken into account when reading previous –˜›™‘˜•˜¢Ȭ‹ŠœŽȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱœž’ŽœȱŠ—ȱ ‘Ž—ȱŽŸ’œ’—ȱ—Ž ȱ ones.

1.2.2 Diatom biogeography: an interplay of species sorting and dispersal limitation? ŽŸŽ›Š•ȱ ›ŽŒŽ—ȱ œž’Žœȱ ‘ŠŸŽȱ ŠŒ”•Žȱ ‘Žȱ šžŽœ’˜—ȱ ‘Ž‘Ž›ȱ ‘Žȱ geographical distribution of diatom species is only determined by species sorting, or by an interaction between local ecological ŠŒ˜›œȱ Š—ȱ ‘’œ˜›’ŒŠ•ȱ ŠŒ˜›œȱ ǻ˜Š™˜ŸŠȱ ǭȱ ‘Š›•Žœǰȱ ŘŖŖŘDzȱ ˜’—’—Ž—ȱ et al., 2004; Telford et al.ǰȱŘŖŖŜDzȱ¢ŸŽ›–Š—ȱet al.ǰȱŘŖŖŝDzȱŽ›•Ž¢Ž—ȱet al., ŘŖŖşǼǯȱž’Žœȱ˜—ȱ–Š›’—Žȱ™•Š—”˜—’ŒȱŠ—ȱ•ŠŒžœ›’—Žȱ‹Ž—‘’Œȱ’Š˜–œȱ reveal that their geographical distributions are explained by local environmental variables and spatial variables, indicating that both species sorting and dispersal limitation account for the observed geographical structure. This result is further supported by reports of endemic diatom species and genera [e.g. species of Muelleria ǻ›Ž—žŽ••’Ǽȱ ›Ž—žŽ••’ȱ ǻŠ—ȱ Žȱ ’“ŸŽ›ȱ et al., 2010), and the genus Eunophoraȱ¢ŸŽ›–Š—ǰȱŠ‹‹ŽȱǭȱŠ——ȱǻ¢ŸŽ›–Š—ȱet al., 1998)] and ‹¢ȱ –’Œ›˜œŠŽ••’Žȱ œž’Žœȱ ›ŽŸŽŠ•’—ȱ ›Žœ›’ŒŽȱ Ž—Žȱ Ěȱ˜ ȱ ‹Ž ŽŽ—ȱ populations of the marine planktonic species œŽž˜Ȭ—’ĵȱœŒ‘’Šȱ pungensȱǻ ›ž—˜ ȱŽ¡ȱ•ŽŸŽǼȱ Šœ•ŽȱǻŠœŽ•Ž¢— et al., 2010), Skeletonema marinoiȱŠ›—˜ȱǭȱ’—˜—Žȱǻ ˜‘Žȱǭȱ Š›—œ›ã–ǰȱŘŖŗŖǼȱŠ—ȱDitylum brightwelliiȱ ǻŽœǼȱ ›ž—˜ ȱ ǻ’—ȱ ‘’Œ‘ȱ ‘Žȱ œ™ŽŒ’Žœȱ ‹˜ž—Š›’Žœȱ Ž›Žȱ however unclear) (Rynearson et al., 2009), and of the freshwater species Sellaphora capitataȱŠ——ȱǭȱŒ˜—Š•ȱǻŸŠ—œȱet al., 2009)]. There are no reliable data available on the geographical distribution of terrestrial diatom species, but it is hypothesized that the biogeographical ranges of terrestrial diatoms would be larger ‘Š—ȱ‘˜œŽȱ˜ȱ•ŠŒžœ›’—Žȱ’Š˜–œȱǻ™Šž•’—ȱet al., 2010). Compared to lakes which are islands of suitable habitat within a hostile matrix, terrestrial habitats are presumably less fragmented on a regional scale, increasing the dispersal probabilities and dispersal rates of terrestrial species. Moreover, because terrestrial habitats Š›Žȱ Œ‘Š›ŠŒŽ›’£Žȱ ‹¢ȱ •Š›Ž›ȱ Š’•¢ȱ ĚȱžŒžŠ’˜—œȱ ’—ȱ Ž–™Ž›Šž›Žȱ Š—ȱ –˜’œž›ŽȱŒ˜—Ž—ȱǻŠ›”œȱet al.ǰȱŗşŞŗDzȱ Š˜ȱet al., 2008) compared to

General introduction 9 permanent lakes, it is assumed that terrestrial species are adapted to overcome these more hostile conditions [analogous to green Š•ŠŽȱǻ˜Žȱet al., 2008)], which would also increase their tolerance to ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱœ›ŽœœŽœȱœžŒ‘ȱŠœȱŽœ’ŒŒŠ’˜—ǯȱ’—Š••¢ǰȱ‹ŽŒŠžœŽȱ›¢Ž›ȱ sediment is more susceptible to be picked up by air currents (Chepil, ŗşśŜǼǰȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ ’••ȱ ‹Žȱ –˜›Žȱ œžœŒŽ™’‹•Žȱ ˜ȱ ’œ™Ž›œŠ•ȱ ‹¢ȱ wind compared to lacustrine diatoms. The combination of the less fragmented terrestrial habitat, higher susceptibility for wind dispersal and higher tolerance for desiccation would enhance the dispersal probabilities of terrestrial diatoms compared to aquatic ’Š˜–œȱǻŒ‘•’Œ‘’—ǰȱŗşŜşDzȱ‘›Žœ–Š——ȱǭȱ ŠŒ‘ǰȱŗşŝśǼǯȱŽ™Ž—Ž—ȱ ˜ȱ‘Žȱ’œ™Ž›œŠ•ȱ›ŠŽǰȱŠȱ‘’‘Ž›ȱŽ—ŽȱĚȱ˜ ȱ’—ȱŽ››Žœ›’Š•ȱ’Š˜–œȱŒ˜ž•ȱ also result in lower speciation rates, and it is thus expected that terrestrial diatoms are less diverse than aquatic diatoms. As said, no ŠŠȱŠ›Žȱ¢ŽȱŠŸŠ’•Š‹•Žȱ˜ȱŒ˜—ęȱ›–ȱ˜›ȱ›ŽžŽȱ‘ŽœŽȱ‘¢™˜‘ŽœŽœǯ While it has been indicated that dispersal limitation does play a role in at least lacustrine and marine diatom distributions, it remains unknown on which scale and at what rate dispersal and Ž—ŽȱĚȱ˜ ȱ˜ŒŒž›œǰȱŠ—ȱ‘˜ ȱŠœȱœ™ŽŒ’Š’˜—ȱ˜ŒŒž›œȱǽ‹žȱœŽŽȱ‘Žȱ›Š™’ȱ morphological evolution of Stephanodiscus niagarae Ehrenberg to S. yellowstonensis ‘Ž›’˜ȱǭȱ˜Ž›–Ž›ȱŠ”’—ȱca. 4,000 years (Theriot et al.ǰȱ ŘŖŖŜǼǾǯȱ ȱ ’œȱ —Ž’‘Ž›ȱ Œ•ŽŠ›ȱ ‘˜ ȱ •Š›Žȱ ‘Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ ŸŠ›’Š’˜—œȱ ’—ȱ‘ŽœŽȱ™Š›Š–ŽŽ›œȱŠ›Žǰȱ—˜›ȱ’ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ‘Š‹’Šȱ›Š–Ž—Š’˜—ȱ ˜ž•ȱ ’—ŽŽȱ •ŽŠȱ ˜ȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ’œ™Ž›œŠ•ȱ ™›˜‹Š‹’•’’Žœǯȱ Furthermore, while there are some clues on the general tolerances of diatoms during transport by air currents and animals (see section ŗǯŚǼǰȱ ‘Ž›Žȱ ’œȱ Š•–˜œȱ —˜ȱ ”—˜ •ŽŽȱ ˜—ȱ ‘Žȱ ›Š—Žȱ ˜ȱ ’—Ž›œ™ŽŒ’ęȱŒȱ ’ěȱŽ›Ž—ŒŽœȱ’—ȱ’œ™Ž›œŠ•ȱ˜•Ž›Š—ŒŽœǯȱ ˜ȱ œž¢ȱ ‘Žȱ œ™Š’Š•ȱ œŒŠ•Žȱ Š—ȱ ›ŠŽœȱ ˜ȱ Ž—Žȱ Ěȱ˜ ȱ ‹Ž ŽŽ—ȱ populations of a single species, two methods are currently available based: phylogeographical studies and microsatellite analysis. These are based on the genetic information stored in individual genomes, and on the fact that, independently of environmental selection, neutral mutations will accumulate with time in the genomes (called “genetic ›’ȄǼǯȱ ’œ™Ž›œŠ•ȱ ŽŸŽ—œȱ ‹Ž ŽŽ—ȱ ™˜™ž•Š’˜—œȱ ’••ȱ Œ˜ž—Ž›ŠŒȱ ‘’œȱ genetic drift through the exchange of genetic material. By studying ‘Žȱ›ŽšžŽ—Œ¢ȱ˜ȱŠ••Ž•Žœȱǻ’ěȱŽ›Ž—ȱŸŽ›œ’˜—œȱ˜ȱ‘ŽȱœŠ–ŽȱŽ—ŽǼȱ ’‘’—ȱ and between populations one will gather an approximation of the amount of dispersal between these populations. When analyzing this in an explicit geographical framework as done in phylogeographical studies, one will gather information on both the amount and

10 General introduction Ž˜›Š™‘’ŒŠ•ȱ œŒŠ•Žȱ ˜ȱ ’œ™Ž›œŠ•ȱ ˜ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ Š••Ž•Žœǯȱ ˜ȱ ž›‘Ž›ȱ ’—ŸŽœ’ŠŽȱ‘ŽȱŠ–˜ž—ȱŠ—ȱ›ŠŽȱ˜ȱŽ—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱŽ˜›Š™‘’ŒŠ•ȱ ™˜™ž•Š’˜—œȱ˜ȱŠȱœ’—•Žȱœ™ŽŒ’Žœǰȱ›ŽšžŽ—Œ’Žœȱ˜ȱ–’Œ›˜œŠŽ••’Žœȱǻ—˜—Ȭ coding sequences of 1 to 6 base pairs repeated 10 to 100 times in Š—Ž–Ǽȱ˜›ȱœȱǻ’—•ŽȱžŒ•Ž˜’Žȱ˜•¢–˜›™‘’œ–œǰȱŸŠ›’Š’˜—œȱ’—ȱ Šȱœ’—•Žȱ—žŒ•Ž˜’Žȱ’—ȱȱ›Š–Ž—œȱ›ŽŒ˜ŸŽ›Žȱ˜ŸŽ›ȱ‘ŽȱŽ—˜–ŽǼȱ have to be analyzed.

Phylogeographies —ȱ œ‘˜›Ž›ȱ ’–ŽȬœŒŠ•Žœǰȱ ˜’—ȱ ‹ŠŒ”ȱ ˜ȱ ‘Žȱ •Šœȱ •ŠŒ’Š•ȱ Œ¢Œ•Žœǰȱ phylogeographical studies will evaluate more recent divergences between and within species in an explicit geographical framework žœ’—ȱŠŠȱ›˜–ȱ’ěȱŽ›Ž—ȱŽ˜›Š™‘’ŒŠ•ȱ•˜ŒŠ’˜—œȱǻŸ’œŽǰȱŘŖŖŖǼǯȱ¢ȱ ˜’—ȱ‘’œǰȱœ™ŽŒ’ŽœȱŠ—ȱ™˜™ž•Š’˜—ȱ’ŸŽ›œ’ęȱŒŠ’˜—œȱŒŠ—ȱ‹ŽȱŠœœŽœœŽȱ ˜ŸŽ›ȱ œ™Š’Š•ȱ œŒŠ•Žœȱ ‹¢ȱ žœ’—ȱ Š••Ž•Žȱ ›ŽšžŽ—Œ’Žœȱ ’—ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ ™˜™ž•Š’˜—œǯȱžŒ‘ȱŠ—Š•¢œŽœȱ‘ŠŸŽȱ˜›ȱŽ¡Š–™•Žȱ‹ŽŽ—ȱžœŽȱ˜ȱ›Ž›ŠŒŽȱ the colonization routes after the last glacial maximum 10,000 years ago from the glacial refugia to the present locations (e.g. King & Ž››’œǰȱ ŗşşŞDzȱ ›’ŸŽȱ ǭȱ Ž’ǰȱ ŘŖŖŘDzȱ Š›’ȱ et al., 2006). For diatoms, phylogeographical studies are scarce and limited to the marine planktonic diatoms Skeletonemaȱ ›ŽŸ’••Žȱǻ ˜˜’œ›Šȱet al.ǰȱŘŖŖśǼȱŠ—ȱ ‘Š•Šœœ’˜œ’›Šȱ Ž’œœĚȱ˜’’ȱǻ ›ž—˜ Ǽȱ›¢¡Ž••ȱǭȱ Šœ•Žȱǻ˜›‘Š——žœȱet al., 2010).

Microsatellite studies ˜ȱ’—ŸŽœ’ŠŽȱ›ŠŽœȱ˜ȱŽ—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱŽ˜›Š™‘’ŒŠ••¢ȱœŽ™Š›ŠŽȱ populations, microsatellite frequencies can be analyzed. For ’Š˜–œǰȱ ’ěȱŽ›Ž—ȱ œž’Žœȱ ˜—ȱ –Š›’—Žȱ ™•Š—”˜—’Œȱ œ™ŽŒ’Žœȱ ǽPseudo- —’ĵȱœŒ‘’Šȱ™ž—Ž—œ (Casteleyn et al., 2010), Skeletonema marinoiȱǻ ˜‘Žȱ ǭȱ Š›—œ›ã–ǰȱ ŘŖŗŖǼǰȱ Š—ȱ Š•œ˜ȱ Ditylum brightwellii (Rynearson et al., 2009) in which the species boundaries were however unclear] and in a single freshwater species [(Sellaphora capitata (Evans et al., 2009)] reveal that gene exchange is restricted in more or lesser extent between geographically separated populations on even small geographical scales, while a study on P. pungens on smaller scale ›ŽŸŽŠ•Žȱ —˜ȱ Ž—Ž’Œȱ ’ěȱŽ›Ž—’Š’˜—ȱ Š—ȱ ‘’‘ȱ Ž—Žȱ Ěȱ˜ ȱ ‹Ž ŽŽ—ȱ populations (Casteleyn et al., 2009).

General introduction 11 1.3 Species diversity and speciation 1.3.1 Species as fundamental units of biology —ȱ ‘Žȱ –˜œȱ ’ŸŽ›œŽȱ ęȱŽ•œȱ ˜ȱ ‹’˜•˜¢ǰȱ ’—Œ•ž’—ȱ ‹’˜Ž˜›Š™‘¢ǰȱ species are used as basic biological study unit. A species (or lineage) is a group of individuals structured as a metapopulation that ŽŸ˜•ŸŽœȱ œŽ™Š›ŠŽ•¢ȱ ›˜–ȱ ˜‘Ž›ȱ ›˜ž™œȱ ˜ȱ ’—’Ÿ’žŠ•œȱ ǻŽȱ žŽ’›˜£ǰȱ ŘŖŖŝǼǯȱ ž›’—ȱ œ™ŽŒ’Š’˜—ȱ Šȱ •’—ŽŠŽȱ œ™•’œȱ ’—˜ȱ  ˜ȱ ǻ˜›ȱ –˜›ŽǼȱ —Ž ȱ •’—ŽŠŽœȱ ǻ’ǯȱ ŗǯŘǼǯȱ ž›’—ȱ ‘’œȱ œ™•’ǰȱ ’ěȱŽ›Ž—ȱ ™›˜™Ž›’Žœȱ ’••ȱ ‹Žȱ acquired by these evolving lineages: the lineages will become –˜›™‘˜•˜’ŒŠ••¢ȱ’œ’—ŒǰȱŽŒ˜•˜’ŒŠ••¢ȱ’ěȱŽ›Ž—’ŠŽǰȱ›Ž™›˜žŒ’ŸŽ•¢ȱ incompatible, and genetically reciprocally monophyletic, amongst ˜‘Ž›œǯȱ‘ŽœŽȱ™›˜™Ž›’ŽœȱŠ›ŽȱžœŽȱŠœȱ’ěȱŽ›Ž—ȱ•’—Žœȱ˜ȱŽŸ’Ž—ŒŽȱǻ˜›ȱ operational criteria) for species delimitation, and were traditionally ’—Œ˜›™˜›ŠŽȱ ’—ȱ ’ěȱŽ›Ž—ȱ Š•Ž›—Š’ŸŽȱ œ™ŽŒ’Žœȱ Œ˜—ŒŽ™œǰȱ ’—Œ•ž’—ȱ the morphological, ecological, biological and phylogenetic species concepts. It is important to clearly distinguish between the theoretical concept of species (i.e. separately evolving metapopulation lineages) and the operational criteria (morphology, ecology, genetics) used ˜ȱ Ž–™’›’ŒŠ••¢ȱ ŽŽŒȱ œ™ŽŒ’Žœȱ ‹˜ž—Š›’Žœǯȱ ŽŒŠžœŽȱ ‘ŽœŽȱ ’ěȱŽ›Ž—ȱ ™›˜™Ž›’ŽœȱŠ›ŽȱŠŒšž’›ŽȱŠȱ’ěȱŽ›Ž—ȱ’–Žȱ™˜’—œȱ‘›˜ž‘ȱ’–Žǰȱ‘Ž›Žȱ is a grey zone (Fig. 1.2) between the initial lineage separation and the fully completed lineage separation during which alternative œ™ŽŒ’ŽœȱŒ˜—ŒŽ™œȱŒŠ—ȱ’ŸŽȱŒ˜—Ěȱ’Œ’—ȱ’—’ŒŠ’˜—œȱ˜—ȱ ‘Ž‘Ž›ȱ ˜ȱ˜›ȱ a single species are present. On each outer side of this grey zone, there will be unanimous agreement on the number of species. For ‘ŽœŽȱ ›ŽŠœ˜—ǰȱ Œ˜–‹’—’—ȱ ’ěȱŽ›Ž—ȱ •’—Žœȱ ˜ȱ ŽŸ’Ž—ŒŽǰȱ ˜›ȱ Ž¡Š–™•Žȱ morphological, genetic and physiological data, will enhance the probability to delineate the species correctly. In diatom , valve morphology is traditionally the main basis on which species are delineated, to a lesser extent supplemented with cytological data (Round et al., 1990). Consistently –˜›™‘˜•˜’ŒŠ••¢ȱ’ěȱŽ›Ž—’ŠŽȱ›˜ž™œȱ˜ȱ’—’Ÿ’žŠ•œȱŠ›ŽȱŠ‘Ž›Žȱ into “morphospecies” as an approximation of the real species (as ˜—Žȱ‹¢ȱǯȱ’——ŠŽžœȱ’—ȱ‘’œȱ¢œŽ–ŠȱŠž›ŠŽǼǯȱ —ȱ’Š˜–ȱ›ŽœŽŠ›Œ‘ǰȱ this morphological or typological concept is predominantly used in several study areas, including ecology and biogeography. Recently, ‘ŽȱŠŒŒŽœœ’‹’•’¢ȱ˜ȱ–˜•ŽŒž•Š›ȬŽ—Ž’ŒȱŽŒ‘—’šžŽœȱ‘ŠœȱŽ—Š‹•Žȱ‘ŽȱžœŽȱ of nucleotide information as additional line of evidence for species delimitation. Phylogenetic analyses of this genetic information will group strains into lineages depending on the nucleotide composition

12 General introduction Fig. 1.2 Diagram visualizing lineage separation and divergence (speciation) and species concepts (after de Queiroz, 2007). A single lineage (species) splits to form two lineages (species). The horizontal lines labeled SC (species criterion) 1 to 9 represent the times at ‘’Œ‘ȱ‘Žȱ•’—ŽŠŽœȱŠŒšž’›Žȱ’ěȱŽ›Ž—ȱ™›˜™Ž›’Žœȱǻ›ŽŒ’™›˜ŒŠ••¢ȱ–˜—˜™‘¢•Ž’Œǰȱ›Ž™›˜žŒ’ŸŽ•¢ȱ incompatible, ecologically distinct, etc.). In the grey zone, alternative species concepts come ’—˜ȱŒ˜—Ěȱ’Œǯȱ—ȱŽ’‘Ž›ȱœ’Žȱ˜ȱ‘Žȱ›Ž¢ȱ£˜—Žǰȱ‘Ž›Žȱ ’••ȱ‹Žȱž—Š—’–˜žœȱŠ›ŽŽ–Ž—ȱŠ‹˜žȱ‘Žȱ number of species.

General introduction 13 and visualize this on a phylogenetic tree in which branch lengths are proportional to the number of nucleotide substitutions (Felsenstein, 2004). Individuals with minor variation in nucleotide composition will cluster together, while individuals which vary in nucleotide composition will be placed on separated branches, the branch lengths Œ˜››Žœ™˜—’—ȱ˜ȱ‘ŽȱŠ–˜ž—ȱ˜ȱ’ŸŽ›Ž—ŒŽǯȱ‘Ž—ȱœ’–’•Š›ȱ™ŠĴȱŽ›—œȱ occur using independent sources of genetic data (for example genes vsǯȱ —žŒ•ŽŠ›ȱ ˜›ȱ –’˜Œ‘˜—›’Š•ȱ Ž—Žœǰȱ ˜›ȱ ’ěȱŽ›Ž—ȱ genes from a single genome source), the probability to correctly delineate species increases, and the same holds for morphological data.

1.3.2 Diatom diversity and cryptic species ’Š˜–œȱ Š›Žȱ ˜—Žȱ ˜ȱ ‘Žȱ –˜œȱ œ™ŽŒ’ŽœȬ›’Œ‘ȱ ›˜ž™œȱ ˜ȱ –’Œ›˜Š•ŠŽǰȱ Žœ’–ŠŽȱ˜ȱ’—Œ•žŽȱŘŖŖǰŖŖŖȱŽ¡Š—ȱœ™ŽŒ’ŽœȱǻŠ——ȱǭȱ›˜˜™ǰȱŗşşŜǼǯȱ They thrive in a wide range of habitats and ecological conditions, which all contain a whole range of species resulting in a high overall species diversity. The unique characteristics of the diatom genome, combining genes present in bacteria, higher plants and higher animals next to their own set of genes, is hypothesized to result in a high adaptive potential (Bowler et al., 2008), which might facilitate ecological adaptation and subsequent speciation. While the causal relationship between ecological change and speciation is still uncertain, it has been shown that closely related (pseudo) cryptic diatom species can be ecologically diverged, as seen for Ž¡Š–™•Žȱ˜›ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱœŠ•’—’¢ȱ˜•Ž›Š—ŒŽœȱ’—ȱ‘ŽȱNavicula phyllepta ûĵȱ ’—ȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡ȱǻŠ—Ž•œ•Š—Ž›ȱet al.ǰȱŘŖŖşǼȱŠ—ȱ’ěȱŽ›Ž—ŒŽœȱ in temperature optima in the Cylindrotheca closterium (Ehrenberg) Ž’–Š——ȱ ǭȱ Ž ’—ȱ Œ˜–™•Ž¡ȱ ǻŠ—Ž•œ•Š—Ž›ȱ et al., unpubl.). The morphological evolution from Stephanodiscus niagarae Ehrenberg to the endemic S. yellowstonensisȱ‘Ž›’˜ȱǭȱ˜Ž›–Ž›ȱ ŠœȱŒ˜››Ž•ŠŽȱ with progressive warming (Theriot et al., 2006). Ecological niche ’ěȱŽ›Ž—’Š’˜—ȱŒ˜ž•ȱ‘žœȱ‹ŽȱŠȱ–ŽŒ‘Š—’œ–ȱ˜›ȱœ™ŽŒ’Š’˜—ȱ’—ȱ’Š˜–œȱ and further account for the high diversity. The high number of estimated diatom species is partly a ›Žœž•ȱ˜ȱ‘Žȱ›Ž™˜›œȱ˜ȱŒ›¢™’Œȱœ™ŽŒ’ŽœȱǻŠ——ȱǭȱ›˜˜™ǰȱŗşşŜǼǯȱ‘Žȱ •ŠœȱŽŒŠŽœǰȱ‘ŽȱžœŽȱ˜ȱȱœŽšžŽ—Œ’—ȱ˜›ȱœ™ŽŒ’ŽœȱŽ•’—ŽŠ’˜—ȱ‘Šœȱ ›ŽŸŽŠ•Žȱ‘ŠȱœŽŸŽ›Š•ȱ’Š˜–ȱœ›Š’—œȱ ‘’Œ‘ȱŠȱęȱ›œȱœ’‘ȱ’ȱ—˜ȱ’ěȱŽ›ȱ ’—ȱǻ˜‹œŽ›ŸŽǼȱŸŠ•ŸŽȱ–˜›™‘˜•˜’Žœȱ Ž›ŽȱŽ—Ž’ŒŠ••¢ȱ’ěȱŽ›Ž—’ŠŽȱǽe.g. Skeletonema costatumȱ ǻ ›ŽŸ’••ŽǼȱ •ŽŸŽȱ ǻŠ›—˜ȱ et al.ǰȱ ŘŖŖśǼǰȱ Cyclotella meneghinianaȱ ûĵȱ ’—ȱ ǻŽœ£Ž›’ȱ et al., 2007), Sellaphora pupula

14 General introduction ǻ ûĵȱ’—ǼȱŽ›ŽœŒ‘”˜Ÿœ”¢ȱǻŠ——ȱǭȱŸŠ—œǰȱŘŖŖŝǼǰȱNavicula phyllepta ûĵȱ ’—ȱ ǻŠ—Ž•œ•Š—Ž›ȱ et al., 2009), Eunotia bilunaris (Ehrenberg) Œ‘ŠŠ›œŒ‘–’ȱǻŠ—˜›–Ž•’—Ž—ȱet al., 2008), ’ĵȱœŒ‘’Šȱ™Š•ŽŠȱǻ ûĵȱ ’—Ǽȱ –’‘ȱǻ›˜‹Š“˜ȱet al., 2009)]. While until now cryptic species have only been reported for a limited number of diatom morphospecies, it is expected that this is a widespread phenomenon in diatoms (Mann, 1999).

1.3.3 Speciation over time and space As discussed for macrobiota (see section 1.2.1), speciation and Ž¡’—Œ’˜—ȱ Š›Žȱ  ˜ȱ •ŽŠ’—ȱ ™›˜ŒŽœœŽœȱ ’—ȱ ‹’˜Ž˜›Š™‘¢ǯȱ ™ŽŒ’Š’˜—ȱ rates, periods and locations will therefore give further insight into the ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™›˜ŒŽœœŽœȱŠȱ ˜›”ǯȱ Ž˜•˜’ŒŠ•ȱŠ—ȱŒ•’–Š’ŒȱŽŸŽ—œȱ œžŒ‘ȱŠœȱ•ŠŒ’Š•ȱŒ¢Œ•ŽœǰȱŽŒ˜—’Œȱ–˜ŸŽ–Ž—œȱŠ—ȱœŽŠȱ•ŽŸŽ•ȱĚȱžŒžŠ’˜—œȱ are often very well dated and can therefore be linked to dated œ™ŽŒ’Š’˜—ȱŽŸŽ—œǯȱ˜—ŒŽ›—’—ȱ’Š˜–œǰȱ‘Ž›Žȱ’œȱŠȱ Ž••Ȭ˜Œž–Ž—Žȱ fossil sequence showing the abrupt morphological evolution from Stephanodiscus niagarae Ehrenberg to the endemic S. yellowstonensis ‘Ž›’˜ȱǭȱ˜Ž›–Ž›ȱ˜ŸŽ›ȱŠȱ’–Žȱ™Ž›’˜ȱ˜ȱŚǰŖŖŖȱ¢ŽŠ›œȱŠ—ȱŒ˜››Ž•ŠŽȱ with progressive warming following the retreat of the glaciers 10,000 years ago (Theriot et al., 2006). Because the discovery of such Ž••Ȭ™›ŽœŽ›ŸŽȱœŽšžŽ—ŒŽœȱ’œȱŽ¡›Ž–Ž•¢ȱ›Š›ŽȱŠ—ȱ‘žœȱ—˜ȱŽ—Ž›Š••¢ȱ applicable, other methods have been devised to estimate the time ˜ȱ •’—ŽŠŽȱ œ™•’Ĵȱ’—ȱ žœ’—ȱ ‘Žȱ ȱ ’—˜›–Š’˜—ȱ ˜ȱ Ž¡Š—ȱ œ™ŽŒ’Žœǯȱ Žž›Š•ȱ Ž—Ž’Œȱ –Š›”Ž›œȱ Š›Žȱ œŽšžŽ—ŒŽœȱ ˜ȱ —žŒ•Ž˜’Žȱ ’—˜›–Š’˜—ǰȱ often coding for very conservative proteins or having no function in protein coding, which are assumed not to be under ecological œŽ•ŽŒ’˜—ȱŠ—ȱ‘žœȱ˜—•¢ȱŸŠ›¢ȱžŽȱ˜ȱ—Žž›Š•ȱ–žŠ’˜—œǯȱžŒ‘ȱ–Š›”Ž›œȱ will evolve over time and will further diverge between species due to genetic drift, resulting in less variation between recently evolved species and more variation between phylogenetically distant œ™ŽŒ’Žœǰȱ ‘’•Žȱ‘ŽȱŒ˜—œŠ—ȱŽ—ŽȱĚȱ˜ ȱ ’‘’—ȱœ™ŽŒ’Žœȱ ’••ȱ™›ŽŸŽ—ȱǻ˜›ȱ drastically reduce) this divergence. Ž™Ž—’—ȱ˜—ȱ‘Žȱ–žŠ’˜—ȱ›ŠŽœȱ˜ȱ‘ŽȱžœŽȱŽ—Ž’Œȱ–Š›”Ž›œǰȱ these can evolve slowly, thus giving more information on the deeper and older divergences (e.g.ȱŗŞȱ›ȱ˜›ȱ›Š™‘’ȱ’Š˜–œǼȱ for example between larger groups of species or genera; or evolve faster and being of no use for deeper divergences but only for more recent speciation events (e.g.ȱ ŘŞȱ ›ǰȱ rbcL, coxŗǰȱ Ǽǯȱ ‘Ž—ȱ genetic markers evolve even faster and point mutations occur also within species (e.g. ȱ ˜›ȱ œ˜–Ž’–Žœ rbcL), these can be used to

General introduction 15 trace variations between geographically separated populations of a œ’—•Žȱœ™ŽŒ’Žœǯȱ‘ŠȱœŠ’ǰȱŽ™Ž—’—ȱ˜—ȱ‘Žȱ’–ŽȬœŒŠ•Žȱ˜—Žȱ Š—œȱ˜ȱ ’—ŸŽœ’ŠŽǰȱŠȱ’ěȱŽ›Ž—ȱŒ‘˜’ŒŽȱ˜ȱŽ—Ž’Œȱ–Š›”Ž›œȱ’œȱ—ŽŽŽǯȱ˜ȱ›ŽŠ••¢ȱ ’—ŸŽœ’ŠŽȱ‘ŽȱŠ–˜ž—ȱŠ—ȱ›ŠŽȱ˜ȱŽ—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱŽ˜›Š™‘’ŒŠ•ȱ ™˜™ž•Š’˜—œȱ˜ȱŠȱœ’—•Žȱœ™ŽŒ’Žœǰȱ›ŽšžŽ—Œ’Žœȱ˜ȱ–’Œ›˜œŠŽ••’Žœȱǻ—˜—Ȭ coding sequences of 1 to 6 base pairs repeated 10 to 100 times in Š—Ž–Ǽȱ˜›ȱœȱǻ’—•ŽȱžŒ•Ž˜’Žȱ˜•¢–˜›™‘’œ–œǰȱŸŠ›’Š’˜—œȱ’—ȱ Šȱœ’—•Žȱ—žŒ•Ž˜’Žȱ’—ȱȱ›Š–Ž—œȱ›ŽŒ˜ŸŽ›Žȱ˜ŸŽ›ȱ‘ŽȱŽ—˜–ŽǼȱ have to be analyzed (see section 1.2.2).

Time-calibrated molecular phylogenies —ȱŽ˜•˜’ŒŠ•ȱ’–ŽȬœŒŠ•Žœǰȱ‘Žȱ’–Žȱ˜ȱ’ŸŽ›Ž—ŒŽȱ‹Ž ŽŽ—ȱœ™ŽŒ’Žœȱ˜›ȱ between larger groups of species can be investigated by combining Ž—Ž’Œȱ ŠŠȱ ’‘ȱ ˜œœ’•ȱ ŒŠ•’‹›Š’˜—ȱ ™˜’—œȱ ’—˜ȱ ’–ŽȬŒŠ•’‹›ŠŽȱ –˜•ŽŒž•Š›ȱ ™‘¢•˜Ž—’Žœǯȱ žŒ‘ȱ ’–ŽȬŒŠ•’‹›ŠŽȱ ™‘¢•˜Ž—’Žœȱ œŽ›ŸŽȱ as a starting point to interpret species divergences in a geological ›Š–Ž ˜›”ȱ ǻ˜—˜‘žŽȱ ǭȱ Ž—˜—ǰȱ ŘŖŖŝǼǯȱ ˜›ȱ Ž¡Š–™•Žǰȱ ˜›ȱ ‘Žȱ marine planktonic foraminifer Neogloboquadrina Bandy, Frerichs & ’—ŒŽ—ǰȱŠȱ’–ŽȬŒŠ•’‹›ŠŽȱ™‘¢•˜Ž—¢ȱ‹ŠœŽȱ˜—ȱœ›Š’—œȱ’œ˜•ŠŽȱ›˜–ȱ ’ěȱŽ›Ž—ȱ•˜ŒŠ’˜—œȱœ‘˜ Žȱ‘Šȱ•’—ŽŠŽȱ’ŸŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱŒ›¢™’Œȱ species in the Arctic and Antarctic were correlated with changes in ice masses, but that exchange between the two poles still occurred ’‘’—ȱ‘Žȱ•ŠœȱŘŖŖǰŖŖŖȱ¢ŽŠ›œȱǻŠ›•’—ȱǭȱŠŽǰȱŘŖŖŞǼǯȱ˜›ȱ’Š˜–œǰȱ such explicit assessments of geological timeframes have only been done for the larger taxonomic groups of diatoms (Kooistra & Medlin, 1996; Medlin et al.ǰȱ ŗşşŝDzȱ ˜›‘Š——žœǰȱ ŘŖŖŝDzȱ ›˜ —ȱ ǭȱ ˜›‘Š——žœǰȱ 2010) trying to estimate the geological processes triggering the ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ’Š˜–œȱ˜›ȱ‘ŽȱŒŽ—›’ŒœȱŠœȱŠȱ ‘˜•ŽǰȱŠ—ȱ˜›ȱŠȱœ’—•Žȱ marine planktonic species [œŽž˜Ȭ—’ĵȱœŒ‘’Šȱ ™ž—Ž—œ (Casteleyn et al., 2010)] estimating the divergence within the P. pungens species complex during the Pleistocene glacial cycles.

1.4 Stress tolerance and dispersal limitation As summarized in section 1.1, dispersal is a key process controlling biogeographical ranges and knowledge on dispersal probabilities of organisms is thus indispensable to correctly interpret observed ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œǯȱ‘Žȱ’œ™Ž›œŠ•ȱ™›˜‹Š‹’•’¢ȱ˜ȱŠ—ȱ˜›Š—’œ–ȱ ’••ȱ Ž™Ž—ȱ ˜—ȱ ‘Žȱ œ™Š’Š•ȱ Œ˜—ęȱž›Š’˜—ȱ Š—ȱ Œ‘Š›ŠŒŽ›’œ’Œœȱ ˜ȱ the medium or habitat they have to bridge (physical barriers,

16 General introduction heterogeneity, environmental factors, biotic interactions) but also on its morphological and physiological characteristics such as active locomotion or features enhancing passive motility, dormancy and tolerance levels for adverse conditions during dispersal. The stress tolerance of an organism is therefore an important factor determining its dispersal potential and subsequently its potential geographical range. However, as reviewed by Martiny et al. (2006), knowledge ˜—ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱ œ›Žœœȱ Š—ȱ ”—˜ •ŽŽȱ ˜—ȱ ’—Ž›œ™ŽŒ’ęȱŒȱŸŠ›’Š’˜—ȱ’—ȱ‘ŽœŽȱ˜•Ž›Š—ŒŽȱ•ŽŸŽ•œȱ’œȱŠ•–˜œȱŒ˜–™•ŽŽ•¢ȱ lacking for microorganisms, and the same holds for diatoms. Ž˜›Žȱ‹Ž’—ȱŠ‹•Žȱ˜ȱŽ¡Š–’—Žȱ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱœ›Žœœȱ˜•Ž›Š—ŒŽǰȱ’ȱ’œȱ important to have a good knowledge on the dispersal mechanisms diatoms can use and subsequently deduce the problems diatoms Ž—Œ˜ž—Ž›ȱž›’—ȱ’œ™Ž›œŠ•ǯȱŠœŽȱ˜—ȱ‘ŽȱŠŸŠ’•Š‹•ŽȱŠŠǰȱœ˜–Žȱęȱ›œȱ hypotheses can be put forward on dispersal tolerances of freshwater and terrestrial diatoms.

1.4.1 Freshwater diatom dispersal žŽȱ ˜ȱ ‘Ž’›ȱ œ–Š••ȱ œ’£Žǰȱ ’Š˜–œȱ •’ŸŽȱ ˜—ȱ Šȱ ’ěȱŽ›Ž—ȱ œŒŠ•Žȱ ‘Š—ȱ macroorganisms, and this has to be taken into account. Most diatoms do not move actively. However, the raphid diatoms do move on smaller scales, but this movement is aimed to leave less suitable patches and search randomly for a more suitable patch with ‘’‘Ž›ȱ —ž›’Ž—ȱ Œ˜—ŒŽ—›Š’˜—œȱ ǻ™Ž›œǯȱ Œ˜––ǯȱ ǯȱ ’••Š›Ǽǰȱ •˜ Ž›ȱ ˜›ȱ higher light conditions (Admiraal et al., 1984; Perkins et al., 2010), or ŠŸŠ’•Š‹•Žȱ–Š’—ȱ™Š›—Ž›œȱǻ™Ž›œǯȱŒ˜––ǯȱ ǯȱ ’••Š›ǼǰȱŠ–˜—ȱ˜‘Ž›œǯȱ¢ȱ ˜’—ȱ‘’œǰȱ‘Ž¢ȱŒŠ—ȱ–˜ŸŽȱŠȱœ™ŽŽœȱ˜ȱŗȬŘśȱΐ–ȱ™Ž›ȱœŽŒ˜—ȱǻ˜ž—ǰȱ ŗşŝŗDzȱŠ›ȱǭȱ’Œ”ŽĴȱȬ ŽŠ™œǰȱŗşŞŚǼǯȱ ˜ ŽŸŽ›ǰȱ‘’œȱŠŒ’ŸŽǰȱœ–Š••ȬœŒŠ•Žȱ ’œ™Ž›œŠ•ȱ˜ȱŒŽ••œȱ ’••ȱ—˜ȱŠěȱŽŒȱ‘ŽȱŽ˜›Š™‘’ŒŠ•ȱœ›žŒž›ŽǯȱȱŒ˜ž›œŽǰȱ over multiple generations a diatom species could eventually extend its range over larger scales by active movement, but by that time it is likely that genetic divergence from the source population has occurred, except if a second, faster dispersal mechanism has allowed œžĜȱȱŒ’Ž—ȱŽ—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱ‘ŽœŽȱ™˜™ž•Š’˜—œǯȱŒ’ŸŽȱ–˜ŸŽ–Ž—ȱ is thus not likely to be the key dispersal mechanism of diatoms to extent their geographical range and this will mainly be achieved by passive dispersal. ȱ ž›’—ȱ ™Šœœ’ŸŽȱ ’œ™Ž›œŠ•ǰȱ ‘Žȱ ˜›Š—’œ–ȱ ’œȱ ›Š—œ™˜›Žȱ ‹¢ȱ a supportive medium (air currents, water currents or another organism) without consuming itself additional energy for movement. However, the dispersed organism is entirely dependent

General introduction 17 on the transport medium for the rate, direction, distance and point ˜ȱ’–Žȱ˜ȱ’œ™Ž›œŠ•ȱǻ œŠ›ȱǭȱ ŠŽǰȱŘŖŖŗǼǯȱ›˜–ȱ‘Žȱ™˜’—ȱ˜ȱŸ’Ž ȱ of the passively dispersed organism the transport is random, but in some cases the movement of the medium is less random than Ž¡™ŽŒŽǰȱœžŒ‘ȱŠœȱ˜›ȱ˜–’—Š—ȱŠ’›ȱŒž››Ž—œǰȱ˜–’—Š—ȱ ŠŽ›ȱĚȱ˜ œȱ or migration routes of animals, and will largely determine the main dispersal routes of the passively dispersed organisms. As such, the distribution of some passively dispersed zooplankton œ™ŽŒ’Žœȱ’—ȱ˜›‘ȱ–Ž›’ŒŠȱ–ŠŒ‘Žȱ‘Žȱ˜–’—Š—ȱ–’›Š’˜—ȱ›˜žŽœȱ ˜ȱ ŠŽ›˜ •ȱǻ ›ŽŽ—ȱǭȱ’žŽ›˜•ŠǰȱŘŖŖśǼǯȱŽŠ— ‘’•ŽǰȱŠȱ–˜›Žȱ•˜ŒŠ•ȱ scales, passive dispersal will be random. Traditionally, short and long distance dispersal has been distinguished, using a more or less arbitrary distance as boundary, for example 10 km as boundary ˜›ȱ ŠšžŠ’Œȱ ’—ŸŽ›Ž‹›ŠŽœȱ ǻ ›ŽŽ—ȱ ǭȱ ’žŽ›˜•Šǰȱ ŘŖŖśǼǰȱ ˜›ȱ Žęȱ—’—ȱ ’ȱ as respectively dispersal inside a habitat type and dispersal over ’ěȱŽ›Ž—ȱ‘Š‹’Šœȱǻ œŠ›ȱǭȱ ŠŽǰȱŘŖŖŗǼǯȱ ˜ ŽŸŽ›ǰȱ—˜‘’—ȱ’œȱ”—˜ —ȱ on the distances over which diatoms are transported generally, nor on the heterogeneity encountered by a diatom cell inside a habitat ¢™ŽǰȱŠ—ȱ‹˜‘ȱ¢™Žœȱ˜ȱŽęȱ—’’˜—œȱ›Ž–Š’—ȱ‘žœȱšž’Žȱœž‹“ŽŒ’ŸŽȱ˜›ȱ diatom dispersal.

1.4.2 Dispersal vectors and dispersal-related stress factors Three types of transport vectors account for the passive dispersal of diatoms, being water currents, air currents and living organisms (Kristiansen, 1996).

Dispersal by water currents Freshwater currents in rivers or as ground water, and oceanic currents, the thermohaline circulation and other water currents all transport algae passively, including diatoms (Finlay & Esteban, ŘŖŖŚǼǯȱ ȱ Œ˜•˜—’£Š’˜—ȱ Ž¡™Ž›’–Ž—ȱ žœ’—ȱ Š—ȱ Š›’ęȱŒ’Š•ȱ ŠŽ›ȱ œ’—”ȱ connected to an existing pond showed that over short time periods the same species occured as in the source pond, while new species, transported over land, only occurred after several years (Atkinson, 1988). Water currents are the fastest way of dispersal for algae, but are constrained by the position and availability of sources and destinations (Kristiansen, 1996). Of course – and this applies to all ’œ™Ž›œŠ•ȱ–ŽŒ‘Š—’œ–œȱȮȱŽěȱŽŒ’ŸŽȱ’œ™Ž›œŠ•ȱ’œȱ˜—•¢ȱŠŒšž’›Žȱ ‘Ž—ȱŠȱ

18 General introduction propagule arrives alive in a suitable patch and is able to divide and start a new population.

Dispersal by organisms ’ŸŽ›œŽȱ ¢™Žœȱ ˜ȱ ˜›Š—’œ–œȱ ŒŠ—ȱ ™˜Ž—’Š••¢ȱ ›Š—œ™˜›ȱ ’Š˜–œǯȱ Macroalgae and macrophytes will transport the cells during their passive dispersal through water currents and animals. Actively –˜Ÿ’—ȱ Š—’–Š•œȱ ’—Œ•ž’—ȱ ęȱœ‘ǰȱ ’—œŽŒœǰȱ –Š––Š•œȱ Š—ȱ ‹’›œȱ can transport the cells internally (endozoochory) or externally (epizoochory). For freshwater habitats several organisms have been shown to contain living diatoms in or on their bodies. Fish guts ŒŠ—ȱ Œ˜—Š’—ȱ •’Ÿ’—ȱ ’Š˜–œȱ ǻŽ•ŠœšžŽœǰȱ ŗşŚŖǼǰȱ ‹žȱ œžŒ‘ȱ ’œ™Ž›œŠ•ȱ is restricted to the watercourse. Less restricted but still over short distances is external transport on water beetles (Migula, 1888), while ›Š—œ™˜›ȱ˜ŸŽ›ȱ•˜—Ž›ȱ’œŠ—ŒŽœȱǻž™ȱ˜ȱŞśŖȱ”–ǼȱŒŠ—ȱ˜ŒŒž›ȱ’—Ž›—Š••¢ȱ Š—ȱ Ž¡Ž›—Š••¢ȱ Ÿ’Šȱ ›Š˜—ȱ Ěȱ’Žœȱ ǻŠ›œ˜—œȱ et al., 1966) and aquatic –Š––Š•œȱ ǻ ›·—·ŽȬŠ›’Žǰȱ ŗşřŞǼǯȱ ˜ ŽŸŽ›ǰȱ ‘Žȱ –˜œȱ ’–™˜›Š—ȱ dispersers of freshwater algae are waterfowl (Kristiansen, 1996; ›ŽŽ—ȱǭȱ’žŽ›˜•ŠǰȱŘŖŖśǼȱ ‘’Œ‘ȱ–˜ŸŽȱŽ—Ž›Š••¢ȱ’—ȱŠȱ™Ž›’™‘Ž›¢ȱ˜ȱ ŘŖȬřŖȱ ”–ȱ ‹žȱ ŒŠ—ȱ –’›ŠŽȱ ˜ŸŽ›ȱ œŽŸŽ›Š•ȱ ‘ž—›Žœȱ ˜ȱ ”–ȱ ǻ ›ŽŽ—ȱ ǭȱ ’žŽ›˜•ŠǰȱŘŖŖśǼǯȱ¡Ž›—Š••¢ǰȱœ˜–Žȱ•’Ÿ’—ȱ’Š˜–œȱ‘ŠŸŽȱ‹ŽŽ—ȱ˜ž—ȱ˜—ȱ ŽŽǰȱ‹’••œȱŠ—ȱŽŠ‘Ž›œȱ˜ȱžŒ”œȱǻŒ‘•’Œ‘’—ǰȱŗşŜŖDzȱŽȱ žŽ›—ŽȱǻŗŞŞŞǼȱ in Kristiansen, 1996), but algal cells having slime sheets or forming œ™˜›Žœȱ˜›ȱŒ¢œœȱŠ›ŽȱšžŠ—’Š’ŸŽ•¢ȱ–žŒ‘ȱ’—ȱŠŸ˜ž›ȱǻŒ‘•’Œ‘’—ǰȱŗşŜŖǼȱ because desiccation during external transport limits the survival of ›Š—œ™˜›ŽȱŒŽ••œȱǻ’žŽ›˜•Šȱǭȱ ›ŽŽ—ǰȱŘŖŖŘǼǯȱ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱ‘ž–’ȱ œŽ’–Ž—ȱ ’••ȱ –’’ŠŽȱ ‘’œȱ Žœ’ŒŒŠ’˜—ȱ ǻŸŠ—œǰȱ ŗşśşǼǰȱ ‹žȱ –˜œȱ diatoms already die when the moisture content of the surrounding œŽ’–Ž—ȱ ŽŒ›ŽŠœŽœȱ ˜ȱ śŖƖȱ ǻŸŠ—œǰȱ ŗşśşǼǰȱ ‘’•Žȱ ‘Žȱ –žȱ ›Ž–Š’—œȱ rarely longer than 30 minutes on the feet of ducks, decreasing the ™›˜‹Š‹’•’¢ȱ˜ȱ•˜—ȱ’œŠ—ŒŽȱ’œ™Ž›œŠ•ȱ‹¢ȱ‘’œȱ Š¢ȱǻŒ‘•’Œ‘’—ǰȱŗşŜŖǼǯ ȱ˜›ȱŽěȱŽŒ’ŸŽȱ ’—Ž›—Š•ȱ ›Š—œ™˜›ȱ ‹¢ȱ ŠŽ›˜ •ǰȱ ‘Žȱ ™ŠœœŠŽȱ through the guts should be survived, which depends on the physical, chemical and bacterial components of the birds gut, but also on the thickness and composition of the cell wall of the dispersed cell ǻ ›’œ’Š—œŽ—ǰȱ ŗşşŜDzȱ ‘Š›Š•Š–‹’˜žȱ ǭȱ Š—Š–Š›’Šǰȱ ŘŖŖŘDzȱ ›ŽŽ—ȱ ǭȱ ’žŽ›˜•ŠǰȱŘŖŖśǼǯȱ‘ŽȱŠ–˜ž—ȱ˜ȱ•’Ÿ’—ȱŠ•ŠŽȱ™›ŽœŽ—ȱ’—ȱŠŽŒŽœȱŠ—ȱ guts lies however much lower than the amount of algae carried Ž¡Ž›—Š••¢ȱǻŒ‘•’Œ‘’—ǰȱŗşŜŖǼȱŠ—ȱ˜žȱ˜ȱęȱŸŽȱ’Š˜–ȱœ™ŽŒ’ŽœȱŽœŽȱ only a single survived digestion experiments (Atkinson, 1971). However, internal transport could occur over longer distances than

General introduction 19 external transport (Proctor, 1966), and living Hassall has been found in faeces two hours after feeding, corresponding to a Ěȱ’‘ȱ˜ȱŘŘŖȱ”–ȱǻ”’—œ˜—ǰȱŗşŞŖǼǯȱ Also humans disperse microalgae and diatoms between ™˜—œȱ‘›˜ž‘ȱ‘Žȱ’—›˜žŒ’˜—ȱ˜ȱŽ¡˜’Œȱęȱœ‘ŽœȱŠ—ȱ™•Š—œȱǻ˜Ž¢ȱ ǭȱ ’••Ž›ǰȱ ŗşŞŞǼȱ Š—ȱ ‘›˜ž‘ȱ œŒ’Ž—’ęȱŒȱ ŠŒ’Ÿ’’Žœȱ Š—ȱ ‘Žȱ žœŽȱ ˜ȱ ž—œŽ›’•’£Žȱ–ŠŽ›’Š•ȱǻŠ••’—ǰȱŗşśŗǼǯȱ˜—Œ•žœ’ŸŽ•¢ǰȱ‘Ž›ŽȱŠ›ŽȱŽ—˜ž‘ȱ indications that diatoms are internally and externally transported by various organisms, but knowledge on the frequency and distance of transport (Figuerola et al.ǰȱŘŖŖśǼǰȱŠ—ȱ˜—ȱ‘Žȱ’œ™Ž›œŽȱœ™ŽŒ’ŽœȱŠ—ȱ ˜•Ž›Š—ŒŽȱ•ŽŸŽ•œȱ˜ȱ’ěȱŽ›Ž—ȱœ™ŽŒ’Žœȱǻ‘Š›Š•Š–‹’˜žȱǭȱŠ—Š–Š›’Šǰȱ 2002) is extremely scarce.

Dispersal by air currents In general it is assumed that wind transport plays an important role for the dispersal of microalgae (Round, 1981; Chalmers et al.ǰȱ ŗşşŜDzȱ ›’œ’Š—œŽ—ǰȱ ŗşşŜǼǯȱ ˜ ŽŸŽ›ǰȱ ‘Žȱ Ž—Ž›Š•ȱ ™ŠĴȱŽ›—ȱ ’œȱ ‘Šȱ predominantly terrestrial algae, including cyanobacteria, green algae and to lesser extent terrestrial diatoms, are transported through the air, while there is uncertainty on the frequency, distance and extent of aerial transport. Concerning diatoms, it is already longer known ‘Šȱ ‘Ž’›ȱ Ž–™¢ȱ ›žœž•Žœȱ Š›Žȱ ™›ŽœŽ—ȱ ’—ȱ ’—ȱ Œž››Ž—œȱ ǻŠ› ’—ǰȱ ŗŞŚśDzȱŽ’Ž›ȱǭȱ’—‹Ž›‘ǰȱŗşřśDzȱŠ¢—Š›ǰȱŗşŜŞDzȱ‘Š•–Ž›œ et al., 1996), ‹žȱŠ•œ˜ȱ•’Ÿ’—ȱ’Š˜–œȱ‘ŠŸŽȱ‹ŽŽ—ȱ›Ž™˜›Žȱ›˜–ȱŠ’›ȱœŠ–™•ŽœǯȱŠ—ȱ ŸŽ›ŽŽ–ȱǻŗşřŝǼǰȱŒ‘•’Œ‘’—ȱǻŗşŜŗǰȱŗşŜŚǼǰȱ›˜ —ȱet al.ȱǻŗşŜŚǼȱŠ—ȱ˜¢Ȭ Ocotla & Carrera (1993) assessed the presence of living microalgae and found predominantly cyanobacteria and coccoid green algae, besides some sporadic diatom cells from the genera Navicula Bory ŽȱŠ’—Ȭ’—ŒŽ—ǰȱ Š—ĵȱœŒ‘’Šȱ ›ž—˜ ǰȱ’ĵȱœŒ‘’Š Hassall and Melosira Agardh. Their conclusions are that principally green algae such as Chlorococcum Meneghini, Chlorellaȱ Ž’“Ž›’—Œ”ȱ Š—ȱ Klebsormidium ’•ŸŠǰȱŠĴȱ˜¡ȱǭȱ•ŠŒ” Ž••ȱŠ›Žȱ›Š—œ™˜›Žȱ‹¢ȱ ’—ȱ ‘’•Žȱ’Š˜–œȱŠ›Žȱ •Žœœȱ˜Ž—ȱŽ—Œ˜ž—Ž›ŽȱǻŠ—ȱŸŽ›ŽŽ–ǰȱŗşřŝDzȱŒ‘•’Œ‘’—ǰȱŗşŜŗDzȱ›˜ —ȱ et al.ǰȱŗşŜŚDzȱŒ‘•’Œ‘’—ǰȱŗşŜŚDzȱ˜¢ȬŒ˜•ŠȱǭȱŠ››Ž›ŠǰȱŗşşřǼǰȱŠ—ȱ‘Šȱ mainly terrestrial taxa are recovered (Brown et al.ǰȱŗşŜŚDzȱ˜¢ȬŒ˜•Šȱ ǭȱŠ››Ž›ŠǰȱŗşşřǼǯȱ ˜ ŽŸŽ›ǰȱ Ž’œœ•Ž›ȱǭȱ Ž›•˜ěȱȱǻŗşŜŜǼȱ˜ž—ǰȱ‹Žœ’Žœȱ the typical green algae, a large amount of living diatom species in their air traps, qualitatively and quantitatively corresponding to the nearby situated river Havel. These data contradict the previous opinion that diatoms are not common in air currents, and that only a limited amount of taxa are found, but no data are given on the

20 General introduction œŽȬž™ǰȱ‘ŽȱŽ¡ŠŒȱ•˜ŒŠ’˜—ȱ˜ȱ‘Žȱ›Š™œȱŠ—ȱ‘Žȱ ŽŠ‘Ž›ȱŒ˜—’’˜—œǯȱ Žœ™’Žȱ‘’œȱ•Šœȱœž¢ǰȱ˜—ȱŠŸŽ›ŠŽȱŠ›˜ž—ȱŗȱ˜ȱŘȱ–’Œ›˜Š•Š•ȱŒŽ••œȱ™Ž›ȱ m³ are found, which is not much compared to the on average 142,3 pollen per m³ (Brown et al., 1964; Tormo et al., 2001). ȱ ŽŸŽ›Š•ȱŠŒ˜›œȱ™•Š¢ȱŠȱ›˜•Žȱ’—ȱ‘Žȱ˜ŒŒž››Ž—ŒŽȱ˜ȱ ’—ȱ’œ™Ž›œŠ•ȱ ǻ œŠ›ȱ ǭȱ ŠŽǰȱ ŘŖŖŗǼǯȱ ŽŽ˜›˜•˜’ŒŠ•ȱ Œ˜—’’˜—œȱ œžŒ‘ȱ Šœȱ ›Ž•Š’ŸŽȱ humidity, wind velocity and wind shearing, air temperature, atmospheric pressure and the occurrence of turbulences or eddies ’••ȱ ŽŽ›–’—Žȱ ‘Žȱ Š”Ž˜ěȱȱ ˜ȱ ˜›Š—’œ–œȱ ›˜–ȱ ‘Žȱ œž‹œ›ŠŽǰȱ ‘Žȱ period and distance it will remain in the air and move, and the moment of landing into a new patch. As dry soils are more wind Ž›˜’‹•Žȱ‘Š—ȱ ŽĴȱŽ›ȱœ˜’•œȱǻ‘Ž™’•ǰȱŗşśŜǼǰȱ’ȱ’œȱž—Ž›œŠ—Š‹•Žȱ‘Šȱ predominantly terrestrial algae are found in the air, and that the highest abundances of dispersed algae are found in dryer periods ǻŠ—ȱ ŸŽ›ŽŽ–ǰȱ ŗşřŝDzȱ ˜›–˜ et al., 2001). Besides meteorological conditions, the intrinsic features of the transported organism will determine the ease to be picked up and transported by air currents (such as size, morphological characteristics, local population abundances and habitat) and the capacity to survive the stresses Ž¡™Ž›’Ž—ŒŽȱž›’—ȱŠŽ›’Š•ȱ›Š—œ™˜›ȱœžŒ‘ȱŠœȱȬ›Š’Š’˜—ǰȱŽœ’ŒŒŠ’˜—ȱ Š—ȱŽ¡›Ž–ŽȱŽ–™Ž›Šž›ŽœȱǻŒ‘•’Œ‘’—ǰȱŗşŜŗDzȱ¢•˜›ǰȱŗşŞŜDzȱ’‘‘Š›ȱ ǭȱ˜‘›ǰȱŗşŞŝDzȱ¢——Ȭ’••’Š–œǰȱŗşşŗǼǯȱ‘¢œ’˜•˜’ŒŠ•ǰȱ–˜›™‘˜•˜’ŒŠ•ȱ and cytological characteristics will enhance survival probabilities, œžŒ‘ȱŠœȱ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱœ•’–Žȱœ‘ŽŽœȱǻ‘Ž™‘Š›ǰȱŗşŞŝǼǰȱ‘Žȱ’—Œ›ŽŠœŽȱ in concentrations of pigments (Imshenetsky & Kondrateva, 1987) or compatible compounds (Welsh, 2000), or the formation of resting œŠŽœȱǻ Š››ŠŸŽœȱǭȱ›Ž—Œ‘ǰȱŗşŝśDzȱ ˜ěȱ–Š——ǰȱŗşşŜǼǯ

1.4.3 Dispersal rates and probabilities ‘Žȱ’—ĚȱžŽ—ŒŽȱ˜ȱ’œ™Ž›œŠ•ȱ˜—ȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ›Š—ŽœȱŽ™Ž—œȱ—˜ȱ only on its prevalence, but also on its rate. To be able to overcome Šȱœ™ŽŒ’Š’˜—ȱŽŸŽ—ȱ’—ȱŠȱ™˜™ž•Š’˜—ǰȱŽ—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱ™˜™ž•Š’˜—œȱ must be high enough to overcome genetic drift and selection. It is thus possible that very low levels of dispersal are not able to ™›ŽŸŽ—ȱ ™˜™ž•Š’˜—ȱ ’ěȱŽ›Ž—’Š’˜—ǯȱ ‘’œȱ •ŽŸŽ•ȱ ’••ȱ Ž™Ž—ȱ ˜—ȱ ‘Žȱ local population abundances in the colonized patch, but also on the colonization and competition abilities of the colonizing cells. ˜—ŒŽ›—’—ȱ ’Š˜–œǰȱ —˜ȱ ŠŠȱ Š›Žȱ ŠŸŠ’•Š‹•Žȱ ˜—ȱ ›ŠŽœȱ ˜ȱ ŽěȱŽŒ’ŸŽȱ dispersal. However, based on the literature we can estimate their ™›˜‹Š‹’•’’Žœȱ ˜ȱ ’œ™Ž›œŠ•ǰȱ ’Ÿ’—ȱ Šȱ ęȱ›œǰȱ ›˜ž‘ȱ ’—’ŒŠ’˜—ȱ ˜ȱ ‘Žȱ ŽěȱŽŒ’ŸŽȱ’œ™Ž›œŠ•ȱ›ŠŽǯȱ

General introduction 21 First, terrestrial habitats are assumed to be less fragmented Œ˜–™Š›Žȱ˜ȱŠšžŠ’Œȱ‘Š‹’ŠœǰȱŽ—‘Š—Œ’—ȱ‘Žȱ™›˜‹Š‹’•’¢ȱ˜ȱŽěȱŽŒ’ŸŽȱ ’œ™Ž›œŠ•ȱ˜›ȱŽ››Žœ›’Š•ȱ’Š˜–œǯȱŽŒ˜—ǰȱ–Š’—•¢ȱŽ››Žœ›’Š•ȱ’Š˜–œȱ are transported by air currents, whereas lacustrine diatoms will be transported by waterfowl, but the presence of living diatoms is for both vectors quite low. Based on the knowledge that diatoms are not very commonly transported by waterfowl and air currents (see above), we can assume that their dispersal rates will in general not be extremely high. Third, dispersal probabilities decrease with ’œŠ—ŒŽǰȱ Š—ȱ œ‘˜›Ȭ’œŠ—ŒŽȱ ’œ™Ž›œŠ•ȱ ˜ȱ ’Š˜–œȱ ’••ȱ ‘Ž›Ž˜›Žȱ ‹Žȱ –˜›Žȱ ™›˜‹Š‹•Žȱ ‘Š—ȱ •˜—Ȭ’œŠ—ŒŽȱ ’œ™Ž›œŠ•ǯȱ ˜–‹’—’—ȱ ‘ŽœŽȱ assumptions, we can hypothesize that for both lacustrine and Ž››Žœ›’Š•ȱ ’Š˜–œȱ •˜—Ȭ’œŠ—ŒŽȱ ’œ™Ž›œŠ•ȱ ’••ȱ —˜ȱ ‹Žȱ œžĜȱȱŒ’Ž—•¢ȱ Ž—˜ž‘ȱ ˜ȱ ˜ŸŽ›Œ˜–Žȱ Ž—Ž’Œȱ ’ěȱŽ›Ž—’Š’˜—ȱ ‹Ž ŽŽ—ȱ ™˜™ž•Š’˜—œȱ and prevent the formation of geographical structure, while dispersal over short distances does very likely occur. For terrestrial diatoms ‘’Œ‘ȱ Š›Žȱ ›Š—œ™˜›Žȱ ‹¢ȱ Š’›ȬŒž››Ž—œǰȱ Žȱ ‘¢™˜‘Žœ’£Žȱ ‘Šȱ ‘Ž¢ȱ will disperse farther away than lacustrine diatoms due to the less fragmented terrestrial habitat and the occurrence of aerial dispersal, albeit not on a world wide scale, creating thus geographical structure on a somewhat broader scale.

1.5 Aims and thesis outline The overall aim of this study is to improve our understanding of ‘Žȱ›˜•Žȱ˜ȱ’œ™Ž›œŠ•ȱ•’–’Š’˜—ȱ˜›ȱŽ—Ž›Š’—ȱŽ˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œȱ in lacustrine and terrestrial diatoms. This is done by using multiple lines of evidence, including the analysis of large and regional œŒŠ•Žȱ ‹’˜’ŸŽ›œ’¢ȱ ™ŠĴȱŽ›—œǰȱ ’–ŽȬŒŠ•’‹›ŠŽȱ ™‘¢•˜Ž—’Žœȱ Š—ȱ ˜œœ’•ȱ evidence, and ecophysiological studies. Our primary study region Œ˜–™›’œŽœȱ —Š›Œ’ŒŠȱ Š—ȱ ‘Žȱ œž‹Ȭ—Š›Œ’Œȱ ’œ•Š—œǯȱ ŽŒŠžœŽȱ ˜ȱ ‘Žȱ ›Ž•Š’ŸŽ•¢ȱ œ™ŽŒ’ŽœȬ™˜˜›ȱ ’Š˜–ȱ Ěȱ˜›Šȱ Š—ȱ œ›˜—ȱ Ž›ŽŽȱ ˜ȱ geographical isolation of many habitats, this region is amenable to œžŒ‘ȱœž’Žœǰȱ–Š”’—ȱ’ȱ™˜œœ’‹•Žȱ˜ȱž—Ž›Š”ŽȱŒ˜–™›Ž‘Ž—œ’ŸŽǰȱ›Ž’˜—Ȭ ’Žȱœž’Žœȱ˜ȱ‹’˜’ŸŽ›œ’¢ȱ™ŠĴȱŽ›—œȱŠ—ȱ¢—Š–’Œœȱ ’‘’—ȱŠȱ›Ž’˜—ȱ ’‘ȱ Šȱ ›Ž•Š’ŸŽ•¢ȱ Ž••Ȭ˜Œž–Ž—Žȱ Ž˜•˜’ŒŠ•ȱ Š—ȱ Œ•’–Š˜•˜’ŒŠ•ȱ ‘’œ˜›¢ȱ˜›ȱ–˜œȱ˜ȱ‘ŽȱŽ—˜£˜’Œȱ™Ž›’˜ȱǽŜśǯśȱ–’••’˜—ȱ¢ŽŠ›ȱǻŠǼȱŠ˜ȱ till present] during which the pennate diatoms radiated.

22 General introduction The thesis is organized in an introduction, three parts with our main research results, and a general discussion:

INTRODUCTION ǐȱChapter 1 gives a general introduction on biogeography and microbial biogeography, and focuses further on diatom biogeography, species diversity and the interaction of dispersal probabilities and stress tolerance.

PART 1: PATTERNS IN DIATOM DISTRIBUTION ǐȱIn Chapter 2 we combine analyses of biogeographical ™ŠĴȱŽ›—œȱ ˜ȱ —Š›Œ’Œȱ Š—ȱ ›Œ’Œȱ ’Š˜–œǰȱ ˜œœ’•ȱ ŠŠȱ Š—ȱ Šȱ ’–ŽȬ calibrated molecular phylogeny to provide evidence that adaptive radiations through allopatric speciation, survival in glacial refugia, and regional extinction operate in microorganisms at similar spatial and temporal scales as observed in macroscopic organisms. ‘ŽœŽȱęȱ—’—œȱŒŠŽ˜›’ŒŠ••¢ȱ›ŽœŽȱ‘ŽȱŒž››Ž—ȱ™Š›Š’–ȱ’—ȱ’Š˜–ȱ biogeography that diatoms are not limited in their dispersal and consequently do not have biogeographies. ǐȱIn Chapter 3 we examine if terrestrial and lacustrine diatoms œ‘˜ ȱ ’ěȱŽ›Ž—ȱ ™ŠĴȱŽ›—œȱ ’—ȱ Ž˜›Š™‘’ŒŠ•ȱ œ›žŒž›Žȱ Šȱ ‘Žȱ ›Ž’˜—Š•ȱ scale, using distance decay analysis of community similarities and ž›—˜ŸŽ›ȱ˜ȱ’Š˜–ȱŠœœŽ–‹•ŠŽœȱ‹Ž ŽŽ—ȱ‘Žȱœž‹Ȭ—Š›Œ’Œȱ’œ•Š—œȱ ›˜£ŽȱŠ—ȱ Ž›žŽ•Ž—ȱœ’žŠŽȱ’—ȱ‘Žȱ˜ž‘ȱ —’Š—ȱŒŽŠ—ǰȱŠ—ȱ˜ž‘ȱ Ž˜›’Šȱœ’žŠŽȱ’—ȱ‘Žȱ˜ž‘ȱ•Š—’ŒȱŒŽŠ—ǯȱ˜––ž—’¢ȱœ’–’•Š›’’Žœȱ decrease over space for both terrestrial and aquatic habitats, but no œ’—’ęȱŒŠ—ȱ ’ěȱŽ›Ž—ŒŽœȱ Š›Žȱ ˜ž—ȱ ‹Ž ŽŽ—ȱ ‘Ž–ǯȱ —•¢ȱ Šȱ œ–Š••Ž›ȱ œ™Š’Š•ȱœŒŠ•Žœǰȱ ’‘’—ȱ’œ•Š—œǰȱŽ››Žœ›’Š•ȱ’Š˜–œȱ‘ŠŸŽȱŠȱœ’—’ęȱŒŠ—•¢ȱ lower turnover between sites, suggesting higher dispersal rates and/ or broader niches for terrestrial diatoms.

PART 2: SPECIATION IN TIME AND SPACE ǐȱTo further explore the importance of time in speciation events, ’ŸŽ›Ž—ŒŽȱ Š—ȱ ‘žœȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—’—ǰȱ Žȱ Œ˜—œ›žŒȱ ’—ȱ Chapter 4ȱŠȱ–ž•’Ȭ•˜Œžœȱ™‘¢•˜Ž—¢ȱ˜ȱ‘Žȱ’Š˜–ȱŽ—žœȱPinnularia Ehrenberg, and calibrate it in time using fossil material. Our analysis œžŽœœȱ‘Šȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ‘ŽȱŽ—žœȱœŠ›Žȱca. 60 Ma ago, 10 to řŖȱŠȱŽŠ›•’Ž›ȱ‘Š—ȱ™›ŽŸ’˜žœ•¢ȱ‘˜ž‘ǯȱ‘ŽȱŽ—žœȱ’ŸŽ›œ’ęȱŽȱ’—˜ȱřȱ –Š“˜›ȱŒ•ŠŽœȱŠ—ȱœŽŸŽ›Š•ȱœž‹ȬŒ•ŠŽœǰȱ’—ȱœ˜–ŽȱŒŠœŽœȱŒ˜—›žŽ—ȱ ’‘ȱ ˜‹œŽ›ŸŠ‹•Žȱ–˜›™‘˜•˜’ŒŠ•ȱŠ—ȱŒ¢˜•˜’ŒŠ•ȱ’——˜ŸŠ’˜—œǰȱŠ—ȱŠ••ȱ–Š“˜›ȱ clades have dispersed successfully worldwide.

General introduction 23 ǐȱ‘Žȱ –ž•’Ȭ•˜Œžœȱ ™‘¢•˜Ž—¢ȱ ˜ȱ ‘Žȱ Ž—žœȱ Pinnularia from chapter 4 allows us to investigate the evolution of morphological characters and to compare the phylogenetic signal present in genetic and morphological data in Chapter 5. This is done by using ancestral state reconstruction of the morphological data and by performing cladistic analyses on the morphological data. While some –˜›™‘˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›ȱœŠŽœȱŽŸ˜•ŸŽȱœŽŸŽ›Š•ȱ’–Žœȱ˜ŸŽ›ȱ’ěȱŽ›Ž—ȱ clades, other character states were restricted to a certain clade. The –˜›™‘˜•˜’ŒŠ•ȱ ŠŠȱ Š••˜ œȱ žœȱ ˜ȱ ›ŽŒ˜—œ›žŒȱ œ˜–Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ relationships, but only the genetic data are able to fully resolve these relationships. However, similar clades are recovered, indicating that a similar phylogenetic signal is present in both datasets. ǐȱIn Chapter 6 we select the cosmopolitan terrestrial morphospecies Pinnularia borealis Ehrenberg and Š—ĵȱœŒ‘’Šȱ amphioxysȱǻ‘›Ž—‹Ž›Ǽȱ ›ž—˜ ȱŠ—ȱŽŽ›–’—Žȱ‘ŽȱŽ›ŽŽȱ˜ȱŽ—Ž’Œȱ ’ěȱŽ›Ž—’Š’˜—ȱ ‹Ž ŽŽ—ȱ —Š›Œ’Œȱ Š—ȱ —˜—Ȭ—Š›Œ’Œȱ œ›Š’—œȱ žœ’—ȱ the plastid marker rbcȱŠ—ȱ‘Žȱ—žŒ•ŽŠ›ȱ–Š›”Ž›ȱŘŞȱ›ǯȱŽȱ™•ŠŒŽȱ the divergences of P. borealisȱ’—ȱŠȱŽ˜•˜’ŒŠ•ȱ’–ŽȬ›Š–Žȱžœ’—ȱ‘Žȱ ’–ŽȬŒŠ•’‹›Š’˜—ȱ˜ȱ‘ŽȱŽ—žœȱPinnulariaǯȱŽȱŠ•œ˜ȱŠœœŽœœȱ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ‘Ž›–Š•ȱ ŠŠ™Š’˜—ȱ ‹Ž ŽŽ—ȱ Ž—Ž’ŒŠ••¢ȱ ’ěȱŽ›Ž—’ŠŽȱ •’—ŽŠŽœȱ for both taxa. The results indicate that in both taxa the Antarctic œ›Š’—œȱ Ž›ŽȱŽ—Ž’ŒŠ••¢ȱŠ—ȱŽŒ˜•˜’ŒŠ••¢ȱ’ěȱŽ›Ž—’ŠŽǰȱœžŽœ’—ȱ the occurrence of allopatric speciation on the Antarctic.

PART 3: TOLERANCE LEVELS FOR DISPERSAL-RELATED STRESSES ǐȱIn Chapter 7 we investigate for a selection of benthic freshwater and terrestrial diatom strains the tolerance levels of ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜›ȱ  ˜ȱ ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱ œ›Žœœȱ ŠŒ˜›œǰȱ —Š–Ž•¢ȱ desiccation and extreme temperatures. We observe a very high sensitivity of both aquatic and terrestrial diatoms for desiccation, while terrestrial diatoms are more tolerant for extreme temperatures. ǐȱBecause resting stages are in many organisms the dominant dispersing stages, we analyze in Chapter 8 the tolerance levels of diatom resting cells for desiccation and freezing, and this for a selection of taxa occurring over a gradient from permanent aquatic habitats to terrestrial soils. While all taxa formed resting stages, only those from species that occurred mainly or exclusively outside water bodies were tolerant for desiccation and freezing, showing that terrestrial diatoms are adapted to their environment, and increasing their dispersal probabilities compared to aquatic diatoms.

24 General introduction GENERAL DISCUSSION ǐȱIn Chapter 9 the results of the previous chapters are discussed in the general framework of biogeography and dispersal probabilities.

General introduction 25

Part 1. Patterns in diatom distribution

Part 1: Patterns in diatom distribution 27

2. Poles apart: Interhemispheric contrasts in diatom diversity driven by climate and tectonics

Elie Verleyen1, Bart Van de Vijver2ǰȱŠ›˜•’—Žȱ˜žěȱ›ŽŠž1, Koen Sabbe1, Dominic A. Hodgson3, Linda Nedbalová4, Pieter Vanormelingen1, Dermot Antoniades5 and Wim Vyverman1

1 ǐȱ Ghent University, Protistology and Aquatic Ecology, Krijgslaan 281 S8, 9000 Gent, Belgium 2 ǐȱ National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, Belgium 3 ǐȱ British Antarctic Survey, Natural Environment Research Council, High Cross Madingley Road, CB3 0ET, Cambridge, UK 4 ǐȱ Charles University in Prague, Department of Ecology, ’—’²—¤ȱŝǰȱŗŘŞȱŚŚȱ›ŠžŽȱŘǰȱ£ŽŒ‘ȱŽ™ž‹•’Œ 5 ǐȱ ›ž™˜ȱŽȱŽŒ˜•˜ÇŠȱ¢ȱęȱœ’˜•˜ÇŠȱŽȱęȱ˜™•Š—Œ˜—ǰȱŽŒŒ’à—ȱ Limnología, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay

ž‹–’ĴȱŽȱ–Š—žœŒ›’™ Contribution of CS: part of the statistical analysis and molecular phylogeny

Interhemispheric contrasts in diatom diversity 29 Abstract ›Œ’ŒȱŠ—ȱ—Š›Œ’ŒȱĚȱ˜›ŠœȱŠ—ȱŠž—Šœȱ’ěȱŽ›ȱœ›˜—•¢ȱ’—ȱ‘Ž’›ȱ˜ŸŽ›Š••ȱ Œ˜–™˜œ’’˜—ȱŠ—ȱ’ŸŽ›œ’¢ȱǻ‹‹˜Ĵȱȱǭȱ›˜Œ‘–Š——ǰȱŘŖŖřDzȱ˜—ŸŽ¢ȱǭȱ ŽŸŽ—œǰȱ ŘŖŖŝǼǰȱ ›ŽĚȱŽŒ’—ȱ ’—Ž›‘Ž–’œ™‘Ž›’Œȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ Œ•’–ŠŽȱ history and landmass connectivity (Barnes et al.ǰȱŘŖŖŜǼǯȱ —ȱŒ˜—›Šœǰȱ ™›ŽŸŠ’•’—ȱ –’Œ›˜‹’Š•ȱ ‹’˜Ž˜›Š™‘’Œȱ ‘Ž˜›¢ȱ ǻ’—•Š¢ǰȱ ŘŖŖŘǼȱ ™›Ž’Œœȱ that Arctic and Antarctic ecosystems should harbour the same microbial communities, with allopatric speciation being rare as a result of the ubiquitous dispersal of microbes. Here we show that, Œ˜—›Š›¢ȱ˜ȱ‘’œȱ™Š›Š’–ǰȱ™ŠĴȱŽ›—œȱ˜ȱ‹’˜’ŸŽ›œ’¢ȱŠ—ȱŽ—Ž–’œ–ȱ’—ȱ ‘Žȱ’Š˜–ȱĚȱ˜›Šœȱ˜ȱ›Œ’ŒȱŠ—ȱ—Š›Œ’Œȱ•Š”ŽœȱŠ›Žȱœ›˜—•¢ȱ’ŸŽ›Ž—ǯȱ Antarctic communities are impoverished and imbalanced relative ˜ȱ‘Ž’›ȱ›Œ’ŒȱŒ˜ž—Ž›™Š›œǰȱŠ—ȱŠ›ŽȱŒ‘Š›ŠŒŽ›’£Žȱ‹¢ȱ‘’‘ȱ•ŽŸŽ•œȱ˜ȱ Ž—Ž–’œ–ǰȱ‘ŽȱŠ‹œŽ—ŒŽȱ˜ȱ”Ž¢ȱž—Œ’˜—Š•ȱ›˜ž™œȱœžŒ‘ȱŠœȱ™•Š—”˜—’Œȱ taxa, an overrepresentation of terrestrial lineages, and a general paucity of globally successful genera. Comparison of contemporary —Š›Œ’Œȱ Ěȱ˜›Šœȱ ’‘ȱ ˜œœ’•ȱ ’˜ŒŽ—Žȱ ŠœœŽ–‹•ŠŽœȱ Š—ȱ Šȱ –˜•ŽŒž•Š›ȱ Œ•˜Œ”ȱŠ—Š•¢œ’œȱ˜ȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ™ŠĴȱŽ›—œȱ™˜’—ȱ˜ȱ‘’‘ȱ›ŠŽœȱ˜ȱ•˜ŒŠ•ȱ extinction during Neogene and Quaternary glacial maxima, in combination with radiations through allopatric speciation in glacial refugia. We propose that processes controlling the distribution and ’ŸŽ›œ’ęȱŒŠ’˜—ȱ ˜ȱ –’Œ›˜˜›Š—’œ–œȱ ŒŠ—ȱ ˜™Ž›ŠŽȱ Šȱ œ’–’•Š›ȱ œ™Š’Š•ȱ and temporal scales as those for macroscopic organisms, leading to œ›’”’—•¢ȱŒ˜—›žŽ—ȱ‹’˜Ž˜›Š™‘’Œȱ™ŠĴȱŽ›—œǯ

30 Interhemispheric contrasts in diatom diversity 2.1 Introduction ™Š’Š•ȱ™ŠĴȱŽ›—œȱ˜ȱ•˜‹Š•ȱ‹’˜’ŸŽ›œ’¢ȱŠ›ŽȱŽŽ›–’—Žȱ‹¢ȱ™‘¢•˜Ž—Ž’Œȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱŠ—ȱŽ¡’—Œ’˜—ȱŠ—ȱ’œ™Ž›œŠ•ȱ˜ȱ•’—ŽŠŽœȱ’—ȱ›Ž•Š’˜—ȱ˜ȱ ŽŒ˜—’Œȱ™›˜ŒŽœœŽœȱŠ—ȱŒ•’–ŠŽȱ¢—Š–’Œœȱǻ˜–˜•’—˜ǰȱŘŖŗŖǼǯȱ‘’œȱ’œȱ particularly evident in polar terrestrial biota, where interhemispheric ’ěȱŽ›Ž—ŒŽœȱ’—ȱ•ŠŒ’Š•ȱ‘’œ˜›¢ȱǻŠŒ‘˜œȱet al.ǰȱŘŖŖŗǼȱŠ—ȱ’—ȱ‘Žȱœ™Š’Š•ȱ Œ˜—ęȱž›Š’˜—ȱ˜ȱ•Š—–ŠœœŽœȱŠ›Žȱ›ŽĚȱŽŒŽȱ’—ȱŒ˜—›Šœ’—ȱ™ŠĴȱŽ›—œȱ˜ȱ contemporary plant and animal biodiversity (Barnes et al.ǰȱ ŘŖŖŜǼǯȱ Most Arctic biota are thought to have evolved in the high mountain ›Š—Žœȱ˜ȱŽ–™Ž›ŠŽȱ›Ž’˜—œȱŠ—ȱŒ˜•˜—’£Žȱ‘Žȱ‘’‘ȱ•Š’žŽœȱ˜ȱ˜›–ȱ Š—ȱŽ¡Ž—œ’ŸŽȱž—›Šȱ‹’˜–Žȱǻ‹‹˜Ĵȱȱet al.ǰȱŘŖŖŖǼȱœ‘˜›•¢ȱŠŽ›ȱ‘Žȱ˜—œŽȱ ˜ȱ‘Žȱ•ŠŽȱ’˜ŒŽ—Žȱ•ŠŒ’Š’˜—œȱŠ‹˜žȱřȱŠȱŠ˜ȱǻŠŒ‘˜œȱet al.ǰȱŘŖŖŗǼǯȱ Other species originated during the Holocene, or, alternatively, are descendents from the forest biota that occupied the Arctic during ‘Žȱ•ŠŽȱŽ›’Š›¢ȱǻ‹‹˜Ĵȱȱǭȱ›˜Œ‘–Š——ǰȱŘŖŖřǼǯȱž›’—ȱ‘Žȱ•Ž’œ˜ŒŽ—Žȱ ice ages, many of these cold-adapted species probably proliferated in vast tundra populations further south or in high latitude glacial ›Žž’Šȱǻ ž•·—ǰȱŗşřŝǼǰȱ˜••˜ Žȱ‹¢ȱ™˜œ•ŠŒ’Š•ȱ›ŽŒ˜•˜—’œŠ’˜—ȱ˜ȱ’ŒŽȬ ›ŽŽȱŽ››Š’—ȱž›’—ȱ’—Ž›•ŠŒ’Š•œǰȱ ‘’Œ‘ȱ™›ŽŸŽ—ŽȱŠȱœ’—’ęȱŒŠ—ȱ•˜œœȱ ˜ȱŽ—Ž’Œȱ’ŸŽ›œ’¢ȱǻ›˜Œ‘–Š——ȱǭȱ›¢œ’—ǰȱŘŖŖŞǼǯȱœȱŠȱ›Žœž•ȱ˜ȱ‘Žȱ high connectivity between landmasses of the Northern Hemisphere Š—ȱ‘Žȱ•ŠŒ”ȱ˜ȱœ›˜—ȱ’œ™Ž›œŠ•ȱ‹Š››’Ž›œǰȱ–˜œȱŠ¡Šȱ‘ŠŸŽȱŠȱŒ’›Œž–Ȭ ›Œ’Œȱ’œ›’‹ž’˜—ȱǻ‹‹˜Ĵȱȱǭȱ›˜Œ‘–Š——ǰȱŘŖŖřǼǯȱ In the Southern Hemisphere, by contrast, the isolated and fragmented nature of landmasses prevented such large-scale •Š’ž’—Š•ȱœ‘’œȱ˜ȱŒ˜•ȬŠŠ™Žȱœ™ŽŒ’Žœǯȱ˜•ŽŒž•Š›ȱŒ•˜Œ”ȱŠ—Š•¢œŽœȱ have revealed that taxa started to diverge into endemic lineages through allopatric speciation shortly after the isolation of Antarctica from the other continents of the southern hemisphere (Convey Žȱ Š•ǯǰȱ ŘŖŖŞǼǯȱ Š—¢ȱ ‹’˜Šȱ Ž›Žȱ ›’ŸŽ—ȱ ˜ȱ Ž¡’—Œ’˜—ȱ ŠŽ›ȱ ‘Žȱ –’Ȭ Miocene cooling event (ca.ȱŗŚȱŠǼǰȱ ‘Ž—ȱ‘ŽȱŠœȱ—Š›Œ’Œȱ ŒŽȱ‘ŽŽȱ advanced and full polar climate conditions were established (Lewis ŽȱŠ•ǯǰȱŘŖŖŞǼǯȱ‘’œȱ›Žœž•Žȱ’—ȱŠȱ‘’‘•¢ȱ’–™˜ŸŽ›’œ‘ŽȱŠ—ȱ’–‹Š•Š—ŒŽȱ Ěȱ˜›ŠȱŠ—ȱŠž—Šȱ˜—ȱ‘Žȱ—Š›Œ’ŒȱŒ˜—’—Ž—ȱǻ˜—ŸŽ¢ȱǭȱŽŸŽ—œǰȱŘŖŖŝǼȱ as restrictions placed on dispersal by continental isolation prevented ›ŽŒ˜•˜—’£Š’˜—ȱ˜ȱ—Š›Œ’ŒŠȱ›˜–ȱ‘Žȱ–’Ȭœ˜ž‘Ž›—ȱ•Š’žŽœȱž›’—ȱ interglacial periods. —ȱŒ˜—›Šœȱ˜ȱ‘Žȱ–ž•’ŒŽ••ž•Š›ȱĚȱ˜›ŠȱŠ—ȱŠž—Šǰȱ‘Žȱ’–™˜›Š—ŒŽȱ of dispersal limitation, allopatric speciation, and long-term tectonic and climate dynamics have been considered to be of minor relevance in shaping contemporary polar microbial communities.

Interhemispheric contrasts in diatom diversity 31 Indeed, prevailing theory predicts that similar habitats at both poles should share the same microbial communities as a result of their ž—•’–’Žȱ ’œ™Ž›œŠ•ȱ ŒŠ™ŠŒ’’Žœȱ ǻ’—•Š¢ǰȱ ŘŖŖŘǼǯȱ ˜ŒŠ•ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ factors are therefore believed to act as the major process structuring their metacommunities through lineage sorting (Van der Gucht et al.ǰȱ ŘŖŖŝǼȱ ‘’•Žȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—œȱ ›ŽĚȱŽŒ’—ȱ ™Šœȱ Œ•’–ŠŽȱ changes and tectonic processes are predicted to be absent (Martiny et al.ǰȱŘŖŖŜǼǯȱŽŒŽ—ȱ™˜™ž•Š’˜—ȱŽ—Ž’Œȱœž’Žœȱ‘ŠŸŽȱŒ‘Š••Ž—Žȱ‘’œȱ idea and revealed that dispersal limitation may lead to allopatric divergence of populations, which may ultimately result in the formation of new microbial species (Evans et al.ǰȱ ŘŖŖşDzȱ ŠœŽ•Ž¢—ȱ et al.ǰȱŘŖŗŖǼǯȱ’œ™Ž›œŠ•ȱ•’–’Š’˜—ȱŠ—ȱŠ••˜™Š›’Œȱœ™ŽŒ’Š’˜—ȱŒŠ—ȱŠ•œ˜ȱ Ž¡™•Š’—ȱ‘Žȱ’–™˜›Š—ŒŽȱ˜ȱœ™Š’Š•ȱŠŒ˜›œȱ’—ȱŽŽ›–’—’—ȱ™ŠĴȱŽ›—œȱ’—ȱ diversity (Telford et al.ǰȱŘŖŖŜDzȱ¢ŸŽ›–Š—ȱet al.ǰȱŘŖŖŝǼǰȱ–ŽŠŒ˜––ž—’¢ȱ structure (Verleyen et al.ǰȱ ŘŖŖşǼȱ Š—ȱ ‘Žȱ ™›ŽœŽ—ŒŽȱ ˜ȱ Ž—Ž–’œ–ȱ ’—ȱ ŸŠ›’˜žœȱ –’Œ›˜‹’Š•ȱ •’—ŽŠŽœȱ ǻŽĵȱȱet al.ǰȱ ŘŖŖŝDzȱ ˜––’Ž›ȱ et al.ǰȱ ŘŖŖŝǼǯȱ Here we test if speciation promoted by geographical isolation is Š•œ˜ȱŠȱ›’Ÿ’—ȱ˜›ŒŽȱ’—ȱ‘Žȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ’Š˜–œȱ’—ȱ›Œ’ŒȱŠ—ȱ —Š›Œ’Œȱ •Š”Žœǯȱ ™ŽŒ’ęȱŒŠ••¢ǰȱ Žȱ ™›Ž’Œȱ ‘Šȱ ž—Ž›ȱ Šȱ œŒŽ—Š›’˜ȱ ˜ȱ predominant allopatric speciation, the greater degree of geographic ’œ˜•Š’˜—ȱ’—ȱ‘Žȱ˜ž‘Ž›—ȱ Ž–’œ™‘Ž›Žȱ ˜ž•ȱ‹Žȱ›ŽĚȱŽŒŽȱ’—ȱǻ’ǼȱŠ—ȱ ’–‹Š•Š—ŒŽȱ—Š›Œ’Œȱ’Š˜–ȱĚȱ˜›ŠȱŒ˜–™Š›Žȱ ’‘ȱœ’–’•Š›ȱ‘Š‹’Šœȱ ’—ȱ‘Žȱ›Œ’Œȱ›Ž’˜—ǰȱŠ—ȱǻ’’Ǽȱ‘’‘Ž›ȱ•ŽŸŽ•œȱ˜ȱŽ—Ž–’œ–ȱ’—ȱ‘Žȱ–˜œȱ isolated areas.

2.2 Results and discussion —ȱ˜ž›ȱŒ˜–™Š›’œ˜—ȱ˜ȱ›Œ’ŒȱŠ—ȱ—Š›Œ’ŒȱĚȱ˜›Šœȱ Žȱœ›’Œ•¢ȱŒ˜—›˜••Žȱ for possible variation in diatom assemblages due to limnological ’ěȱŽ›Ž—ŒŽœȱ ‹Ž ŽŽ—ȱ ‘Žȱ œž’Žȱ ›Ž’˜—œȱ ǻ’ǯȱ ŘǯŗǼǯȱ —ȱ ŠŒŒ˜›Š—ŒŽȱ ’‘ȱ ˜ž›ȱ ęȱ›œȱ ™›Ž’Œ’˜—ǰȱ ‘Žȱ —Š›Œ’Œȱ ’Š˜–ȱ Ěȱ˜›Šȱ ’œȱ ‘’‘•¢ȱ ’–‹Š•Š—ŒŽȱ Š—ȱ ’–™˜ŸŽ›’œ‘Žȱ ǻŗŘřȱ œ™ŽŒ’Žœȱ ’—ȱ Şřȱ •Š”ŽœǼȱ Œ˜–™Š›Žȱ ’‘ȱ ’œȱ›Œ’Œȱ Œ˜ž—Ž›™Š›ȱ ǻŘŘřȱ œ™ŽŒ’Žœȱ ’—ȱ śŜȱ •Š”Žœǰȱ ’ǯȱ ŘǯŗǼǯȱ ‘Žȱ ›Œ’ŒȱĚȱ˜›Šȱ’œȱ–˜œȱœ™ŽŒ’˜œŽȱ’—ȱ›Žœ‘ ŠŽ›ȱŽ—Ž›Šȱ‘ŠȱŠ›Žȱ ’Žœ™›ŽŠȱ and abundantly present in the majority of the freshwater systems ˜›• ’Žǯȱ‘Žȱ—Š›Œ’ŒȱĚȱ˜›Šȱ’œȱ›’Œ‘ȱ’—ȱŽ—Ž–’Œȱœ™ŽŒ’Žœȱ‹Ž•˜—’—ȱ to typically terrestrial genera and globally successful genera are ž—Ž››Ž™›ŽœŽ—Žǯȱ ‘Žȱ ™›ŽœŽ—ȬŠ¢ȱ —Š›Œ’Œȱ ’Š˜–ȱ Ěȱ˜›Šȱ ’œȱ Š•œ˜ȱ œ›’”’—•¢ȱ ’ěȱŽ›Ž—ȱ ›˜–ȱ ‘Žȱ ca. 14ȱ Šȱ ˜•ȱ ˜œœ’•’£Žȱ ŠœœŽ–‹•ŠŽœȱ preserved in McMurdo Dry Valley deposits (Lewis et al.ǰȱ ŘŖŖŞǼǰȱ

32 Interhemispheric contrasts in diatom diversity Fig.2.1 Number of species per diatom genus in Arctic and Antarctic lakes sharing the same limnological properties, showing the highly impoverished and disharmonic nature of the —Š›Œ’Œȱ’Š˜–ȱĚȱ˜›Šǰȱ ‘’Œ‘ȱ’œȱ›Ž•Š’ŸŽ•¢ȱ›’Œ‘ȱ’—ȱŽ—Ž–’Œȱœ™ŽŒ’Žœȱ‹Ž•˜—’—ȱ˜ȱŽ››Žœ›’Š•ȱ Ž—Ž›Šǯȱ ‘Žȱ ›Œ’Œȱ Ěȱ˜›Šȱ ’œȱ –˜›Žȱ ‹Š•Š—ŒŽȱ Š—ȱ ˜–’—ŠŽȱ ‹¢ȱ •˜‹Š••¢ȱ ’Žœ™›ŽŠȱ Š—ȱ successful genera.

Interhemispheric contrasts in diatom diversity 33 ‘’Œ‘ȱ Ž›ŽȱŒ‘Š›ŠŒŽ›’£Žȱ‹¢ȱ™•Š—”˜—’ŒȱŠ¡ŠȱŽ—’›Ž•¢ȱŠ‹œŽ—ȱ›˜–ȱ Œ˜—Ž–™˜›Š›¢ȱŠ—ȱŠŽȱžŠŽ›—Š›¢ȱ—Š›Œ’ŒȱĚȱ˜›Šœǯȱ ‘Žȱ’—Œ’Ž—ŒŽȱ˜ȱŽ—Ž–’œ–ȱ’—ȱ‘Žȱ—Š›Œ’Œȱ’Š˜–ȱĚȱ˜›Šȱ Šœȱ assessed using a dataset of 392 Antarctic and sub-Antarctic freshwater •Š”ŽœȱŽ—Œ˜–™Šœœ’—ȱ‘Žȱ‘›ŽŽȱ–Š’—ȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™›˜Ÿ’—ŒŽœȱ’—ȱ‘Žȱ ˜ž‘Ž›—ȱ ŒŽŠ—ȱ ǻ’ǯȱ ŘǯŘǼȱ ›ŽŒ˜—’£Žȱ ˜›ȱ –ŠŒ›˜œŒ˜™’Œȱ ˜›Š—’œ–œȱ ǻ‘˜ —ȱ ǭȱ ˜—ŸŽ¢ǰȱ ŘŖŖŝǼǯȱ ž•’ŸŠ›’ŠŽȱ Š—Š•¢œ’œȱ ›ŽŸŽŠ•Žȱ ‘Šȱ ‘Žȱ geographical structuring of diatom biodiversity is similar to that of –ŠŒ›˜œŒ˜™’Œȱ˜›Š—’œ–œȱǻ’ǯȱŘǯřǼǯȱ˜›Ž˜ŸŽ›ǰȱŽœ™’Žȱ‘Žȱ•˜ ȱ˜ŸŽ›Š••ȱ ’ŸŽ›œ’¢ȱǻ’ǯȱŘǯŘȱŠ—ȱ’ǯȱŘǯřǼȱŽŠŒ‘ȱ˜ȱ‘Žȱ‘›ŽŽȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ provinces showed a high degree of endemism (i.e. 43%, 35% and 51%, respectively, for Sub-Antarctica, maritime Antarctica and Œ˜—’—Ž—Š•ȱ—Š›Œ’ŒŠǼǯȱ ‘’œȱ ’œȱ œ›’”’—•¢ȱ Œ˜—›žŽ—ȱ ’‘ȱ ™ŠĴȱŽ›—œȱ ˜ž—ȱ’—ȱ–ž•’ŒŽ••ž•Š›ȱ˜›Š—’œ–œȱǻ‘˜ —ȱǭȱ˜—ŸŽ¢ǰȱŘŖŖŝǼǰȱ ‘Ž›Žȱ approximately 50% of the lichen, tardigrade and dipteran species are endemic to Antarctica, as are the majority of mites and springtails, and possibly all nematodes (Convey et al.ǰȱŘŖŖŞǼǯȱ‘Žȱ›˜•Žȱ˜ȱ’œ˜•Š’˜—ȱ ’—ȱ‘Žȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ‘Žȱ—Š›Œ’Œȱ’Š˜–ȱĚȱ˜›Šȱ’œȱž›‘Ž›ȱŽŸ’Ž—ŒŽȱ ‹¢ȱ‘Žȱœ’—’ęȱŒŠ—ȱŒ˜››Ž•Š’˜—ȱ‹Ž ŽŽ—ȱ’œ˜•Š’˜—ȱŠ—ȱ‘Žȱ™›˜™˜›’˜—ȱ ˜ȱŽ—Ž–’ŒȱŠ¡ŠȱǻŶƽŖǯśşşŞDzȱpƽŖǯŖŖŘǰȱ—ƽŗřDzȱ’ǯȱŘǯŚǼǰȱ’—ȱŠŒŒ˜›Š—ŒŽȱ with our second prediction, and by a time-calibrated phylogeny of the globally distributed morphospecies Pinnularia borealis. The molecular phylogeny demonstrates that continental Antarctic œ›Š’—œȱ‹Ž•˜—ȱ˜ȱŠȱœŽ™Š›ŠŽȱ•’—ŽŠŽȱ‘Šȱ’ŸŽ›ŽȱŠ‹˜žȱŝǯŜŝȱŠȱŠ˜ȱ ›˜–ȱ’œȱŒ•˜œŽœȱ›Ž•Š’ŸŽœȱǻ’ǯȱŘǯŚǼǯȱ‘’œȱ‘ŠœȱŠȱ•ŽŠœȱ ˜ȱ’–™˜›Š—ȱ consequences. First, our morphology-based estimates of endemism Š›Žȱ Œ˜—œŽ›ŸŠ’ŸŽȱ Š—ȱ ’••ȱ •’”Ž•¢ȱ ž›‘Ž›ȱ ’—Œ›ŽŠœŽȱ ‘Ž—ȱ –˜•ŽŒž•Š›Ȭ phylogenetic analyses are applied to other presumably ubiquitous Š¡ŠȱǻŽœ£Ž›’ȱet al.ǰȱŘŖŖŝDzȱŸŠ—œȱet al.ǰȱŘŖŖşǼǯȱŽŒ˜—•¢ǰȱ‘Žȱ’–Žȱ˜ȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱ’—ȱ‘’œȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡ȱ’œȱœ’–’•Š›ȱ˜ȱ‘Šȱ˜‹œŽ›ŸŽȱ’—ȱ Antarctic springtails (Stevens et al.ǰȱŘŖŖŜǼȱŠ—ȱ–’Žœȱǻ˜›’–Ž›ȱet al., ŘŖŗŗǼǰȱ‹žȱ•ŠŽ›ȱ‘Š—ȱ’ŸŽ›Ž—ŒŽȱ’–Žœȱ’—ȱ–’Žœȱǻ••Ž›žŒŒ’ȱet al., ŘŖŖŜǼǯȱ ‘ŽœŽȱ ęȱ—’—œȱ œžŽœȱ ‘Šȱ –ŠŒ›˜ŽŸ˜•ž’˜—Š›¢ȱ ŽŸŽ—œȱ –Š¢ȱ have occurred simultaneously in non-related groups of Antarctic organisms, in response to tectonic and climate change and increasing habitat fragmentation resulting from the expanding ice sheets. ‘Žȱ’–‹Š•Š—ŒŽȱ—Šž›Žȱ˜ȱ‘Žȱ—Š›Œ’Œȱ’Š˜–ȱĚȱ˜›Šǰȱ‘Žȱ‘’‘ȱ levels of endemism and the timing of speciation all point to an Š—Œ’Ž—ȱŽŸ˜•ž’˜—Š›¢ȱ‘’œ˜›¢ȱ’—ȱŽ˜›Š™‘’Œȱ’œ˜•Š’˜—ǰȱŒ‘Š›ŠŒŽ›’£Žȱ ‹¢ȱ ›Ž’˜—Š•ȱ Ž¡’—Œ’˜—ȱ ˜ȱ ”Ž¢ȱ ž—Œ’˜—Š•ȱ ›˜ž™œȱ Š—ȱ ›Žœ‘ ŠŽ›ȱ genera, and selective survival of taxa in glacial refugia since the

34 Interhemispheric contrasts in diatom diversity Fig.2.2ȱŠ™ȱ˜ȱ‘Žȱ˜ž‘Ž›—ȱ Ž–’œ™‘Ž›Žȱœ‘˜ ’—ȱ‘Žȱ’ěȱŽ›Ž—ȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™›˜Ÿ’—ŒŽœȱ ’—ȱ ‘Žȱ ˜ž‘Ž›—ȱ ŒŽŠ—ȱ ǻ˜ĴȱŽȱ •’—ŽœǼȱ Š—ȱ ™’Žȱ Œ‘Š›œȱ œ‘˜ ’—ȱ ‘Žȱ —ž–‹Ž›ȱ ˜ȱ ž‹’šž’˜žœȱ versus endemic taxa. Maritime Antarctic species occur on the western side of the Antarctic Peninsula down to ca. 72°S and on the eastern side north of 65° S, as well as in the South Shetland and South Orkney islands. Continental Antarctic endemics are restricted to all other areas and islands of Antarctica south of 65°S. Sub-Antarctic endemics occur on the islands or island groups between 46° and 55° S. Antarctic endemics s.l. are restricted to the Southern Ocean region but occur in at least two provinces.

Fig.2.3 Biplot of a principle component analysis of Hellinger transformed species data œ‘˜ ’—ȱ ‘Žȱ ’ěȱŽ›Ž—ŒŽȱ ‹Ž ŽŽ—ȱ the diatom communities of 392 lakes and the congruence with the biogeographical zonation observed in multicellular taxa. The Ž’Ž—ŸŠ•žŽœȱǻǼȱŠ›Žȱ’ŸŽ—ȱ—Ž¡ȱ˜ȱ the axes.

Interhemispheric contrasts in diatom diversity 35 Fig.2.4 Time-calibrated molecular phylogeny of the diatom morphospecies Pinnularia borealis showing a divergence of the continental Antarctic lineage (in boldǼȱ›˜–ȱŠȱ ŽœŽ›—ȱ European lineage around 7.67 Ma [1.95-14.77 Ma, 95% Highest Posterior Probability ’—Ž›ŸŠ•ȱǻ ǼǾǰȱ‹ŠœŽȱ˜—ȱŒ˜—ŒŠŽ—ŠŽȱrbcȱŠ—ȱȱ›ȱǻŗȬŘȱ›Ž’˜—ǼȱœŽšžŽ—ŒŽȱ ŠŠǯȱ ›’Š—•Žœȱ ›Ž™›ŽœŽ—ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ ™‘¢•˜Ž—Ž’Œȱ •’—ŽŠŽœǯȱ ‘Žȱ —ž–‹Ž›ȱ ˜ȱ œŽšžŽ—ŒŽȱ clones per lineage is given between brackets. Bars represent the 95% HPD intervals. The grey encircled nodes were time-constrained during the analysis.

36 Interhemispheric contrasts in diatom diversity mid-Miocene cooling event, followed by widespread allopatric speciation. Moreover, we have shown that these processes operate at similar spatial and temporal scales as in macroscopic organisms. ‘Žȱ ˜–’—Š—ŒŽȱ ˜ȱ Ž››Žœ›’Š•ȱ Š¡Šȱ ’œȱ •’”Ž•¢ȱ ›Ž•ŠŽȱ ˜ȱ ‘Žȱ •ŠŒ”ȱ˜ȱ •ŠŒžœ›’—Žȱ‘Š‹’Šœȱž›’—ȱ•ŠŒ’Š•ȱ–Š¡’–Šǰȱ ‘Ž—ȱ‘Žȱœ™Š›œŽȱ•Š”Žœȱ‘Šȱ escaped glacial overriding were probably permanently covered with •Š”Žȱ’ŒŽȱǻ ˜œ˜— et al.ǰȱŘŖŖśǼǰȱ™›ŽŒ•ž’—ȱ‘Žȱœž›Ÿ’ŸŠ•ȱ˜ȱ˜‹•’ŠŽȱ ™•Š—”˜—’Œȱ ’Š˜–œǯȱ ž›ȱ ›Žœž•œȱ ‘žœȱ ’–™˜œŽȱ Šȱ ›ŽŒ˜—œ’Ž›Š’˜—ȱ ˜ȱ ‘ŽȱŒž››Ž—ȱ™Š›Š’–ȱ’—ȱ–’Œ›˜‹’Š•ȱ‹’˜Ž˜›Š™‘¢ȱǻ’—•Š¢ǰȱŘŖŖŘǼȱŠ—ȱ have important implications for the response of polar microbial communities in the face of the accelerated rates of warming, which have already impacted on the primary productivity and functioning of lacustrine ecosystems (Quayle et al.ǰȱ ŘŖŖŘǼǯȱœȱ Ž—Ž–’Œȱ œ™ŽŒ’Žœȱ are particularly prone to extinction because of their restricted distribution in relatively small geographic regions, stringent –ŽŠœž›Žœȱ ˜ȱ ™›ŽœŽ›ŸŽȱ ŽŒ˜œ¢œŽ–ȱ ’—Ž›’¢ȱ ˜ȱ —Š›Œ’Œȱ •Š”Žœȱ Š—ȱ to protect them against the introduction of alien species is highly “žœ’ęȱŽǯȱ

2.3 Materials and methods Sample collection and diatom analysis —ȱ ŽŽ™ȱ •Š”Žœǰȱ œž›ŠŒŽȱ œŽ’–Ž—ȱ Œ˜›Žœȱ Ž›Žȱ Ž¡›ŠŒŽȱ ›˜–ȱ ‘Žȱ deepest part using a gravity corer. Diatom samples were collected ›˜–ȱ ‘Žȱ ž™™Ž›–˜œȱ śȱ ––ǯȱ —ȱ œ‘Š••˜ ȱ •Š”Žœǰȱ ‘’Œ‘ȱ ‘ŠŸŽȱ —˜ȱ ˜›ȱ ˜—•¢ȱ •’Ĵȱ•Žȱ ’ŒŽȱ Œ˜ŸŽ›ȱ Š›˜ž—ȱ ‘Žȱ ŽŽœȱ ž›’—ȱ œž––Ž›ǰȱ œŽ’–Ž—ȱ œŠ–™•Žœȱ Ž›ŽȱŒ˜••ŽŒŽȱ‹Ž ŽŽ—ȱŖǯśȱȬȱŗ–ȱŽ™‘ȱ’—ȱ‘Žȱ•’Ĵȱ˜›Š•ȱ£˜—Žǯȱ ž‹œŠ–™•Žœȱ ˜›ȱ ’Š˜–ȱ Š—Š•¢œ’œȱ Ž›Žȱ ’ŽœŽȱ ’‘ȱ ŘŘȱ ǻřŖȱ ƖǼȱ Š—ȱ  ř ȱ ǻşśƖǼǯȱ ˜›ȱ •’‘ȱ –’Œ›˜œŒ˜™¢ǰȱ Šȱ œž‹œŠ–™•Žȱ Šœȱ dried onto a glass coverslip, mounted in Naphrax® and studied žœ’—ȱŠȱ–’Œ›˜œŒ˜™ŽȱŽšž’™™Žȱ ’‘ȱ’ěȱŽ›Ž—’Š•ȱ’—Ž›Ž›Ž—ŒŽȱŒ˜—›Šœǯȱ ˜›ȱ œŒŠ——’—ȱ Ž•ŽŒ›˜—ȱ –’Œ›˜œŒ˜™¢ǰȱ ˜¡’’£Žȱ œŠ–™•Žȱ –ŠŽ›’Š•ȱ Šœȱ ’›ŽŒ•¢ȱ Š’›Ȭ›’Žȱ ˜—˜ȱ œ™ŽŒ’–Ž—ȱ œž‹œȱ Š—ȱ œ™žĴȱŽ›ȬŒ˜ŠŽǰȱ Š—ȱ Ž¡Š–’—Žȱ ’‘ȱŠȱ Ž˜•ȱ ȬŞŚŖȱ˜™Ž›ŠŽȱŠȱŗśȱ”ǯȱ˜›ȱ›Š—œ–’œœ’˜—ȱ Ž•ŽŒ›˜—ȱ–’Œ›˜œŒ˜™¢ǰȱŗŖȱΐ•ȱŠ•’šž˜œȱ˜ȱ˜¡’’£Žȱ–ŠŽ›’Š•ȱ Ž›Žȱ™•ŠŒŽȱ on formvar-coated copper slot grids. Grids were examined with a Ž˜•ȱ ȱŗŖŗŖȱ˜™Ž›Š’—ȱŠȱŜŖȱ”ǯȱ The dataset was developed by combining newly obtained ’Š˜–ȱŠ—Š•¢œŽœȱ ’‘ȱŽ¡’œ’—ȱŠŠœŽœȱǻœŽŽȱŠ‹•ŽȱŘǯŗǼǯȱ‘Žȱ™›’–Š›¢ȱ diatom data consisted of enumerations of species relative abundances in surface sediment samples, each of which typically represents a

Interhemispheric contrasts in diatom diversity 37 ›ŽŒ˜›ȱ˜ȱ’Š˜–ȱ›˜ ‘ȱ’—ȱ‘Žȱ•Š”Žȱ›˜–ȱ‹˜‘ȱ™Ž•Š’ŒȱŠ—ȱ‹Ž—‘’Œȱ habitats spanning several years. Between 400 and 600 specimens were counted per sample. Taxonomic consistency between datasets Šœȱ˜‹Š’—Žȱ‘›˜ž‘ȱœ•’Žȱ˜›ȱœŠ–™•ŽȱŽ¡Œ‘Š—Žȱ‹Ž ŽŽ—ȱ‘Žȱ’ěȱŽ›Ž—ȱ analysts. When the identity of a species could not be determined with certainty it was considered to be a non-endemic. Hence the ’—Œ’Ž—ŒŽȱ˜ȱŽ—Ž–’œ–ȱ’œȱŠȱŒ˜—œŽ›ŸŠ’ŸŽȱ–ŽŠœž›ŽȱŠ—ȱ•’”Ž•¢ȱ˜ȱ‹Žȱ an underestimation. The geographic distribution of the diatom species was based on literature data provided with unambiguous illustrations and/or descriptions and our own observations. The endemic species were subdivided according to the biogeographical province in which they occur. For the bipolar comparison Eunotia and Gomphonema were excluded from the analysis because these genera are in need of taxonomic revision.

Time-calibrated molecular phylogeny To develop a time-calibrated molecular phylogeny for Pinnularia borealisǰȱ śŗȱ œ›Š’—œȱ ›˜–ȱ ŝȱ ›Ž’˜—œȱ Ž›Žȱ ’œ˜•ŠŽǰȱ Œž•ž›Žǰȱ Š—ȱ œŽšžŽ—ŒŽœȱ ˜ȱ ‘Žȱ —žŒ•ŽŠ›ȱ ŗȬŘȱ ›Ž’˜—ȱ ˜ȱ ‘Žȱ ŘŞȱ ›ȱ ǻǼȱ and plastid gene rbcȱ Ž›Žȱ ˜‹Š’—Žȱ Šœȱ ŽœŒ›’‹Žȱ ’—ȱ ˜žěȱ›ŽŠžȱ et al. ǻœž‹–’ĴȱŽǼǯȱRbcL was partitioned into codon position (1st +2nd Œ˜–‹’—ŽǼDzȱȱ ŠœȱžœŽȱŠœȱŠȱœ’—•Žȱ™Š›’’˜—ǯȱŠ•’‹›Š’˜—ȱ˜ȱ‘Žȱ –˜•ŽŒž•Š›ȱ Œ•˜Œ”ȱ Šœȱ ‹ŠœŽȱ ˜—ȱ ‘Žȱ şśƖȱ ‘’‘Žœȱ ™˜œŽ›’˜›ȱ Ž—œ’¢ȱ ǻ Ǽȱ›Žœž•’—ȱ›˜–ȱ‘Žȱ™›ŽŽ››Žȱ’–ŽȬŒŠ•’‹›Š’˜—ȱ˜ȱ‘ŽȱPinnularia ™‘¢•˜Ž—¢ȱ ‘’Œ‘ȱ Šœȱ Œ˜—œ›Š’—Žȱ ‹¢ȱ ‘Žȱ ˜œœ’•ȱ ›ŽŒ˜›ȱ ǻ˜žěȱ›ŽŠžȱ et al.ǰȱ œž‹–’ĴȱŽǼǯȱ ‘›ŽŽȱ —˜Žœȱ Ž›Žȱ Œ˜—œ›Š’—Žȱ ǻ›Š¢ȱ Œ’›Œ•Žœȱ ’—ȱ ’ǯȱŘǯŚǼȱžœ’—ȱŽŠŒ‘ȱŠȱž—’˜›–ȱ’œ›’‹ž’˜—ȱ˜ȱ‘Ž’›ȱ›ŽŒ˜ŸŽ›ŽȱşśƖȱ HPD. The outgroup consists of representatives of the most closely related Pinnulariaȱ•’—ŽŠŽœȱŠœȱ›ŽŒ˜ŸŽ›Žȱ‹¢ȱŠȱęȱŸŽȬ–Š›”Ž›ȱ–˜•ŽŒž•Š›ȱ phylogeny for the genus Pinnulariaȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼǯ Ž›˜™˜•’œȬŒ˜ž™•Žȱ ˜—Žȱ Š›•˜ȱ Š›”˜Ÿȱ ‘Š’—œȱ Ž›Žȱ ›ž—ȱ ‹¢ȱȱŸŗǯśǯŚȱǻ›ž––˜—ȱǭȱŠ–‹ŠžǰȱŘŖŖŝǼȱž—Ž›ȱŠȱ ȱƸȱ̆ȱ ǻŚǼȱ–˜Ž•ȱ˜›ȱŽŠŒ‘ȱ™Š›’’˜—ȱŠ—ȱŠȱ›Ž•Š¡Žǰȱž—Œ˜››Ž•ŠŽȱ•˜—˜›–Š•ȱ Œ•˜Œ”ȱ–˜Ž•ȱŠ—ȱž•Žȱ›ŽŽȱ™›’˜›ǯȱ‘›ŽŽȱ’—Ž™Ž—Ž—ȱŠ—Š•¢œŽœǰȱŽŠŒ‘ȱ started by a UPGMA tree, were run for 100 million generations and sampled every 1,000th generation. Burn-in values of 30 to 40% Ž›ŽȱŠœœŽœœŽȱžœ’—ȱ›ŠŒŽ›ȱŸǯŗǯśȱǻŠ–‹Šžȱǭȱ›ž––˜—ǰȱŘŖŖŝǼǯȱ••ȱ post-burn in trees were combined after which the maximum clade credibility chronogram with mean node heights was calculated using TreeAnnotator v.1.5.4.

38 Interhemispheric contrasts in diatom diversity Statistical analysis ȱ ™›’—Œ’™Š•ȱ Œ˜–™˜—Ž—ȱ Š—Š•¢œ’œȱ ’‘ȱ œŠ—Š›’£Žȱ Š—ȱ ŒŽ—Ž›Žȱ Ž—Ÿ’›˜—–Ž—Š•ȱ ŸŠ›’Š‹•Žœȱ ǻ™ ǰȱ Œ˜—žŒ’Ÿ’¢ȱ Š—ȱ –Š“˜›ȱ ’˜—œǼȱ Šœȱ žœŽȱ˜ȱœŽ•ŽŒȱ›Œ’ŒȱŠ—ȱ—Š›Œ’Œȱ•Š”Žœȱ ’‘ȱœ’–’•Š›ȱŽ—Ÿ’›˜—–Ž—Š•ȱ Œ˜—’’˜—œȱǻ’ǯȱŘǯŗǼǯȱ˜›ȱ‘Žȱ‹’™˜•Š›ȱŒ˜–™Š›’œ˜—ȱ Žȱ›ŽŠ’—Žȱ•Š”Žœȱ ’‘ȱ ˜ŸŽ›•Š™™’—ȱ œŒ˜›Žœȱ ˜›ȱ ‘Žȱ ęȱ›œȱ Š—ȱ ‘Žȱ œŽŒ˜—ȱ ˜›’—Š’˜—ȱ analysis which resulted in the selection of 83 Antarctic and 56 Arctic ›Žœ‘ ŠŽ›ȱ •Š”Žœǯȱ ȱ ™›’—Œ’™Š•ȱ Œ˜–™˜—Ž—ȱ Š—Š•¢œ’œȱ ˜ȱ Ž••’—Ž›ȱ transformed relative abundance data was used to assess the ‹’˜Ž˜›Š™‘’ŒŠ•ȱ£˜—’—ȱ’—ȱ‘Žȱ’Š˜–ȱĚȱ˜›Šœȱ˜ȱ‘Žȱ˜ž‘Ž›—ȱŒŽŠ—ǯȱ All ordinations were performed in Canoco 4.5 for windows (Ter ›ŠŠ”ǰȱŘŖŖŘǼǯ

Acknowledgements The Australian Antarctic Division, the British Antarctic Survey, the French Institute for Polar Research, the Japanese Institute for Polar Research, the Polar Continental Shelf Program and the South African National Antarctic Program provided logistic support. Louis Beyens, ’Ž”ȱ ›Ž––Ž—ǰȱ žœ’—Žȱǯȱ‘Š ǰȱ—›Ž ȱŒ’——ǰȱŽŸŽȱ ǯȱ˜‹Ž›œǰȱ Š–Žœȱǯȱ–’‘ǰȱŠ”ŠŽȱ ž˜‘ǰȱŠ—ȱŠ–˜œžȱ ˜œ‘’—˜ȱŠ›Žȱ‘Š—”Žȱ for providing samples and/or help during sampling campaigns. ’Ÿ’Ž——Žȱ ǯȱ ˜—Žœǰȱ˜——Šȱ˜‹Ž›œǰȱ’Ž”ŽȱŽ›”Ž—ȱŠ—ȱ —ŽœȱŠŸŽ›—’Ž›ȱ ™›˜Ÿ’Žȱ ’Š˜–ȱ ŠŠǯȱ ŽŽȱ ˜—ŸŽ¢ȱ ’œȱ ‘Š—”Žȱ ˜›ȱ ™›˜Ÿ’’—ȱ ‘Žȱ –Š™ǯȱǰȱǰȱŠ—ȱȱŠ›Žȱž—Žȱ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱŽœŽŠ›Œ‘ȱ •Š—Ž›œȱ ǻǼǰȱ Ž•’ž–ǯȱ ‘’œȱ ˜›”ȱ Šœȱ ž—Žȱ ‹¢ȱ ‘Žȱ Ž•ȱ ™›˜“ŽŒœȱ ȱŠ—ȱ ȱŠ—ȱ‘Žȱȱ™›˜“ŽŒȱ ǯŖśřřǯŖŝǯȱ

Interhemispheric contrasts in diatom diversity 39 6XSSOHPHQWDU\¿JXUHV

Fig. S2.1 Principal component analysis of standardized and centred environmental ŸŠ›’Š‹•ŽœȱǻŒ˜—žŒ’Ÿ’¢ǰȱ™ ǰȱŠƸǰȱ ƸǰȱŠŘƸǰȱ•Ȭǰȱœ’•’ŒŠŽǼȱ’—ȱ‘’‘ȱ›Œ’Œȱǻ›ŽǼȱŠ—ȱ—Š›Œ’Œȱ ǻ‹•žŽǼȱ˜•’˜›˜™‘’Œȱ›Žœ‘ ŠŽ›ȱ•Š”Žœǯȱ‘ŽȱœŽ•ŽŒŽȱ•Š”ŽœȱžœŽȱ˜ȱŠœœŽœœȱ‘ŽȱĚȱ˜›’œ’Œȱ’ěȱŽ›Ž—ŒŽœȱ ‹Ž ŽŽ—ȱ‘Žȱ™˜•Š›ȱ›Ž’˜—œȱǻ’ǯȱŘǯŗǼȱŠ›Žȱ’—’ŒŠŽȱ‹¢ȱ‘Žȱ›ŽŒŠ—•ŽȱŠ—ȱŒ‘Š›ŠŒŽ›’£Žȱ‹¢ȱœ’Žȱ œŒ˜›Žœȱ˜—ȱ‘Žȱęȱ›œȱŠ¡’œȱ‹Ž ŽŽ—ȱȬŗȱŠ—ȱŖǯŞǰȱŠ—ȱ˜—ȱ‘ŽȱœŽŒ˜—ȱŠ¡’œȱ‹Ž ŽŽ—ȱŖǯŝȱŠ—ȱȬŖǯśǯ

Fig. S2.2 Species accumulation curves showing the total number of œ™ŽŒ’Žœȱ’—ȱǻǼȱ–Š›’’–Žȱ—Š›Œ’Œǰȱ Š—ȱ ǻǼȱ Œ˜—’—Ž—Š•ȱ —Š›Œ’Œȱ lakes.

40 Interhemispheric contrasts in diatom diversity Fig. S2.3 Species accumulation curves showing the total number of œ™ŽŒ’Žœȱ ’—ȱ ǻǼȱ ž‹Ȭ—Š›Œ’Œǰȱ Š—ȱ ǻǼȱ›Œ’Œȱ•Š”Žœǯ

Fig. S2.4ȱŒŠĴȱŽ›ȱ™•˜ȱœ‘˜ ’—ȱ‘Žȱ™›˜™˜›’˜—ȱ˜ȱŽ—Ž–’Œȱœ™ŽŒ’Žœȱ’—ȱ›Ž•Š’˜—ȱ˜ȱ‘Žȱœ‘˜›Žœȱ ’œŠ—ŒŽȱ˜ȱ‘Žȱ—ŽŠ›ŽœȱŒ˜—’—Ž—ȱǻ—Š›Œ’ŒŠȱŽ¡Œ•žŽǼǯ

Interhemispheric contrasts in diatom diversity 41 Supplementary table Table S1 References to the diatom datasets used. * Indicate datasets which were newly developed for the present study † Indicate datasets for which the taxonomy was revised

Island/oasis Island group/region Province Reference to original dataset Livingston Island† South Shetland Islands Maritime Antarctica Jones et al. 1993 Signy Island† South Orkney Islands Maritime Antarctica Jones et al. 1993 Beak Island* Prince Gustav Channel Maritime Antarctica Sterken et al. in prep. James Ross Island* Prince Gustav Channel Maritime Antarctica Kopalová et al. in prep Horseshoe Island* Marguerite Bay Maritime Antarctica Hodgson et al. in prep. Pourquoi Pas Island* Marguerite Bay Maritime Antarctica Hodgson et al. in prep. West Ongul Island* Lützow Holm Bay Continental Antarctica Tavernier et al. in prep. Skarvsnes* Lützow Holm Bay Continental Antarctica Tavernier et al. in prep. Schirmacher Oasis* Schirmacher Oasis Continental Antarctica Verleyen et al. in prep. Vestfold Hills† Prydz Bay Continental Antarctica Roberts & McMinn 1996 Bølingen Islands† Prydz Bay Continental Antarctica Sabbe et al. 2004 Larsemann Hills† Prydz Bay Continental Antarctica Verleyen et al. 2003 South Georgia South Georgia Sub-Antarctica – South Van de Vijver & Beyens Atlantic Ocean 1996 Kerguelen Kerguelen Sub-Antarctica – South Van de Vijver et al. Indian Ocean 2001 Crozet Crozet Sub-Antarctica – South Van de Vijver & Beyens Indian Ocean 1999 Prince Edward Island Prince Edward Island Sub-Antarctica – South Van de Vijver et al. Indian Ocean 2008 Marion Island* Marion Island Sub-Antarctica – South Van de Vijver et al. Indian Ocean 2008 Heard Island Heard Island Sub-Antarctica – South Van de Vijver et al. Indian Ocean 2004 Ellef Ringnes Canadian Arctic Canadian Arctic Antoniades et al. 2008 Northern Ellesmere Canadian Arctic Canadian Arctic Antoniades et al. 2008 Prince Patrick Island Canadian Arctic Canadian Arctic Antoniades et al. 2008

42 Interhemispheric contrasts in diatom diversity Supplementary references of Table S1 Antoniades, D., Hamilton, P., Douglas, M.S.V. & Smol, J.P. (2008) Freshwater diatoms of the Canadian High Arctic Islands: Ellef Ringnes, northern Ellesmere and Prince Patrick islands. Iconographia Diatomologica 17. A.R.G. Gantner Verlag, Ruggell, 706 pp. Jones, V. J., Juggins, S. & Ellisevans, J. C. (1993) The relationship between water chemistry and surface sediment diatom assemblages in Maritime Antarctic lakes. Antarctic Science, 5, 339-348 Roberts, D. & McMinn, A. (1996) Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarctic Science, 8, 331-341 Sabbe, K., Hodgson, D. A., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K. & Vyverman, W. (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biology 49:296-319 Sabbe, K., Verleyen, E., Hodgson, D.A., Vanhoutte, K. & Vyverman, W.  %HQWKLFGLDWRPÀRUDRIIUHVKZDWHUDQGVDOLQHODNHVLQWKH/DUVHPDQQ+LOOV and Rauer Islands, East Antarctica. Antarctic Science, 15, 227-248 Van de Vijver B. & Beyens L.(1996) Freshwater diatom communities of the Strømness Bay area, South Georgia. Antarctic Science, 8, 359-368 Van de Vijver B. & Beyens L.(1999) Freshwater diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica): an ecological assessment. Polar Biology, 22, 178-188 Van de Vijver, B., Ledeganck, P. & Beyens, L. (2001) Habitat preferences in freshwater diatom communities from Kerguelen (TAAF, Subantarctica). Antarctic Science, 13, 28-36 Van de Vijver, B., Frenot, Y., Beyens, L. (2002) Freshwater Diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica). Bibliotheca Diatomologica 46. J. Cramer, Stutgart, 412 pp. Van de Vijver, B., Beyens, L., Vincke, S. & Gremmen, N. (2004). Moss- inhabiting diatom communities from Heard Island, sub-Antarctic. Polar Biology, 27, 532-543 Van de Vijver, B., Gremmen, N. & Smith, V. (2008). Diatom communities from the sub-Antarctic Prince Edward Islands: diversity and distribution patterns. Polar Biology, 31, 795-808 Verleyen, E., Hodgson, D. A., Vyverman, W., Roberts, D., McMinn, A., Vanhoutte, K. & Sabbe, K. (2003) Modelling diatom responses to climate induced ÀXFWXDWLRQVLQWKHPRLVWXUHEDODQFHLQFRQWLQHQWDO$QWDUFWLFODNHVJournal of Paleolimnology, 30, 195-215

Interhemispheric contrasts in diatom diversity 43

3. Distance decay and species turnover in terrestrial and aquatic diatom communities across multiple spatial scales using three sub- Antarctic islands: an exploratory study

Š›˜•’—Žȱ˜žěȱ›ŽŠž1, Bart Van de Vijver2, Niek J.M. Gremmen3, Pieter Vanormelingen1, Elie Verleyen1, Koen Sabbe1 and Wim Vyverman1

ǐȱ 1 Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 - S8, 9000 Gent, Belgium ǐȱ 2 Department of Cryptogamy, National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, Belgium ǐȱ 3 Department of Spatial Ecology, Centre for Estuarine and Marine Ecology, P.O. Box 140, 4400 AC Yerseke, The Netherlands

Unpublished manuscript

Species turnover of diatom communities 45 Abstract The decrease in community similarity with geographical distance or “distance decay” is the result of various processes, including environmental species sorting and dispersal limitation. The relative ’–™˜›Š—ŒŽȱ˜ȱ‘ŽœŽȱ™›˜ŒŽœœŽœȱ ’••ȱŠěȱŽŒȱ‘Žȱ›ŠŽȱ˜ȱ‘’œȱŽŒ›ŽŠœŽǯȱ For example, organisms with higher dispersal capacities will display shallower slopes. Terrestrial diatoms are assumed to have a higher dispersal potential than lacustrine diatoms due to the higher susceptibility to be picked up by air currents, the higher connectivity in their habitat, and/or their higher tolerances for desiccation. We tested this hypothesis for both habitats using a taxonomically intercalibrated dataset covering two South Indian Ocean archipelagos (Kerguelen and Crozet) and a South Atlantic Ocean island (South Georgia). Both terrestrial and aquatic diatom community similarities decrease with distance over intermediate (ca. 1,500 km) and large (ca.ȱŜǰŖŖŖȱ”–Ǽȱœ™Š’Š•ȱœŒŠ•Žœǰȱ‹žȱ‘’œȱŽŒŠ¢ȱ Šœȱ˜—•¢ȱœ’—’ęȱŒŠ—ȱŠȱ the largest scale for the terrestrial communities. The rate of distance ŽŒŠ¢ȱ ’—ȱ Ž››Žœ›’Š•ȱ Œ˜––ž—’’Žœȱ Šœȱ —˜ȱ œ’—’ęȱŒŠ—•¢ȱ ’ěȱŽ›Ž—ȱ from that in lacustrine communities at none of the spatial scales, ‹žȱŠȱ‘Žȱ’—Ž›–Ž’ŠŽȱœŒŠ•Žȱ‘Žȱ›Ž—œȱ˜ Š›œȱĚȱŠĴȱŽ›ȱœ•˜™ŽœȱŠ—ȱ higher community similarities in terrestrial communities and the œ’—’ęȱŒŠ—ȱ •˜ Ž›ȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ œžŽœȱ ‘’‘Ž›ȱ ’œ™Ž›œŠ•ȱ ›ŠŽœȱ and/or broader niches for terrestrial diatoms. Within islands, species ž›—˜ŸŽ›ȱǻΆȬ’ŸŽ›œ’¢Ǽȱ Šœȱ›Ž•Š’ŸŽ•¢ȱ‘’‘ȱ˜›ȱ‘Žȱ ˜ȱŒ˜––ž—’’Žœȱ Œ˜–™Š›Žȱ˜ȱ‘Žȱ ’‘’—Ȭœ’Žȱǻ΅Ǽȱ’ŸŽ›œ’¢ǰȱ™˜œœ’‹•¢ȱ›ŽĚȱŽŒ’—ȱœ–Š••Ȭ œŒŠ•Žȱ Ž—Ÿ’›˜—–Ž—Š•ȱ ’ěȱŽ›Ž—’Š’˜—ȱ Š—ȱ œ™ŽŒ’Žœȱ œ˜›’—ȱ ˜›ȱ œ›˜—ȱ ™›’˜›’¢ȱŽěȱŽŒœǯȱ

46 Species turnover of diatom communities 3.1 Introduction Community similarity decreases with geographic distance. This œ™Š’Š•ȱ ™ŠĴȱŽ›—ȱ ‘Šœȱ ‹ŽŽ—ȱ ’Ž•¢ȱ ˜‹œŽ›ŸŽȱ ’—ȱ –ŠŒ›˜˜›Š—’œ–œȱ ǻe.g. Nekola & White, 1999; Condit et al., 2002; Tuomisto et al., 2003; Wiersma & Urban, 2005), microorganisms (e.g. Hillebrand et al., 2001; Green et al., 2004; Shurin et al., 2009) and even bacteria (e.g. Cho & Tiedje, 2000; Whitaker et al., 2003; Horner-Devine et al., 2004). The decrease in similarity of communities with increasing ’œŠ—ŒŽȱ ›ŽĚȱŽŒœȱ ‘Žȱ Œ‘Š—Žȱ ˜›ȱ ž›—˜ŸŽ›ȱ ’—ȱ œ™ŽŒ’Žœȱ Œ˜–™˜œ’’˜—ȱ Š–˜—ȱœ’ŽœǰȱŽ›–Žȱ‹ŽŠȬ’ŸŽ›œ’¢ȱǻ‘’ĴȱŠ”Ž›ǰȱŗşŜŖǰȱŗşŝŘDzȱŽŽ—›Žȱ et al., 2005), and is accounted for by at least three mechanisms. First, environmental characteristics change over distance causing a decrease in biotic similarity due to species sorting (Nekola & White, 1999; Leibold et al., 2004). Second, limited dispersal capacity will result in a decrease in community similarity with distance (Hubbell, ŘŖŖŗǼǯȱ‘’›ǰȱ’œ™Ž›œŠ•ȱ›ŠŽœȱŠ›ŽȱŠěȱŽŒŽȱ‹¢ȱ‘Žȱœ™Š’Š•ȱŒ˜—ęȱž›Š’˜—ȱ of the landscape between patches, and the presence of dispersal barriers will result in a decrease in community similarity (Garcillan & Ezcurra, 2003). These three mechanisms are not mutually exclusive, and various data indicate that in most communities they jointly control distance decay (Tuomisto et al.ǰȱŘŖŖřDzȱ˜ĴȱŽ—’ŽǰȱŘŖŖśǼǯ The rate (or slope) of spatial decrease in community similarity depends on several factors, including organismal features such as type of dispersal (passive vs. active) (Soininen et al.ǰȱŘŖŖŝǼǰȱœ’£Žȱ (Hillebrand et al., 2001; Soininen et al.ǰȱ ŘŖŖŝǼǰȱ ’œ™Ž›œŠ•ȱ ˜•Ž›Š—ŒŽȱ and formation of resting stages (Martiny et al., 2006) and dispersal ability (Ozinga et al., 2005), but also includes the spatial scale under study (Nekola & White, 1999; Soininen et al.ǰȱŘŖŖŝǼǰȱœŠ–™•’—ȱŽěȱ˜›ȱ and taxonomic resolution (Green & Bohannan, 2006; Soininen et al.ǰȱ ŘŖŖŝǼǰȱ Š—ȱ ‘Š‹’Šȱ ¢™Žȱ ǻŽ››Žœ›’Š•ǰȱ –Š›’—Žȱ ˜›ȱ ›Žœ‘ ŠŽ›Ǽȱ žŽȱ ˜ȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ œ™Š’Š•ȱ Œ˜—ęȱž›Š’˜—ȱ ǻ˜’—’—Ž—ȱ et al.ǰȱ ŘŖŖŝǼǯȱ Microorganisms are shown to have lower rates of distant decay than macroorganisms (Hillebrand et al., 2001; Green et al., 2004), but the lower taxonomic resolution used for microbial studies such as ȱ›ȱœŽšžŽ—ŒŽœȱ–’‘ȱ‘ŠŸŽȱŠȱ•Š›ŽȱŽěȱŽŒȱŠ—ȱ‹’Šœȱ‘’œȱ™ŠĴȱŽ›—ȱ ˜ Š›œȱĚȱŠĴȱŽ›ȱœ•˜™Žœȱǻ ›ŽŽ—ȱǭȱ˜‘Š——Š—ǰȱŘŖŖŜDzȱŠ›’—¢ȱet al., 2006). Similarly, terrestrial organisms have lower rates of distance decay than freshwater organisms, plausibly due to the more fragmented Œ˜—ęȱž›Š’˜—ȱ˜ȱ•Š”ŽœǰȱŠ—ȱ™Šœœ’ŸŽȱ’œ™Ž›œŽ›œȱ‘ŠŸŽȱĚȱŠĴȱŽ›ȱœ•˜™Žœȱ‘Š—ȱ ŠŒ’ŸŽȱ ’œ™Ž›œŽ›œȱ ’—’ŒŠ’—ȱ ‘Žȱ ŽěȱŽŒ’ŸŽ—Žœœȱ ˜ȱ ™Šœœ’ŸŽȱ ’œ™Ž›œŠ•ȱ (Soininen et al.ǰȱŘŖŖŝǼǯȱŽŒŠžœŽȱ˜ȱ‘Žȱ’–™˜›Š—ŒŽȱ˜ȱ˜›Š—’œ–Ȭ›Ž•ŠŽȱ

Species turnover of diatom communities 47 Œ‘Š›ŠŒŽ›’œ’Œœǰȱœ’—’ęȱŒŠ—ȱŠ–˜—Ȭœ™ŽŒ’Žœȱ’ěȱŽ›Ž—ŒŽœȱŠ›ŽȱŽ¡™ŽŒŽDzȱ however, knowledge on dispersal ability and niche is, in particular for microorganisms, mostly lacking (Martiny et al., 2006). Because distance decay unites several ecological phenomena, it is valuable for visualizing spatial turnover across sites and a starting point to ’—Ž›™›Žȱ‘Žȱ–ŽŒ‘Š—’œ–œȱ‹Ž‘’—ȱ‘Žȱ™ŠĴȱŽ›—ȱǻ˜’—’—Ž—ȱet al.ǰȱŘŖŖŝǼǯ Lacustrine diatom community similarities are known to show distance decay (Hillebrand et al.ǰȱŘŖŖŗDzȱ£˜Ÿœ”¢ǰȱŘŖŖŘǼǰȱŠ—ȱ‘’œȱęȱœȱ with results from multivariate studies showing that both spatial and local environmental factors shape these communities (Telford et al., 2006; Vyverman et al.ǰȱŘŖŖŝDzȱŽ›•Ž¢Ž—ȱet al., 2009). Furthermore, recent studies on diatom biogeography revealed a high degree of endemism (Verleyen et al.ǰȱœž‹–’ĴȱŽǼȱŠ—ȱ•’–’ŽȱŽ—ŽȱĚȱ˜ ȱǻŸŠ—œȱ et al., 2009), indicating that dispersal limitation does play a role in shaping the distribution of lacustrine diatoms. This idea is further strengthened by reports that lacustrine diatoms are very sensitive ˜ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ Ž¡›Ž–Žȱ Ž–™Ž›Šž›Žœȱ ǻ˜žěȱ›ŽŠžȱ et al., 2010; ˜žěȱ›ŽŠžȱ et al., unpubl.), very likely decreasing their dispersal potential. All these data indicate that the biogeographies of lacustrine diatoms are shaped by the same factors as higher organisms, namely a combination of historical factors (climatic and environmental history, geological processes, evolutionary background, isolation and dispersal limitation) and local ecological factors (Lomolino, 2010). For terrestrial diatoms, however, much less is known. Terrestrial diatoms thrive in soils and on mosses, rocks, tree barks and other substrates (Round et al., 1990) and compared with lacustrine habitats such as ponds and lakes, which form islands in a matrix of unsuitable habitats, the availability of terrestrial habitats seems much higher and less fragmented (however, this could not apply to very œ™ŽŒ’ęȱŒȱ™ŠŒ‘ŽœȱœžŒ‘ȱŠœȱ‹Š›Žȱœ˜’•Ǽȱ ‘’•Žȱž™Š”Žȱ˜ȱ‘Žȱ›’Ž›ȱœŽ’–Ž—ȱ by wind currents is more likely (Chepil, 1956). Furthermore, soil- inhabiting diatoms are shown to be more tolerant for temperature Ž¡›Ž–Žœȱ‘Š—ȱ•ŠŒžœ›’—Žȱ’Š˜–œȱǻ˜žěȱ›ŽŠžȱet al., 2010) while their ›Žœ’—ȱœŠŽœȱŠ›ŽȱŠ‹•Žȱ˜ȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱǻ˜žěȱ›ŽŠžȱet al., unpubl. b), both potentially enhancing their dispersal capacity. Indeed, the small amount of viable diatom species reported from air traps are ™›Ž˜–’—Š—•¢ȱŽ››Žœ›’Š•ȱŠ¡ŠȱǻŠ—ȱŸŽ›ŽŽ–ǰȱŗşřŝDzȱŒ‘•’Œ‘’—ǰȱŗşŜŗDzȱ Brown et al., 1964; Schlichting, 1964; Roy-Ocotla & Carrera, 1993) while aquatic diatoms are only rarely encountered (but see Geissler ǭȱ Ž›•˜ěȱǰȱ ŗşŜŜǼǯȱ ‘Žȱ Œ˜–‹’—Š’˜—ȱ ˜ȱ Šȱ •Žœœȱ ›Š–Ž—Žȱ ‘Š‹’Šǰȱ Šȱ

48 Species turnover of diatom communities higher susceptibility to aerial dispersal, and a higher tolerance to desiccation raises the probability that terrestrial diatoms have higher Ž—ŽȱĚȱ˜ ǰȱ•Žœœȱœ™ŽŒ’Š’˜—ȱŠ—ȱ‘žœȱ•Š›Ž›ȱŽ˜›Š™‘’Œȱ’œ›’‹ž’˜—œȱ than lacustrine diatoms (Spaulding et al., 2010). Despites these indications, no data are available on the dispersal and biogeography of terrestrial diatoms and no studies have yet explicitly compared ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—œȱ ˜ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ diatoms. The only dataset available covering both lacustrine and terrestrial diatom communities is a survey from B. Van de Vijver & N.J.M. Gremmen on multiple sub-Antarctic islands. The sub-Antarctic region has had a minor human historical impact compared to other geographically less remote regions (Frenot et al., 2001), being the rationale behind studying this area. Using oceanic islands for our study has the drawback that both the terrestrial and lacustrine habitats are equally fragmented on intermediate spatial scale. However, within each island the fragmentation level ˜ȱ Ž››Žœ›’Š•ȱ Š—ȱ •ŠŒžœ›’—Žȱ ‘Š‹’Šœȱ œ’••ȱ ’ěȱŽ›œǰȱ ‘’•Žȱ ‹Ž ŽŽ—ȱ ’œ•Š—œȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ’œŠ—ŒŽȱ ŽŒŠ¢ȱ Œ˜ž•ȱ œ’••ȱ ‹Žȱ ’—Ž›™›ŽŽȱ ’—ȱ the framework of environmental variation or dispersal limitation. From this large dataset, we selected the data of the best sampled islands, being the archipelagos of Kerguelen, Crozet and South Georgia, to analyze the distance decay of terrestrial and aquatic diatom communities (Fig. 3.1). While the three archipelagos all lay between 55° and 46° S (South Georgia: 54°S; Îles Crozet: 46°S; Îles Kerguelen: 49°S; spanning a latitude comparable from mid-France ˜ȱ˜ž‘ȱŽ—–Š›”Ǽǰȱ‘Ž¢ȱ˜ȱ’ěȱŽ›ȱ’—ȱœŽŸŽ›Š•ȱŒ‘Š›ŠŒŽ›’œ’Œœǯȱ˜ž‘ȱ Georgia, lying in the South Atlantic Ocean, is of continental origin and belongs to the Scotia island arch (related to the subduction of the South American Plate to its east), is geologically characterized by a gneiss and schist bedrock, and is colder than the two other islands (average annual temperature 1.85°C at Grytviken). The archipelagos of Crozet and Kerguelen are situated in the South Indian Ocean, are both of volcanic (hotspot) origin resulting in a basalt bedrock, Š—ȱ‘ŠŸŽȱŠ—ȱŠŸŽ›ŠŽȱŠ——žŠ•ȱŠ’›ȱŽ–™Ž›Šž›Žȱ˜ȱśǯśŜǚȱŠ—ȱŚǯŝşǚȱ (at Alfred Faure and Port-aux-Prince), respectively. South Georgia is the oldest island (min. 120 Ma), while Kerguelen (min. 40 Ma) and ›˜£ŽȱǻœŠ›’—ȱŞǯŝȱŠǼȱŠ›Žȱ–žŒ‘ȱ¢˜ž—Ž›ǯȱ The South Atlantic Ocean and South Indian Ocean form two ’œ’—Œȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ ™›˜Ÿ’—ŒŽœǰȱ ‹ŠœŽȱ ˜—ȱ Ěȱ˜›Š•ȱ Š—ȱ Šž—Š•ȱ ’œŒ˜—’—ž’’Žœȱǻ”˜Ĵȱœ‹Ž›ǰȱŗşŜŖDzȱŽ ’œȱ–’‘ǰȱŗşŞŚDzȱŠ—ȱŽ›ȱžĴȱŽ—ȱ

Species turnover of diatom communities 49 et al., 2010). Situated 1,300 km (South Georgia), 2,500 km (Îles Crozet) and 3,900 km (Îles Kerguelen) from the nearest continent, these three islands are very isolated. The archipelagos of Kerguelen and Crozet, separated by 1,420 km ocean, are more similar in geological, Œ•’–Š˜•˜’ŒŠ•ȱŠ—ȱŽ—Ÿ’›˜—–Ž—Š•ȱŒ‘Š›ŠŒŽ›’œ’Œœǰȱ‹žȱ‘Ž¢ȱ˜ȱ’ěȱŽ›ȱ in rainfall levels (Crozet: 2,400 mm/year; Kerguelen: >3,200 mm/ year on the west side, <800 mm/year on the east side) (Frenot et al., ŗşşŞǼǰȱ’—ȱŠ›ŽŠȱǻ›˜£ŽDZȱŠȱ›Š–Ž—ŽȱŗŚŝƸŗřŖȱ”–ŶDzȱ Ž›žŽ•Ž—DZȱŝǰŘŖŖȱ ”–ŶǼǰȱ ’—ȱ –Š¡’–ž–ȱ Ž•ŽŸŠ’˜—ȱ ǻ›˜£ŽDZȱ ŗǰŖśŖȱ –Dzȱ Ž›žŽ•Ž—DZȱ ŗǰŞśŖȱ m) and therefore also in present ice cover (Crozet: 0%; Kerguelen: ŗŘƖǼȱ ǻœž––Š›’£Žȱ ’—ȱ Š—ȱŽ›ȱ žĴȱŽ—ȱ et al., 2010). However, they both have a volcanic history with several outbreaks, and during the Last Glacial Maxima the lower parts of both archipelagos remained ’ŒŽȬ›ŽŽȱǻ›ŽŸ’Ž Žȱ’—ȱŠ—ȱŽ›ȱžĴȱŽ—ȱet al., 2010). A thorough study comparing the environmental variables on both islands is thus necessary before we can use these two archipelagos as a case- œž¢ȱ ˜ȱ Ž¡™•˜›Žȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ’œŠ—ŒŽȱ ŽŒŠ¢ȱ ˜ȱ œ˜’•Ȭ’—‘Š‹’’—ȱ and lacustrine diatom communities at intermediate scale while assuming the availability of similar habitat types. Meanwhile, we can assume that the environmental conditions of Îles Crozet and Îles Kerguelen are more alike compared to South Georgia, which would result in more comparable diatom communities. The distance

Fig. 3.1 Map of the South Polar Region including the Antarctic and sub-Antarctic. The island groups of South Georgia, Crozet and Kerguelen are indicated by grey boxes.

50 Species turnover of diatom communities between these South Indian Ocean Islands and South Georgia (5,900 and 6,600 km from Crozet and Kerguelen, respectively) forms an ’—Ž›Žœ’—ȱœŽĴȱ’—ȱ˜ȱŠœœŽœœȱ’œŠ—ŒŽȱŽŒŠ¢ȱ˜ȱ’Š˜–ȱŒ˜––ž—’’Žœȱ on even larger scales. Following the assumption that soil-inhabiting diatoms (termed “terrestrial” below) have larger dispersal abilities than lacustrine diatoms (termed “aquatic” below) we hypothesize that the terrestrial communities will be characterized by lower species turnover and higher community similarities than the aquatic communities 1) within islands; and 2) between Crozet and Kerguelen. However, due to the larger environmental variations and geographical distance between the South Indian and the South Atlantic Ocean, we predict that 3) both terrestrial and aquatic communities will display pronounced distance decays at this larger scale.

3.2 Materials & Methods Sampling procedure Samples were taken in such a way as to assure that all habitat types were included, across a wide range of altitudes, moisture levels and intensities of sea spray and manuring and animal trampling. In waterbodies such as lakes, pools and rivers, very wet mires Š—ȱ ›Š’—ŠŽȱ •’—Žœǰȱ ‘Žȱ ‹˜Ĵȱ˜–ȱ œŽ’–Ž—ȱ Š—Ȧ˜›ȱ ŠŽ›ȱ œšžŽŽ£Žȱ ›˜–ȱ ‹›¢˜™‘¢Žœȱ Šœȱ Œ˜••ŽŒŽȱ ’—ȱ ȱ ‹˜Ĵȱ•Žœȱ Š—ȱ ęȱ¡Žȱ ’‘ȱ řƖȱ formaldehyde. A few moss plants were included in the sample. In drier habitats, bryophytes (or where these were absent, the top soil layer) were collected and air-dried in paper bags. In the case of seepage areas on rocks the algal mat was collected and air-dried. More information regarding the sampling can be found in Van de ’“ŸŽ›ȱǭȱŽ¢Ž—œȱǻŗşşŝǼǰȱŠ—ȱŽȱ’“ŸŽ›ȱet al. (2002; 2004b) and Van de Vijver & Mataloni (2008).

Slide preparation and counting Diatom samples for observation by light microscopy (LM) were ™›Ž™Š›Žȱ˜••˜ ’—ȱ‘Žȱ–Ž‘˜ȱŽœŒ›’‹Žȱ’—ȱŠ—ȱŽ›ȱŽ›ěȱȱǻŗşśśǼǯȱ –Š••ȱ ™Š›œȱ ˜ȱ ‘Žȱ œŠ–™•Žœȱ Ž›Žȱ Œ•ŽŠ—Žȱ ‹¢ȱ Š’—ȱ řŝƖȱ ŘŘȱ and heating to 80° C for about 1 h. The reaction was completed by addition of KMnO4. Following digestion and centrifugation (three ’–Žœȱ˜›ȱŗŖȱ–’—žŽœȱŠȱřǰŝŖŖȱ¡ȱǼǰȱŒ•ŽŠ—Žȱ–ŠŽ›’Š•ȱ Šœȱ’•žŽȱ ’‘ȱ

Species turnover of diatom communities 51 distilled water to avoid excessive concentrations of diatom valves on the slides. Cleaned diatom material was mounted in Naphrax®. The samples and slides are stored at the Department of Bryophytes and Thallophytes, National Botanic Garden of Belgium. In each sample, śŖŖȱ ’Š˜–ȱ ŸŠ•ŸŽœȱ Ž›Žȱ ’Ž—’ęȱŽȱ Š—ȱ Ž—ž–Ž›ŠŽȱ ˜—ȱ ›Š—˜–ȱ ›Š—œŽŒœȱ Šȱ ¡ŗǰŖŖŖȱ –Š—’ęȱŒŠ’˜—ȱ ž—Ž›ȱ ˜’•ȱ ’––Ž›œ’˜—ȱ žœ’—ȱ Š—ȱ •¢–™žœȱśŗȱ–’Œ›˜œŒ˜™ŽǰȱŽšž’™™Žȱ ’‘ȱ’ěȱŽ›Ž—’Š•ȱ —Ž›Ž›Ž—ŒŽȱ Contrast (Nomarski) and Colorview I Soft Imaging System. In some œŠ–™•Žœǰȱ’ȱ™›˜ŸŽȱ’ĜȱȱŒž•ȱ˜ȱ˜‹Š’—ȱ•Š›ŽȱŒ˜ž—œǯȱŸŽ—ȱŠŽ›ȱœŒŠ——’—ȱ several entire slides at x1,000, some samples yielded less than 250 valves. Considering the extreme environments involved, these —ž–‹Ž›œȱœŽŽ–ŽȱŠŒŒŽ™Š‹•ŽȱǻŠ—ȱŽȱ’“ŸŽ›ȱǭȱŽ¢Ž—œǰȱŗşşŝǼǯȱ’Š˜–ȱ ’Ž—’ęȱŒŠ’˜—œȱ Ž›Žȱ‹ŠœŽȱ˜—ȱ›žœž•Žȱ–˜›™‘˜•˜¢ǰȱŠ—ȱŠ••ȱœŠ–™•Žœȱ Ž›ŽȱŒ˜ž—Žȱ‹¢ȱ‘ŽȱœŠ–Žȱ™Ž›œ˜—ȱŽ—œž›’—ȱ‘Šȱ’Ž—’ęȱŒŠ’˜—ȱ Šœȱ Œ˜—œ’œŽ—ȱŠŒ›˜œœȱŠ••ȱŠŠœŽœǯȱ Ž—’ęȱŒŠ’˜—œȱ˜ȱ—Š›Œ’Œȱœ™ŽŒ’ŽœȱŠ›Žȱ based on descriptions by Bourrelly & Manguin (1954), Le Cohu & Maillard (1983, 1986), Schmidt et al. (1990), Oppenheim (1994), Van de Vijver et al. (2002; 2004a) and Le Cohu (2005). Nomenclature follows Bukhtiyarova & Round (1996), Round & Bukhtiyarova (1996), Lange-Bertalot (2001) and Krammer (2000, 2002).

Data analysis Based on the samples of Crozet, Kerguelen and South Georgia, a species list was compiled using presence-absence and relative abundance data. Sites were subdivided into “aquatic”, “terrestrial” and “semi-terrestrial” habitat classes. The aquatic class contained all permanent lakes. The terrestrial class contained all dry soil samples and thus the true soil-inhabiting diatom communities. All other œ’Žœȱ Ž›ŽȱŒ•Šœœ’ęȱŽȱŠœȱœŽ–’ȬŽ››Žœ›’Š•ǰȱŒ˜ŸŽ›’—ȱŸŽ›¢ȱ’ŸŽ›œŽȱ‘Š‹’Šȱ types including peats and bogs, seepages and mosses. While aquatic sites are the least susceptible to dry out, semi-terrestrial habitats are intermediately susceptible to dry out, and terrestrial habitats are the most likely to undergo desiccation. Datasets of aquatic, terrestrial and semi-terrestrial sites were compiled for each island and analyzed separately.

Community similarity and distance decay For each habitat class, pairwise community similarities of sites were calculated between sites 1) within islands, and 2) among the three ’ěȱŽ›Ž—ȱ ’œ•Š—œȱ ’—ȱ Š••ȱ ‘›ŽŽȱ ™Š’› ’œŽȱ Œ˜–‹’—Š’˜—œǯȱ ’–’•Š›’’Žœȱ

52 Species turnover of diatom communities were based on the Jaccard Index, using presence-absence data as we are mainly interested in dispersal limitation and therefore in the absence or presence of species. Similarities were calculated in R using the vegan package (Oksanen et al., 2011) after which the –Ž’Š—ǰȱ ęȱ›œȱ Š—ȱ ‘’›ȱ šžŠ›’•Žȱ Š—ȱ ‘Žȱ –’—’–Š•ȱ Š—ȱ –Š¡’–Š•ȱ ŸŠ•žŽœȱ Ž›ŽȱŒŠ•Œž•ŠŽȱžœ’—ȱ¡ŒŽ•ȱǻ’Œ›˜œ˜ȱĜȱȱŒŽǼǯȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ similarity between terrestrial and aquatic datasets were statistically ŠœœŽœœŽȱ žœ’—ȱ ȬŽœœȱ ǻŠ’œ’ŒŠȱ ŝǰȱ Šœ˜Ǽǯȱ ˜›ȱ ‘Žȱ ’‘’—Ȭ’œ•Š—ȱ comparisons, the median similarity values of the three islands were taken as replicates. For the among-island comparisons, we only compared between oceans (i.e. largest spatial scale); the median similarity values of the pairwise comparisons of Crozet vs. South Georgia and Kerguelen vs. South Georgia were taken as replicates. To analyze the distance decay per habitat class, similarities Ž›Žȱ™•˜ĴȱŽȱŠŠ’—œȱ‘Žȱ’œŠ—ŒŽȱ‹Ž ŽŽ—ȱ‘ŽȱŒ˜–™Š›Žȱœ’Žœǯȱ‘Žȱ –Ž’Š—ȱ ’‘’—Ȭ’œ•Š—ȱœ’–’•Š›’’Žœȱ Ž›ŽȱŠ••ȱ™•˜ĴȱŽȱŠȱŠȱœ’Žȱ’œŠ—ŒŽȱ of 1 km because we had no data yet on the geographical coordinates of the individual sites. The median between-island similarities were ™•˜ĴȱŽȱŠȱ‘Žȱœ‘˜›Žœȱ’œŠ—ŒŽȱ‹Ž ŽŽ—ȱŽŠŒ‘ȱ’œ•Š—ȱ™Š’›ǯȱ‘Žȱœ•˜™Žœȱ of the straight lines connecting the median similarity values (per habitat class) for all between-island pairs were calculated using •’—ŽŠ›ȱ›Ž›Žœœ’˜—ȱ’—ȱ¡ŒŽ•ȱǻ’Œ›˜œ˜ȱĜȱȱŒŽȱŘŖŗŖǼȱ˜—ȱ•˜Š›’‘–’ŒŠ••¢ȱ transformed similarity and distance data. For the statistical analyses, the distance decay slopes for the data points of Kerguelen and Crozet were taken as replicates per distance comparison (intermediate and •Š›Žȱ œŒŠ•ŽǼǯȱ ’—’ęȱŒŠ—ŒŽȱ ˜ȱ ‘Žȱ ’ěȱŽ›Ž—ŒŽœȱ ‹Ž ŽŽ—ȱ ‘Žȱ œ•˜™Žœȱ ˜ȱ the aquatic and terrestrial datasets was analyzed using t-tests in Š’œ’ŒŠȱŝȱǻŠœ˜Ǽǯ

Diversity partitioning Diversity partitioning is a tool to partition the total diversity of a dataset or region (i.e.ȱ ·Ȭ’ŸŽ›œ’¢Ǽȱ ’—˜ȱ ’œȱ  ˜ȱ Œ˜–™˜—Ž—œǰȱ ‹Ž’—ȱ the average local (sample/site) diversity (i.e.ȱ ΅Ȭ’ŸŽ›œ’¢Ǽȱ Š—ȱ ‘Žȱ average turnover in diversity between localities (samples/sites) (i.e. ΆȬ’ŸŽ›œ’¢Ǽǯȱ Š––Šȱ Š—ȱ Š•™‘ŠȬ’ŸŽ›œ’’Žœȱ ŒŠ—ȱ ‹Žȱ ŒŠ•Œž•ŠŽȱ ›˜–ȱ ‘ŽȱŠŠœŽȱžœ’—ȱŠȱ’ŸŽ›œ’¢ȱ’—Ž¡ȱ˜ȱŒ‘˜’ŒŽǯȱŽȱžœŽȱ ˜ȱ’ěȱŽ›Ž—ȱ diversity indices: species richness (Q=0) and Shannon diversity (Q=1). Based on the gamma and alpha-diversities, beta-diversity is ŒŠ•Œž•ŠŽȱŠœȱΆƽ·Ȭ΅ȱǻ˜›ȱŠ’’ŸŽȱœ™ŽŒ’Žœȱ›’Œ‘—ŽœœǼȱ˜›ȱŠœȱΆƽ·Ȧ΅ȱǻ˜›ȱ multiplicative species richness and for Shannon diversity) (Jost, ŘŖŖŝǼǯȱ‘’œȱ’ŸŽ›œ’¢ȱ™Š›’’˜—’—ȱ Šœȱ™Ž›˜›–Žȱ˜›ȱ‘ŽȱŽ››Žœ›’Š•ȱ

Species turnover of diatom communities 53 Š—ȱŠšžŠ’ŒȱŠŠœŽœȱŠȱ‘›ŽŽȱ’ěȱŽ›Ž—ȱŽ˜›Š™‘’ŒŠ•ȱœŒŠ•ŽœDZȱŗǼȱ ’‘’—ȱ islands, 2) among islands in each pairwise comparison, 3) among the South Indian Ocean (i.e. the combination of datasets from Crozet and Kerguelen) and the South Atlantic Ocean (i.e. South Georgia). Analyses were performed for each habitat class separately based on relative abundances using the software PARTITION v3 (Veech & Christ, 2009). Samples were not weighted, and randomization was individual-based using 1,000 randomizations. The “among islands” and “among oceans” analyses were hierarchically analyzed, such that the total beta-diversity was decomposed into the beta-diversity ‹Ž ŽŽ—ȱœ’Žœȱ ’‘’—ȱŽŠŒ‘ȱ’œ•Š—ȱ˜›ȱ ’‘’—ȱŽŠŒ‘ȱ˜ŒŽŠ—ȱǻΆŗǼǰȱŠ—ȱ‘Žȱ ‹ŽŠȬ’ŸŽ›œ’¢ȱŠ–˜—ȱ‘Žȱ’œ•Š—œȱ˜›ȱŠ–˜—ȱ‘Žȱ˜ŒŽŠ—œȱǻΆŘǼǯȱ™ŽŒ’Žœȱ ›’Œ‘—Žœœȱ Šœȱ™Š›’’˜—Žȱ’—ȱ‘ŽȱŠ’’ŸŽȱ Š¢ǰȱ ’‘ȱ·ƽ΅ƸΆŗƸΆŘȱǻŠ—Žǰȱ 1996). Additive partitioning has the advantage over multiplicate ™Š›’’˜—’—ȱ ˜ȱ œ™ŽŒ’Žœȱ ›’Œ‘—Žœœȱ ‘Šȱ ‘Žȱ ’ěȱŽ›Ž—ȱ Œ˜–™˜—Ž—œȱ ŒŠ—ȱ be compared with each other and with the components of other communities (Lande, 1996; Veech et al., 2002). Shannon diversity can only be partitioned multiplicatively, and to make the alpha, beta and gamma components relate additively, we transformed these components into Shannon entropies using the natural logarithm ǻ ˜œǰȱŘŖŖŝǼǯ

3.3 Results Dataset properties In total 556 samples were analyzed, containing a total of 339 species. The number of samples and number of species per island is given in Table 3.1. South Georgia was less intensively sampled, and we therefore predominantly focus on the island groups of Kerguelen Š—ȱ›˜£Žǯȱ˜Žȱ‘Šȱ’œŠ—ŒŽȱŽŒŠ¢ȱŽ™Ž—œȱ˜—ȱœŠ–™•’—ȱŽěȱ˜›ǰȱ Š—ȱ •˜ Ž›ȱ Žěȱ˜›œȱ ’••ȱ ›Žœž•ȱ ’—ȱ ‘’‘Ž›ȱ œ’–’•Š›’’Žœȱ ǻ˜’—’—Ž—ȱ et al., ŘŖŖŝǼǯȱ

Similarities and distance decay of similarity Median similarities were higher within islands than between oceans ǻ’ǯȱřǯŘDzȱ’ǯȱřǯřǼȱœ‘˜ ’—ȱŠȱŒ•ŽŠ›ȱ’œŠ—ŒŽȱŽŒŠ¢ǰȱ‹žȱ‘’œȱ’ěȱŽ›Ž—ŒŽȱ Šœȱ˜—•¢ȱœŠ’œ’ŒŠ••¢ȱœ’—’ęȱŒŠ—ȱ˜›ȱ‘ŽȱŽ››Žœ›’Š•ȱŠŠœŽœȱǻ’ǯȱřǯŘȱ B, pƽŖǯŖŗŘŝǼǯȱȱ‘Žȱœ–Š••Žœȱœ™Š’Š•ȱœŒŠ•Žǰȱ ’‘’—ȱ’œ•Š—œǰȱ‘ŽȱŠšžŠ’Œȱ sites showed a lower median similarity compared with the terrestrial and semi-terrestrial sites when measured per island (Fig. 3.2 A;

54 Species turnover of diatom communities 96 (30) action of 1) -0.174 -0.0074 -0.0502 -0.1439 number of species semi-terrestrial 32 -0.1505 -0.0089 -0.0536 -0.1275 terrestrial 54 (8) Slopes of distance decay 4 -0.115 -0.093 -0.0321 -0.0913 aquatic 115 (59) Aquatic Terrestrial Semi-terrestrial 6,600 km 1,420 km 1,420 km 5,900 km Distance 35 # sites species # # sites species # # sites species # 166 Total # species Crozet Kerguelen South Georgia South Georgia 71 Crozet Crozet Kerguelen Kerguelen Crozet 304 246 97 174 (20) 91 199 (32) 116 188 (14) Basis island (A) island (B) Compared Kerguelen 181 220 42 128 (14) 13 124 (4) 127 204 (49) South Georgia Island group Total # sites occurring only in that particular habitat is given between brackets. between occurring only in that particular habitat is given Table 3.1 Dataset characteristics indicating the number of sites and species per island group habitat on each group. The Table distance (km) and similarities (as fr calculated between 3.2 Summary of the slopes distance decays. Linear regressions were Table s were both logarithmically and the compared island (B). Distance similaritie s were the basis island (A) and similarities between within the basis island (A) transformed.

Species turnover of diatom communities 55 Fig. 3.2 Percentages of community similarity (Jaccard Index) per habitat type summarized Ǽȱ™Ž›ȱ’œ•Š—ȱ˜›ȱ’œ•Š—ȱŒ˜–‹’—Š’˜—ǰȱŠ—ȱǼȱŠœȱ‹˜¡ȱ™•˜œȱžœ’—ȱ‘Žȱ‘›ŽŽȱ’ěȱŽ›Ž—ȱ’œ•Š—œȱ as replicates (within island similarities) or the pairwise similarities between South Georgia and Kerguelen respectively Crozet as replicates (between oceans similarities). * indicates œŠ’œ’ŒŠ•ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱŒ˜––ž—’¢ȱœ’–’•Š›’¢ȱ™Ž›ŒŽ—ŠŽœȱǻp<0.05).

56 Species turnover of diatom communities ’ǯȱřǯřǼǯȱ ˜ ŽŸŽ›ǰȱ‘Žȱ’ěȱŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ Œ˜––ž—’¢ȱ œ’–’•Š›’’Žœȱ Ž›Žȱ —˜ȱ œŠ’œ’ŒŠ••¢ȱ œ’—’ęȱŒŠ—ȱ ǻp>0.05) (Fig. 3.2 B). At intermediate scale (i.e. when comparing Crozet and Kerguelen; ca. 1,500 km), the aquatic communities had again a lower similarity compared with the terrestrial and semi-terrestrial communities (Fig. 3.2 A; Fig. 3.3) but because no replicate island Œ˜–‹’—Š’˜—œȱ Ž›ŽȱŠŸŠ’•Š‹•ŽȱŠȱ‘ŠȱœŒŠ•Žȱœ’—’ęȱŒŠ—ŒŽȱŒ˜ž•ȱ—˜ȱ‹Žȱ ŠœœŽœœŽǯȱ ‘Ž—ȱ ™•˜ĴȱŽȱ ŠŠ’—œȱ ’œŠ—ŒŽȱ ǻ’ǯȱ řǯřǼǰȱ Ž››Žœ›’Š•ȱ Š—ȱ œŽ–’ȬŽ››Žœ›’Š•ȱ Œ˜––ž—’’Žœȱ œ‘˜ Žȱ Šȱ ĚȱŠĴȱŽ›ȱ ŽŒŠ¢ȱ ’—ȱ œ’–’•Š›’¢ǰȱ while the aquatic communities decreased stronger in similarity, but the slopes of the linear regressions between similarity and distance ǻŠ‹•ŽȱřǯŘǼȱ’ȱ—˜ȱ’ěȱŽ›ȱœ’—’ęȱŒŠ—•¢ȱ‹Ž ŽŽ—ȱ‘Š‹’Šȱ¢™Žœȱǻp>0.05). At the largest spatial scale when comparing the South Indian Ocean islands (Crozet and Kerguelen) with the South Atlantic Ocean island South Georgia (ca. 6,000 km), similarities were very low

Fig. 3.3 Graph showing median similarity (Jaccard Index) of the within-island and between- ’œ•Š—ȱŠ—Š•¢œŽœȱ™•˜ĴȱŽȱŠŠ’—œȱ’œŠ—ŒŽǯ

Species turnover of diatom communities 57 for all habitat types (Fig. 3.2; Fig. 3.3). Among oceans, similarities decreased drastically for all habitat types, but more slowly for the aquatic communities (Table 3.2; Fig. 3.3), as their initial within-island œ’–’•Š›’’Žœȱ Ž›Žȱ •˜ Ž›ǯȱŠ’—ǰȱ —˜ȱ œ’—’ęȱŒŠ—ȱ ’ěȱŽ›Ž—ŒŽœȱ ‹Ž ŽŽ—ȱ slopes were found (p>0.05).

Beta-diversity within islands ȱ ’‘’—ȱ ’œ•Š—œǰȱ ‘Žȱ ŠŸŽ›ŠŽȱ ’ŸŽ›œ’¢ȱ ’‘’—ȱ œ’Žœȱ ǻ΅Ȭ’ŸŽ›œ’¢Ǽȱ Šœȱ œ’—’ęȱŒŠ—•¢ȱ •˜ Ž›ȱ ‘Š—ȱ ‘Žȱ ŠŸŽ›ŠŽȱ ’ŸŽ›œ’¢ȱ ‹Ž ŽŽ—ȱ œ’Žœȱ ǻΆȬ’ŸŽ›œ’¢ǰȱž›—˜ŸŽ›Ǽȱ ‘Ž—ȱŒŠ•Œž•ŠŽȱŠœȱœ™ŽŒ’Žœȱ›’Œ‘—ŽœœȱǻŠšžŠ’Œȱ datasets: p=0.00001; terrestrial datasets: p=0.0168) (Fig. 3.4 A-B, Fig. 3.5 A, C), indicating that, compared to the total diversity ǻ·Ȭ’ŸŽ›œ’¢ǼȱŠŸŠ’•Š‹•Žǰȱ’—’Ÿ’žŠ•ȱœ’ŽœȱŒ˜—Š’—ŽȱŠȱ•˜ ȱ—ž–‹Ž›ȱ˜ȱ œ™ŽŒ’Žœǰȱ‹žȱœ’Žœȱ’ěȱŽ›Žȱ›ŽŠ•¢ȱ’—ȱ‘Žȱœ™ŽŒ’Žœȱ™›ŽœŽ—ǯȱ‘’œȱ™ŠĴȱŽ›—ȱ was opposite when calculated as Shannon diversity (Fig. 3.4 C, ’ǯȱřǯśȱǰȱǼǯȱ‘Žȱ΅Ȭ’ŸŽ›œ’¢ȱ˜ȱŽ››Žœ›’Š•ȱŒ˜––ž—’’Žœȱ Šœȱ‘Ž—ȱ œ’—’ęȱŒŠ—•¢ȱ‘’‘Ž›ȱ‘Š—ȱ‘ŽȱΆȬ’ŸŽ›œ’¢ȱǻpƽŖǯŖŘśŜǼǰȱ‹žȱ—˜ȱœ’—’ęȱŒŠ—ȱ ŽěȱŽŒȱ ŠœȱŠœœŽœœŽȱ˜›ȱ‘ŽȱŠšžŠ’ŒȱŠŠœŽǯȱ‘Žȱ‘Š——˜—ȱ —Ž¡ȱŠ•œ˜ȱ accounts for abundances and evenness in the communities and can be interpreted as the chance that the next species is identical to the previous one. The opposite results based on species richness and the Shannon Index suggests that the large turnover in species based on species richness is mainly due to variations in absence or presence of ›Š›Žȱœ™ŽŒ’Žœȱ‹Ž ŽŽ—ȱ‘Žȱ’ěȱŽ›Ž—ȱœ’ŽœǯȱŽ››Žœ›’Š•ȱŒ˜––ž—’’Žœȱ‘Šȱ Šȱ •˜ Ž›ȱ ΆȬ’ŸŽ›œ’¢ȱ ˜›ȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ ‘Š—ȱ ŠšžŠ’Œȱ Œ˜––ž—’’Žœȱ ǻ’ǯȱřǯŚȱȬDzȱ’ǯȱřǯśȱȬǼǰȱ‹žȱ‘’œȱ Šœȱ—˜ȱœ’—’ęȱŒŠ—ȱǻ’ǯȱřǯśȱǰȱDzȱ p>0.05).

Beta-diversity among islands on intermediate scale (ca. 1,500 km) Focusing on Crozet and Kerguelen, a larger turnover in species is ˜‹œŽ›ŸŽȱ ’‘’—ȱ‘Žȱœ’—•Žȱ’œ•Š—œȱǻΆŗǼȱ‘Š—ȱ‹Ž ŽŽ—ȱ‘Žȱ ˜ȱ’œ•Š—ȱ ›˜ž™œȱ ǻΆŘǼȱ ǻ’ǯȱ řǯŜȱ Ȭǰȱ •ŽǼȱ ‹˜‘ȱ žœ’—ȱ œ™ŽŒ’Žœȱ ›’Œ‘—Žœœȱ Š—ȱ ‘Š——˜—ȱ ’ŸŽ›œ’¢ǯȱ ‘Žȱ ˜Š•ȱ ’ŸŽ›œ’¢ȱ ˜ȱ ‘Žȱ ’œ•Š—œȱ ǻ·Ȭ’ŸŽ›œ’¢Ǽȱ was thus more determined by the single islands, meaning that a large part of the diversity was already present on both islands. The terrestrial community had a lower turnover within islands ǻΆŗǼȱ‘Š—ȱŠšžŠ’ŒȱŒ˜––ž—’’ŽœǰȱŠœȱ™›ŽŸ’˜žœ•¢ȱ˜‹œŽ›ŸŽǯȱ ˜ ŽŸŽ›ǰȱ it had larger among-island turnover than the aquatic community when using species richness as diversity index (Fig. 3.6 B, left), and

58 Species turnover of diatom communities lower among-island turnover when using Shannon diversity (Fig. 3.6 C, left), which indicates that species turnover in the terrestrial communities was mainly due to changes in the rare taxa. However, because no replicate islands are available on this intermediate scale —˜ȱœŠ’œ’ŒŠ•ȱœ’—’ęȱŒŠ—ŒŽȱŒŠ—ȱ‹ŽȱŒŠ•Œž•ŠŽǯ

Beta-diversity among islands on larger scale (ca. 6,000 km) When looking individually at the turnover between South Georgia and Crozet respectively Kerguelen (Fig. 3.6 A-C, middle and right ›Š™‘œǼǰȱ‘Ž›Žȱ ŠœȱŠȱ•Š›Ž›ȱž›—˜ŸŽ›ȱǻΆŘǼȱŠȱ‘’œȱ•Š›Žœȱ’œŠ—ŒŽȱ‘Š—ȱ ‹Ž ŽŽ—ȱ Ž›žŽ•Ž—ȱ Š—ȱ ›˜£Žȱ ǻęȱ›œȱ ‘›ŽŽȱ ›Š™‘ȱ Œ˜•ž–—œǼȱ ˜›ȱ Š••ȱ ‘Š‹’Šȱ¢™ŽœǯȱŽ ŽŽ—ȱ‘Žȱœ’Žœȱ ’‘’—ȱŽŠŒ‘ȱ’œ•Š—ȱǻΆŗǼǰȱŽ››Žœ›’Š•ȱ communities had a lower species turnover between sites than aquatic Œ˜––ž—’’Žœȱ ǻ’ǯȱ řǯŜȱ ȬǼǰȱ ‘’Œ‘ȱ Šœȱ œ’—’ęȱŒŠ—ȱ ‘Ž—ȱ žœ’—ȱ species richness (species richness p=0.0222, Shannon Index p=0.0545). However, contrary to our expectations, the species turnover between ›˜£Žȱ˜›ȱ Ž›žŽ•Ž—ȱŠ—ȱ˜ž‘ȱ Ž˜›’ŠȱǻΆŘǼȱ Šœȱ•Š›Ž›ȱ’—ȱŽ››Žœ›’Š•ȱ Œ˜––ž—’’ŽœȱŒ˜–™Š›Žȱ˜ȱŠšžŠ’ŒȱŒ˜––ž—’’Žœȱǻ’ǯȱřǯŝȱȬǼȱŠ—ȱ œ’—’ęȱŒŠ—ȱ ‘Ž—ȱžœ’—ȱœ™ŽŒ’Žœȱ›’Œ‘—ŽœœȱǻpƽŖǯŖŗŞŘǼȱ‹žȱ—˜ȱœ’—’ęȱŒŠ—ȱ ‘Ž—ȱžœ’—ȱ‘Žȱ‘Š——˜—ȱ —Ž¡ǯȱ‘ŽȱŠŒȱ‘Šȱ‘’œȱ™ŠĴȱŽ›—ȱ Šœȱ˜—•¢ȱ œ’—’ęȱŒŠ—ȱ˜›ȱœ™ŽŒ’Žœȱ›’Œ‘—ŽœœȱŒ˜ž•ȱ’—’ŒŠŽȱ‘Šȱ‘Žȱ•Š›Žȱž›—˜ŸŽ›ȱ observed for terrestrial communities was mainly due to variations in rare species. When giving more weight to abundances and evenness by using the Shannon Index, aquatic and terrestrial communities ‘Šȱ œ’–’•Š›ȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ ǻ’ǯȱ řǯŝȱ Ǽǯȱ ž›‘Ž›–˜›Žǰȱ ˜ŸŽ›ȱ Š••ȱ ‘Š‹’Šȱ¢™ŽœǰȱΆŘȬ’ŸŽ›œ’¢ȱ‹ŠœŽȱ˜—ȱœ™ŽŒ’Žœȱ›’Œ‘—Žœœȱǻ’ǯȱřǯŜȱDzȱ’ǯȱ řǯŝȱǼȱ Šœȱ•Š›Ž›ȱ‘Š—ȱ ‘Ž—ȱ‹ŠœŽȱ˜—ȱ‘Š——˜—ȱ —Ž¡ȱǻ’ǯȱřǯŜȱDzȱ’ǯȱ řǯŝȱǼǰȱ’—’ŒŠ’—ȱ‘Šȱ’—ȱŽ—Ž›Š•ȱ‘Žȱœ™ŽŒ’Žœȱž›—˜ŸŽ›ȱŠ–˜—ȱ’œ•Š—œȱ Šœȱ™›Ž˜–’—Š—•¢ȱžŽȱ˜ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ›Š›Žȱœ™ŽŒ’Žœǯ

Beta-diversity among the South Atlantic and South Indian Ocean When performing a hierarchical partitioning over the two oceans ǻ’ǯȱ řǯŞȱȬǼǰȱ ‘Žȱ œŠ–Žȱ ™ŠĴȱŽ›—ȱ ˜ŒŒž›œȱ Šœȱ ‹Ž ŽŽ—ȱ ‘Žȱ ’—’Ÿ’žŠ•ȱ islands, but no replicate ocean combinations were available and ‘žœȱ —˜ȱ œŠ’œ’ŒŠ•ȱ Š—Š•¢œŽœȱ Œ˜ž•ȱ ‹Žȱ ™Ž›˜›–Žǯȱ ‘Žȱ ΆŘȬ’ŸŽ›œ’¢ǰȱ the turnover in diversity between the oceans, tended to be larger for terrestrial communities than for aquatic communities and again

Species turnover of diatom communities 59 Fig. 3.4 Diversity partitioning within islands for each habitat type shown per island as absolute values of additive species richness (A) and percentages ˜ȱ ‘Žȱ ·Ȭ’ŸŽ›œ’¢ȱ based on additive species richness (B) and Shannon Index (C). Total diversity consists ˜ȱ ‘Žȱ ΅Ȭ’ŸŽ›œ’¢ȱ or average diversity within sites, and ΆȬ’ŸŽ›œ’¢ȱ ˜›ȱ average diversity between sites within the island. Aq = aquatic communities, Ter = terrestrial communities, Semi = semi-terrestrial communities.

60 Species turnover of diatom communities Fig. 3.5ȱ˜¡ȱ™•˜œȱ˜ȱ΅Ȭ’ŸŽ›œ’¢ȱ˜›ȱŠŸŽ›ŠŽȱ ’‘’—Ȭœ’Žȱ’ŸŽ›œ’¢ȱǻǰȱǼȱŠ—ȱΆȬ’ŸŽ›œ’¢ȱ˜›ȱ average between-sites diversity (C, D) for the aquatic and terrestrial communities using the three islands Crozet, Kerguelen and South Georgia as replicates. Diversity was partitioned using species richness (A, C) and using Shannon Index (B, D).

Species turnover of diatom communities 61 Fig. 3.6 Diversity partitioning among islands in the three pairwise combinations, shown per combination as absolute values of additive species richness (A) and percentages of the ·Ȭ’ŸŽ›œ’¢ȱ ‹ŠœŽȱ on additive species richness (B) and Shannon Index (C) for the three habitat types. Total diversity Œ˜—œ’œœȱ ˜ȱ ‘Žȱ ΅ŗȬ diversity or average within-site diversity ™Ž›ȱ ’œ•Š—ǰȱ ΆŗȬ diversity or average among-site diversity within each island, Š—ȱ ΆŘȬ’ŸŽ›œ’¢ȱ ˜›ȱ average between- island diversity. Aq = aquatic communities, Ter = terrestrial communities, Semi = semi-terrestrial communities.

62 Species turnover of diatom communities Fig. 3.7ȱ˜¡ȱ™•˜œȱ˜ȱΆŗȬ’ŸŽ›œ’¢ȱ˜›ȱŠŸŽ›ŠŽȱ ’‘’—Ȭ’œ•Š—ȱ’ŸŽ›œ’¢ȱǻǰȱǼȱŠ—ȱΆŘȬ’ŸŽ›œ’¢ȱ or average between-island diversity (C, D) for the aquatic and terrestrial communities using Kerguelen/Crozet versus South Georgia as replicates. Diversity was partitioned using œ™ŽŒ’Žœȱ›’Œ‘—ŽœœȱǻǰȱǼȱŠ—ȱžœ’—ȱ‘Š——˜—ȱ —Ž¡ȱǻǰȱǼǯȱȘȱ’—’ŒŠŽœȱœŠ’œ’ŒŠ••¢ȱ’ěȱŽ›Ž—ȱ datasets (p<0.05).

Species turnover of diatom communities 63 Fig. 3.8 Diversity partitioning among the South Atlantic and South Indian oceans shown for the three habitat types as absolute values of additive species richness (A) and percentages ˜ȱ ‘Žȱ ·Ȭ’ŸŽ›œ’¢ȱ based on additive species richness (B) and Shannon Index (C). Total diversity Œ˜—œ’œœȱ ˜ȱ ‘Žȱ ΅ŗȬ diversity or average within-site diversity ™Ž›ȱ ˜ŒŽŠ—ǰȱ ΆŗȬ diversity or average among-site diversity within each ocean, Š—ȱ ΆŘȬ’ŸŽ›œ’¢ȱ ˜›ȱ average between- ocean diversity.

64 Species turnover of diatom communities larger when using species richness compared to the Shannon Index. ‘ŽȱΆŗȬ’ŸŽ›œ’¢ǰȱ‘Žȱž›—˜ŸŽ›ȱ‹Ž ŽŽ—ȱœŠ–™•Žœȱ ’‘’—ȱŽŠŒ‘ȱ˜ŒŽŠ—ǰȱ was lower for the terrestrial habitat than for the aquatic habitat, and again lower when using Shannon Index.

3.4 Discussion ž›ȱ›Žœž•œȱ˜—•¢ȱ™Š›’Š••¢ȱŒ˜—ęȱ›–Žȱ‘Žȱ‘›ŽŽȱ‘¢™˜‘ŽœŽœȱ ŽȱœŽȱ˜žȱ to test, and due to the lack of replicate data we were not able to statistically evaluate some observed trends. First, within the studied islands, terrestrial diatom communities had higher similarities and lower turnover between sites than aquatic communities. While this Šœȱ—˜ȱœ’—’ęȱŒŠ—ȱ ‘Ž—ȱŠ—Š•¢£’—ȱ‘Žȱ’œ•Š—œȱœŽ™Š›ŠŽ•¢ȱǻ’ǯȱřǯśȱ ȬǼǰȱ‘Žȱ ’‘’—Ȭ’œ•Š—ȱ’ŸŽ›œ’¢ȱǻΆŗǼȱ˜ȱŽ››Žœ›’Š•ȱŒ˜––ž—’’Žœȱ Šœȱ œ’—’ęȱŒŠ—•¢ȱ‘’‘Ž›ȱ ‘Ž—ȱŠ—Š•¢£’—ȱ›˜£ŽȦ Ž›žŽ•Ž—ȱversus South Ž˜›’Šȱǻ’ǯȱřǯŝȱȬǼǯȱ‘ŽœŽȱ‘’‘Ž›ȱœ’–’•Š›’’ŽœȱŠ—ȱ•˜ Ž›ȱœ™ŽŒ’Žœȱ turnover of terrestrial communities within islands could be a result of the higher connectivity between the sites, lower environmental variation between the sites, broader niches of terrestrial diatoms, a higher dispersal ability of terrestrial diatoms over short distances, or a combination of these. While we were not able to disentangle these –ŽŒ‘Š—’œ–ȱžœ’—ȱ˜ž›ȱŠŠǰȱ‘’œȱ™ŠĴȱŽ›—ȱ’œȱ’—ȱŽ—Ž›Š•ȱŠ›ŽŽ–Ž—ȱ ’‘ȱ results of a meta-analysis by Soininen et al.ȱǻŘŖŖŝǼȱ›ŽŸŽŠ•’—ȱ‘Šȱ‘Žȱ smallest scale similarities were highest in the terrestrial realm and lowest for freshwater communities. This higher similarity between terrestrial communities within islands is most likely related to the less fragmented terrestrial habitat matrix (Soininen et al.ǰȱŘŖŖŝǼǰȱŒŠžœ’—ȱŠ–˜—ȱ˜‘Ž›œȱ‘’‘Ž›ȱ’œ™Ž›œŠ•ȱ and colonization probabilities and higher prevalence of terrestrial species. We can assume that this is also the case for diatoms because there are no a priori reasons to expect that terrestrial diatoms would have broader niches, or soils would be less variable with respect to the abiotic environment than lake sediments. The extent of variation in environmental conditions of dry soils and lakes could be assessed, ‘˜ ŽŸŽ›ǰȱ žœ’—ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ ŠŠǯȱ ˜›Ž˜ŸŽ›ǰȱ ‘Žȱ œ’—’ęȱŒŠ—•¢ȱ ‘’‘Ž›ȱž›—˜ŸŽ›ȱǻΆȬ’ŸŽ›œ’¢Ǽȱ‹Ž ŽŽ—ȱ‘ŽȱŽ››Žœ›’Š•ȱœ’ŽœȱŒ˜–™Š›Žȱ ˜ȱ‘Žȱ•˜ŒŠ•ȱ’ŸŽ›œ’¢ȱ ’‘’—ȱœ’Žœȱǻ΅Ȭ’ŸŽ›œ’¢ǼȱœžŽœœȱ‘Žȱ™›ŽœŽ—ŒŽȱ of species sorting and environmental small-scale heterogeneity, ‹žȱ ‘’œȱ Œ˜ž•ȱ Š•œ˜ȱ ‹Žȱ ŒŠžœŽȱ ‹¢ȱ ™›’˜›’¢ȱ ŽěȱŽŒœȱ ǻi.e.ȱęȱ›œȱ Š››’ŸŠ•œȱ have an advantage and dominate the community) (Drake, 1991). ˜ ŽŸŽ›ǰȱœ›˜—ȱ™›’˜›’¢ȱŽěȱŽŒœȱ ˜ž•ȱ—˜ȱ•ŽŠȱ˜ȱ‘’‘Ž›ȱœ’–’•Š›’¢ȱ

Species turnover of diatom communities 65 between sites, except if a small number of species are dominant, more abundant and would therefore have higher dispersal rates Š—ȱ Šȱ ‘’‘Ž›ȱ Œ‘Š—ŒŽȱ ˜ȱ ęȱ›œȱ Œ˜•˜—’£Žȱ Šȱ ™ŠŒ‘ǯȱ ‘Žȱ •˜ Ž›ȱ ž›—˜ŸŽ›ȱ in terrestrial communities could thus indicate higher dispersal rates Š—Ȧ˜›ȱœ›˜—Ž›ȱ™›’˜›’¢ȱŽěȱŽŒœȱŒ˜–™Š›Žȱ˜ȱŠšžŠ’ŒȱŒ˜––ž—’’Žœǯȱ For all habitats, the turnover was higher when based on species richness than when based on the Shannon Index. Because species richness uses presence-absence data, it gives a disproportionally higher weight to rare species, while Shannon diversity also accounts for relative abundances and evenness of communities. The higher turnover based on species richness indicates that the rare species contribute most to the variations between sites. In a second hypothesis we predicted that terrestrial communities would have lower turnover and higher similarities at intermediate spatial scales (ca. 1,500 km) between the island groups Kerguelen and Crozet when compared to the aquatic communities. Indeed, lower similarities were observed for the aquatic communities, but species ž›—˜ŸŽ›ȱǻΆŘȬ’ŸŽ›œ’¢Ǽȱ‹Ž ŽŽ—ȱ‘ŽœŽȱ’œ•Š—œȱ Šœȱ˜—•¢ȱ•˜ Ž›ȱ˜›ȱ‘Žȱ terrestrial communities when using Shannon diversity and actually higher when using species richness (Fig. 3.6). Because no replicate island combinations were available at this intermediate scale the œŠ’œ’ŒŠ•ȱ œ’—’ęȱŒŠ—ŒŽȱ ˜ȱ ‘’œȱ ›Ž—ȱ Œ˜ž•ȱ —˜ȱ ‹Žȱ ŠœœŽœœŽǯȱ ’–’•Š›ȱ ˜ȱ‘Žȱ™ŠĴȱŽ›—œȱ˜‹œŽ›ŸŽȱ ’‘’—ȱœ’—•Žȱ’œ•Š—œǰȱ‘Žȱ•˜ Ž›ȱœ’–’•Š›’¢ȱ between the aquatic sites could be the result of environmental Œ˜—œ›Š’—œǰȱ’œ™Ž›œŠ•ȱ•’–’Š’˜—ȱ˜›ȱ™›’˜›’¢ȱŽěȱŽŒœǰȱ ‘’•Žȱ‘Žȱ‘’‘Ž›ȱ similarities of terrestrial communities could be due to larger ’œ™Ž›œŠ•ȱŒŠ™ŠŒ’’Žœǰȱ•ŽœœȱŽ—Ÿ’›˜—–Ž—Š•ȱ’ěȱŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱœ’Žœȱ˜—ȱ the two islands, or a more generalist life-style of terrestrial diatoms. ’ŸŽ—ȱ‘Žȱ‘’‘ȱŽ˜•˜’ŒŠ•ǰȱĚȱ˜›’œ’ŒȱŠ—ȱŠž—Š•ȱœ’–’•Š›’¢ȱ‹Ž ŽŽ—ȱ‘Žȱ archipelagos of Kerguelen and Crozet, it is possible that these island groups share similar terrestrial and aquatic habitat types (but as noted in the introduction, this should be further analyzed). Assumed ‘ŠȱŽ—Ÿ’›˜—–Ž—Š•ȱŸŠ›’Š’˜—œȱŠ–˜—ȱ’œ•Š—œȱ ˜ž•ȱ‹˜‘ȱŠěȱŽŒȱ‘Žȱ aquatic and terrestrial sediments in a similar extent (as assumed in Hillebrand et al.ǰȱ ŘŖŖŗǼǰȱ Žȱ ŒŠ—ȱ ‘¢™˜‘Žœ’£Žȱ ‘Šȱ ‘ŽœŽȱ ’ěȱŽ›Ž—ŒŽœȱ in similarity level between the aquatic and terrestrial communities could be a result of higher dispersal capacities of terrestrial diatoms due to higher habitat availability (or higher chance to arrive in a suitable patch), higher susceptibility to dispersal (Schlichting, 1961; Brown et al., 1964; Schlichting, 1964; Roy-Ocotla & Carrera, 1993) Š—ȱ ‘’‘Ž›ȱ ˜•Ž›Š—ŒŽȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ ǻ˜žěȱ›ŽŠžȱ et al., unpubl. b).

66 Species turnover of diatom communities However, this should be further analyzed using environmental and community composition data. ‘Žȱ ˜™™˜œ’Žȱ ™ŠĴȱŽ›—ȱ ’—ȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ ‹ŠœŽȱ ˜—ȱ œ™ŽŒ’Žœȱ richness and Shannon diversity among the terrestrial and aquatic communities of Crozet and Kerguelen needs to be interpreted in the light of what both indices account for. As stated above, species richness gives a disproportionally higher weight to rare species. The lower turnover in terrestrial communities based on the Shannon diversity indicates that the dominant, abundant species in terrestrial Ž—Ÿ’›˜—–Ž—œȱŠ›Žȱ™›ŽœŽ—ȱ’—ȱ‘Žȱ’ěȱŽ›Ž—ȱœ’Žœȱ˜—ȱ‘Žȱ’œ•Š—œǰȱ ‘’•Žȱ it are mainly the rare species which account for the higher turnover between the islands detected using species richness. For aquatic communities, the opposite is true, and variation in community composition is thus mainly determined by the more abundant species. This could indicate that the distribution of aquatic species Š›Žȱ–˜›Žȱ’—ĚȱžŽ—ŒŽȱ‹¢ȱœ™ŽŒ’Žœȱœ˜›’—ǰȱŠœȱœ™ŽŒ’Žœȱ ’••ȱ•˜ŒŠ••¢ȱ›ŽŠŒ‘ȱ ‘’‘ȱŠ‹ž—Š—ŒŽœȱŠȱœ’Žœȱ ‘Ž›Žȱ‘Ž¢ȱęȱ—ȱœž’Š‹•ŽȱŒ˜—’’˜—œȱŠ—ȱ—˜ȱ at other sites. Alternatively, this could indicate that aquatic diatoms are more dispersal limited, and species that arrived by single, unlikely dispersal events will thrive at that location, but will not be able to be easily dispersed to a next, suitable lake, or that priority ŽěȱŽŒœȱŠ›Žȱœ›˜—Ž›ȱ˜›ȱ‘ŽȱŠšžŠ’ŒȱŒ˜––ž—’’Žœǯȱ For the terrestrial communities, abundant species could be the –˜›ŽȱŽ—Ž›Š•’œȱœ™ŽŒ’Žœǰȱ‘›’Ÿ’—ȱ’—ȱ’ěȱŽ›Ž—ȱŽ—Ÿ’›˜—–Ž—Š•ȱ‘Š‹’Šœȱ ‘’•Žȱ‘Žȱ›Š›Žȱœ™ŽŒ’ŽœȱŠ›Žȱ›Žœ›’ŒŽȱ˜ȱœ˜–ŽȱŸŽ›¢ȱœ™ŽŒ’ęȱŒȱ•˜ŒŠ’˜—œǯȱ Alternatively, the abundant terrestrial species, by having larger population densities, are more likely to successfully disperse over the two islands, creating a low turnover in these dominant species, while the rare, less abundant species are less likely to successfully disperse. Alternatively, it is possible that the rare terrestrial species are species that do not have high tolerances to dispersal, while the ˜–’—Š—ȱ œ™ŽŒ’Žœȱ ˜ǯȱ ŽŒŠžœŽȱ ™ŠĴȱŽ›—œȱ ’—ȱ ž›—˜ŸŽ›ȱ Œ˜ŸŽ›ȱ Šȱ ‘˜•Žȱ range of possible mechanisms, it is not easy to interpret these and further study is needed to reveal the processes at work. However, ‘ŽœŽȱ ™ŠĴȱŽ›—œȱ œ‘˜ž•ȱ ęȱ›œȱ ‹Žȱ ŽœŽȱ œŠ’œ’ŒŠ••¢ȱ žœ’—ȱ ŠŠȱ ˜ȱ additional isolated islands. In agreement with our last hypothesis, we observed a low community similarity between the South Indian Ocean and South Atlantic Ocean islands (ca. 6,000 km) and high distance decay for both terrestrial and lacustrine communities, which was only œ’—’ęȱŒŠ—ȱ ˜›ȱ ‘Žȱ Ž››Žœ›’Š•ȱ Œ˜––ž—’’Žœȱ ǻ’ǯȱ řǯŘȱ Ǽǯȱ ‘’œȱ ’œȱ ’—ȱ

Species turnover of diatom communities 67 agreement with similar discontinuities over these oceans reported ˜›ȱ‘’‘Ž›ȱ™•Š—œȱǻŠ—ȱŽ›ȱžĴȱŽ—ȱet al., 2010), Coleoptera (Morrone, 1998) and and birds (Greve et al., 2005), and the distinction of ‘ŽœŽȱ˜ŒŽŠ—’Œȱ‹Šœ’—œȱ’—˜ȱ ˜ȱ‹’˜Ž˜›Š™‘’Œȱ™›˜Ÿ’—ŒŽœȱǻ”˜Ĵȱœ‹Ž›ǰȱ ŗşŜŖDzȱŽ ’œȱ–’‘ǰȱŗşŞŚDzȱŠ—ȱŽ›ȱžĴȱŽ—ȱet al., 2010). The distribution of macroorganisms on the sub-Antarctic islands is determined by environmental variables such as temperature and geological features including island age and area, but also distance to the nearest continent and thus dispersal limitation (Chown et al., 1998). While Žȱ’ȱ—˜ȱŠœœŽœœȱ‘Žȱ›Ž•Š’ŸŽȱ’—ĚȱžŽ—ŒŽȱ˜ȱŽ—Ÿ’›˜—–Ž—Š•ȱŠ—ȱœ™Š’Š•ȱ variation on the distribution of terrestrial and aquatic diatoms yet (Borcard et al., 1992; Borcard & Legendre, 1994), recent studies on lacustrine diatom biogeography underscore the importance of ‹˜‘ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ Š—ȱ œ™Š’Š•ȱ ŸŠ›’Š‹•Žœǰȱ œ›Žœœ’—ȱ ‘Žȱ ’—ĚȱžŽ—ŒŽȱ of dispersal limitation on diatom distribution (Telford et al., 2006; Vyverman et al.ǰȱŘŖŖŝDzȱŽ›•Ž¢Ž—ȱet al., 2009), and our data suggest that this also applies for the sub-Antarctic diatom communities. It is clear that many questions still remain and need further study using additional replicate locations to enable statistical testing ˜ȱ‘Žȱ˜‹œŽ›ŸŽȱ™ŠĴȱŽ›—œǰȱŠ—ȱžœ’—ȱŽ—Ÿ’›˜—–Ž—Š•ȱŠ—ȱŽ˜›Š™‘’ŒŠ•ȱ data. While we focused on very isolated islands, it would be ’—Ž›Žœ’—ȱ˜ȱŒ˜–™Š›Žȱ‘Žȱ™ŠĴȱŽ›—œȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ communities in a more continuous landscape. Furthermore, the ’—ĚȱžŽ—ŒŽȱ˜ȱŽ—Ÿ’›˜—–Ž—Š•ȱŸŠ›’Š’˜—ȱ˜—ȱ‹˜‘ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ communities should be assessed to elucidate to what degree the observed distance-decay relationship is related to environmental ŠŒ˜›œȱŠ—ȱœ™ŽŒ’Žœȱœ˜›’—ȱ˜›ȱ˜ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ’œ™Ž›œŠ•ȱ•’–’Š’˜—Dzȱ and many aspects of the ecology of soil-inhabiting diatoms are still ž—”—˜ —ǯȱœȱŠȱęȱ›œȱœŽ™ǰȱ˜ž›ȱ›Žœž•œȱœ‘˜ ȱ‘Šȱ˜›ȱ‹˜‘ȱŽ››Žœ›’Š•ȱ and lacustrine diatoms, distance does play a role in their distribution on isolated islands, and that terrestrial and aquatic communities ’—ŽŽȱ’ěȱŽ›ȱ’—ȱ‘’œȱ›Žœ™ŽŒǯ

Acknowledgements ‘’œȱ›ŽœŽŠ›Œ‘ȱ Šœȱęȱ—Š—Œ’Š••¢ȱœž™™˜›Žȱ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱ Research – Flanders (FWO-Flanders, Belgium, funding of CS, PV Š—ȱ Ǽǰȱ ‘Žȱ Ȭ™›˜“ŽŒȱ ř ȬŖśřřȬŖŝȱ ˜—ȱ Š¡˜—˜–’Œȱ ž›—˜ŸŽ›ȱ ’—ȱ terrestrial and aquatic diatom communities, and the FWO-project 3G-0419-08 on thermal adaptation.

68 Species turnover of diatom communities Part 2. Speciation in time and space

Part 2: Speciation in time and space 71

4. Time-calibrated multi-gene phylogeny of the diatom genus Pinnularia

Š›˜•’—Žȱ ˜žěȱ›ŽŠž1, Heroen Verbruggen2, Alexander P. Wolfe3, Pieter Vanormelingen1, Peter A. Siver4, Eileen J. Cox5, David G. Mann6, Bart Van de Vijver7, Koen Sabbe1 and Wim Vyverman1

ǐȱ 1 Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 - S8, 9000 Gent, Belgium ǐȱ 2 Phycology Research Group, Ghent University, Krijgslaan 281 – S8, 9000 Gent, Belgium ǐȱ 3 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada ǐȱ 4 Department of Botany, Connecticut College, New London, CT 06320, USA ǐȱ 5 Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, United ǐȱ 6 Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, United Kingdom ǐȱ 7 Department of Cryptogamy, National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, Belgium

Š—žœŒ›’™ȱœž‹–’ĴȱŽȱ˜ȱMolecular Phylogenetics and Evolution

Time-calibrated phylogeny of Pinnularia 73 Abstract Pinnularia is an ecologically important and species-rich genus of freshwater diatoms (Bacillariophyceae) having considerable ŸŠ›’Š’˜—ȱ ’—ȱ ›žœž•Žȱ –˜›™‘˜•˜¢ǯȱ —Ž›œ™ŽŒ’ęȱŒȱ ŽŸ˜•ž’˜—Š›¢ȱ relationships were inferred for 36 PinnulariaȱŠ¡Šȱžœ’—ȱŠȱęȱŸŽȬ•˜Œžœȱ dataset. A range of fossil taxa, including newly discovered Middle Eocene forms of Pinnularia, was used to calibrate a relaxed molecular clock analysis and investigate the temporal aspects of the genus’ ’ŸŽ›œ’ęȱŒŠ’˜—ǯȱ‘Žȱ–ž•’ȬŽ—ŽȱŠ™™›˜ŠŒ‘ȱ›Žœž•Žȱ’—ȱŠȱ Ž••Ȭ›Žœ˜•ŸŽȱ phylogeny of three major clades and several subclades that were frequently, but not universally, delimited by valve morphology. The genus Caloneisȱ Šœȱ—˜ȱ›ŽŒ˜ŸŽ›ŽȱŠœȱ–˜—˜™‘¢•Ž’ŒǰȱŒ˜—ęȱ›–’—ȱ‘ŠǰȱŠœȱ currently delimited, this genus is not evolutionarily meaningful and should be merged with Pinnularia. The Pinnularia-Caloneis complex is estimated to have diverged between the Upper Cretaceous and the early Eocene, implying a ghost range of at least 10 million year (Ma) in the fossil record. This result predicts an earlier origin for the raphid diatoms, 10-35 Ma before that inferred by other published molecular clock studies.

Key words: Molecular phylogenetics, relaxed molecular clock, fossil record, raphid diatoms, Pinnularia, Bacillariophyceae, Eocene

74 Time-calibrated phylogeny of Pinnularia 4.1 Introduction Diatoms are an extremely diverse group of unicellular algae that are uniquely characterized by a siliceous cell wall (the frustule) consisting of two valves (Round et al., 1990) and a diplontic life cycle involving gradual size reduction during vegetative divisions and rapid size restitution usually through sexual reproduction (Chepurnov et al., 2004). In the so-called pennate diatoms the valve ™ŠĴȱŽ›—ȱ’œȱ˜›Š—’£Žȱ‹’•ŠŽ›Š••¢ȱŠ›˜ž—ȱ‘Žȱ•˜—’ž’—Š•ȱŠ¡’œǰȱŠ—ȱ’—ȱ most cases the valve is elongate. Raphid pennate diatoms possess a longitudinal slit along the apical axis (the raphe) (Fig. 4.1), from which extracellular polymeric substances are exuded and used in locomotion and adhesion to the substratum (Round et al., 1990). The raphe is considered a derived character state that distinguishes the raphid diatoms from the more ancestral araphid pennate forms that lack this structure and the oldest known forms, the radially organized “centric” taxa (Sims et al., 2006). Based on fossil remains, ‘ŽȱŠ›Š™‘’ȱ™Ž——ŠŽœȱęȱ›œȱŠ™™ŽŠ›ȱ’—ȱ‘Žȱ™™Ž›ȱ›ŽŠŒŽ˜žœȱǻca. 75 Ma; Chambers, 1966; Hajós & Stradner, 1975), and the raphe-bearing ˜›–œȱœ˜˜—ȱ‘Ž›ŽŠŽ›ǰȱŠ›˜ž—ȱŝŖǯŜȮśśǯŞȱŠȱǻ’ĴȱǰȱŗŞŞŜDzȱŠ—˜ŒœŽ”ǰȱ 1889; Chacon-Baca et al., 2002; Singh et al., 2006). Monophyly of pennate diatoms as a whole, as well as the raphid pennates, has been documented using SSU rDNA and rbcL sequences (e.g. Kooistra et al., 2003; Sorhannus, 2004, 2007). Since their origin, raphid pennate ’Š˜–œȱ‘ŠŸŽȱ’ŸŽ›œ’ęȱŽȱŽ—˜›–˜žœ•¢ȱŠ—ȱŠŒŒ˜ž—ȱ˜›ȱ‘Žȱ–Š“˜›’¢ȱ of the over 200,000 extant species estimated to exist (Mann & Droop, 1996), indicating the evolutionary advantages conferred by the raphe (Sims et al., 2006). Despite the diversity and ecological success of raphid pennate diatoms, relatively few detailed molecular phylogenetic reconstructions exist. Phylogenies applied at genus to ordinal levels have yielded partly unsupported results (e.g. Bruder & Medlin, 2008; Trobajo et al., 2009), in part due to very limited taxon sampling and the use of a limited number of genetic markers (Mann & Evans, 2007). In addition, molecular phylogenies of individual genera have ˜ŒžœŽȱ•Š›Ž•¢ȱ˜—ȱ‘Žȱ’Ž—’ęȱŒŠ’˜—ȱ˜ȱŒ›¢™’Œȱ’ŸŽ›œ’¢ȱ›Š‘Ž›ȱ‘Š—ȱ the elucidation of evolutionary relationships between lineages (e.g. Lundholm et al., 2006; Beszteri et al., 2007; Evans et al., 2008). Except for a few studies of diatoms as a whole, or the wider group (Kooistra & Medlin, 1996; Medlin et al., 1997; Sorhannus, 2007; Brown & Sorhannus, 2010), or even (Berney & Pawlowski, 2006), there are no explicit time-calibrated phylogenies and few

Time-calibrated phylogeny of Pinnularia 75 76 Time-calibrated phylogeny of Pinnularia analyses formalize the evolutionary associations between the timing ˜ȱ•’—ŽŠŽȱœ™•’Ĵȱ’—ȱŠ—ȱŽŒ˜•˜’ŒŠ•ǰȱ–˜›™‘˜•˜’ŒŠ•ǰȱ™‘¢œ’˜•˜’ŒŠ•ȱŠ—Ȧ or reproductive strategies, life cycles and geographical distributions (but see Casteleyn et al., 2010). Furthermore, despite important ›ŽŒŽ—ȱ–’Œ›˜™Š•Ž˜—˜•˜’ŒŠ•ȱ’œŒ˜ŸŽ›’Žœǰȱœ˜–Žȱ˜ȱ ‘’Œ‘ȱŒ˜—ęȱ›–ȱ‘Šȱ raphid diatoms may be older than previously suspected (Siver & Wolfe, 2007; Siver et al., 2010), numerous gaps remain in the fossil record. As a result, the overall course of evolution in raphid pennate diatoms is not known and the relationships between many groups remain uncertain (Mann & Evans, 2007). Pinnularia Ehrenberg (1843) is one of the most species-rich genera of raphid pennate diatoms, with 2462 taxon names present in Algaebase of which 412 are currently accepted (Guiry & Guiry, 2011). It occurs globally in freshwater habitats of varying pH and trophic status, and to a lesser extent in moist soils, peatlands, spring seeps and marine coastal environments (Round et al., 1990; Krammer, 2000). Members of Pinnularia and the closely related genus Caloneis Cleve (1894) have linear-lanceolate, occasionally capitate valves with a central raphe system (Fig. 4.1) that terminates internally

Fig. 4.1 Morphological variation in Pinnularia and representative illustrations of strains included in the multi-gene phylogeny. The valve construction of typical belonging to the P. divergens group [strain (Tor7)c] is shown by scanning electron micrographs [outside (a), inside (b) and side (= girdle) view (c)]. Cultured and sequenced strains are illustrated by a series of light micrographs (d-x), divided, where appropriate, into subclades recovered in the phylogeny with vertical dashed lines. Clade A (d-f) includes Caloneis lauta (d) as well as P. divergens grade representatives (Tor7)c in (e) and (Tor1)b in (f). Clade B (g-p) includes the “grunowii” subclade (g-i) with Pinnularia sp. (Tor4)i in (g), P. subanglica Pin650 in (h), and P. cf. marchica (Ecrins4) a in (i); the “nodosa” subclade (j-k) with P. acrosphaeria (Val1)b in (j) and P. nodosa Pin885 in (k); and the “subgibba” subclade (l-p) represented by P. parvulissima Pin887 in (l), Pinnularia sp. “gibba-group” (Tor7)f in (m), P. subcapitata var. elongata (Wie)c in (n), P. sp. (Tor4)r in (o), and Pinnularia sp. “gibba-group” (Tor8)b in (p). Clade C (q-x) comprises the “viridis” subclade (q-r) represented by P. neglectiformis Pin706 in (q) and P. viridiformis (Enc2)a in (r); with its sister P. acuminata Pin876 in (s); the “subcommutata” subclade (t) represented by P. subcommutata var. nonfasciata ˜›œŽŠŗŖȱ’—ȱǻǼDzȱ˜›–œȱ‘Šȱ˜ȱ—˜ȱ›ŽŠ’•¢ȱęȱȱ’—˜ȱ Ž••ȬŽęȱ—Žȱœž‹Œ•ŠŽœȱ›Ž™›ŽœŽ—Žȱ‹¢ȱP. sp (Wie)a in (u); the “borealis-microstauron” subclade (v-w) including P. cf. microstauron (B2)c in (v) and P. borealis Alka1 in (w); and subclade C1 (x) represented by P. cf. altiplanensis (Tor11)b in (x). Live cells of Pinnularia sensu lato (i.e. including Caloneis) also show two distinct plastid arrangements, which are illustrated by light (y, a’, and b’) and laser-scanning confocal –’Œ›˜œŒ˜™¢ȱ˜ȱ‘ŽȱŠž˜Ěȱž˜›ŽœŒŽ—ȱ˜›Š—Ž••Žœȱǻ£ǰȱŒȂǼǯȱ˜›ȱŽ¡Š–™•Žǰȱ›Ž™›ŽœŽ—Š’ŸŽœȱ˜ȱ‘ŽȱP. subcommutata and gibba taxa have parallel plastids on either side of the apical axis (y, £Ǽǰȱ ‘’•ŽȱCaloneis silicula (a’) and P. grunowii (b’, c’) have plastids that are joined by a central bridge. See text for details. All scale bars are 10 μm, and images (d-x) are reproduced Šȱ‘ŽȱœŠ–Žȱ–Š—’ęȱŒŠ’˜—ȱ˜ȱŠŒ’•’ŠŽȱœ’£ŽȱŒ˜–™Š›’œ’˜—œȱ‹Ž ŽŽ—ȱŠ¡Šǯ

Time-calibrated phylogeny of Pinnularia 77 78 Time-calibrated phylogeny of Pinnularia in helictoglossae at the poles (Fig. 4.1, b; Fig. 4.2, b, d, f, h). They possess two plate-like plastids (Fig. 4.1, y-z) or a single H-shaped plastid (Fig. 4.1, a’-c’). Pinnularia is characterized by the presence of a chambered, double-walled valve structure in which the outer surface is ornamented by multiple rows of small pores forming a multiseriate stria (detail in Fig. 4.2, c), while the inner wall of each chamber or alveolus is perforated by a large transapically elongate aperture (Fig. 4.1, b; Fig. 4.2, b,d,f,h) (Round et al., 1990). Caloneis is similar, except that the inner aperture is smaller and often circular, and sometimes there are two apertures per stria. Despite their species ›’Œ‘—Žœœǰȱ –˜›™‘˜•˜’ŒŠ•ȱ ’ŸŽ›œ’¢ȱ Š—ȱ ŽŒ˜•˜’ŒŠ•ȱ œ’—’ęȱŒŠ—ŒŽȱ ’—ȱ freshwater and terrestrial ecosystems, the evolutionary relationships among Pinnularia and Caloneis species are poorly known. Bruder et al. (2008) constructed a molecular phylogeny of Pinnularia and Caloneis using 18S, 28S and rbcL genes for 15 species. However, this resulted in an overall low support for the clades, suggesting that a more exhaustive sampling with respect to both taxa and genetic markers is needed to produce a well-resolved phylogeny. ‘Žȱ Ž–™˜›Š•ȱ Šœ™ŽŒœȱ ˜ȱ ‘Žȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱ ˜ȱ Pinnularia are also poorly documented, despite the fact that numerous fossils have been reported for the genus. To date, the oldest known diatoms reliably assigned to Pinnularia originate from the Wagon Gap Formation of Wyoming, U.S.A. (Lohman & Andrews, 1968). The age of these sediments is not known precisely because diatom- containing sediment clasts have been redeposited in a carbonate conglomerate, but their age is situated between the Late Eocene and Early Oligocene (35-32 Ma). Dating from the same period, the Oamaru diatomite deposits also contain two species of Pinnularia (Desikachary & Sreelatha, 1989). From the Early Miocene on, diverse morphological types of Pinnularia are reported from freshwater

Fig. 4.2 Supporting SEM micrographs showing the shape of the central raphe endings (left column: a, c, e, g) and the extension of the alveolar opening (right column: b, d, f, h). Central raphe endings can be linear (a, e), drop-like (c) or round (g). Linear raphe endings occur in Caloneis silicula (a), the subcommutata clade (e), P. acuminata, (Wie)a and P. cf. altiplanensis. Drop-like endings are present in clade B (c), the borealis-microstauron clade and the divergens group; while round endings occur in the viridiformis clade (g). The alveolar openings can be small (b), large (d, h) or intermediate (f). Small openings are typical for Caloneis silicula (b) but also occur in P. acrosphaeria; intermediate openings (f) occur in the subcommutata and viridiformis clades and P. acuminata; while large openings (d, h) are present in all other species, including the divergens group, clade B (without P. acrosphaeria), the borealis-microstauron clade with P. borealis (h) and the isolates (Wie)a and P. cf. altiplanensis. Scale bars represent 2 μm (a, b, c, e, g) and 5 μm (d, f, h).

Time-calibrated phylogeny of Pinnularia 79 deposits or as freshwater inwash in marine deposits (for Miocene deposits including Pinnularia see for e.g. Pantocsek, 1886; Héribaud, 1902; Hajós, 1986; Servant-Vildary et al., 1988; Vanlandingham, 1991; Ognjanova-Rumenova & Vass, 1998; Saint Martin & Saint Martin, 2005; Yang et al., 2007; Lewis et al., 2008; Li et al., 2010). The origin of Pinnularia thus predates the Late Eocene, and the occurrence of several taxa within the Wagon Gap material suggests an even earlier origin for the genus. As such, despite the well-established ˜œœ’•ȱ ›ŽŒ˜›ȱ Š’—ȱ ›˜–ȱ ŠŽ›ȱ ‘Žȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱ ˜ȱ Pinnularia ’—˜ȱ’ěȱŽ›Ž—ȱ–˜›™‘˜•˜’ŒŠ•ȱ¢™Žœǰȱ‘ŽȱŽŠ›•’Ž›ȱ˜œœ’•ȱ›ŽŒ˜›ȱ’œȱŸŽ›¢ȱ scarce and too fragmentary to provide detailed information about ‘Žȱ ’–’—ȱ ˜ȱ ŽŠ›•¢ȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱ ŽŸŽ—œǯȱ ’‘ȱ ‘’œȱ ’—ȱ –’—ǰȱ Š—ȱ given that ghost lineages are anticipated to be common in algae in general and diatoms in particular (Brown & Sorhannus, 2010), it is particularly relevant to produce a well-resolved, time-calibrated phylogeny for this genus. The goal of the present study is to reconstruct a molecular phylogeny for a representative selection of Pinnularia taxa spanning the morphological variability of the genus, and to infer a time-calibrated phylogeny constrained by accurately dated fossil representatives. To achieve this, we sequenced two nuclear markers (18S rDNA, 28S rDNA), two plastid markers (rbcL, psbA) and a mitochondrial marker (cox1) from 36 species of the genus and inferred phylogenies using partitioned models in a likelihood framework. We present new Pinnularia fossils from the Middle Eocene of Canada that are included as constraints in the relaxed molecular clock analyses.

4.2 Material and Methods Taxon sampling We selected strains belonging to 36 Pinnularia taxa (Tables 4.1-2), covering the range of morphological variation within the genus (Fig. 4.1). Because the relationship of Pinnularia and Caloneis remains ambiguous (Cox, 1988; Round et al., 1990; Mann, 2001; Bruder & Medlin, 2008; Bruder et al., 2008), we added three sequences of Caloneis. Five taxa from the genera Sellaphora, Eolimna and Mayamaea were selected as outgroups based on their apparent phylogenetic relatedness (Kooistra et al., 2003; Bruder & Medlin, 2008; Bruder et al., 2008; Evans et al., 2008). A list of the cultured and sequenced taxa is provided in Table 4.2, together with their geographical origin

80 Time-calibrated phylogeny of Pinnularia and morphometric data. Summary photomicrographs of the strains considered are shown in Fig. 4.1, and more detailed morphological descriptions of living and oxidized material are presented elsewhere ǻ˜žěȱ›ŽŠžȱet al.ǰȱž—™ž‹•ǯȱŠǼǯȱ Ž—’ęȱŒŠ’˜—œȱŠ›Žȱ‹ŠœŽȱ˜—ȱ ›Š––Ž›ȱ (2000) for Pinnularia and Krammer and Lange-Bertalot (1986) for Caloneis. Voucher slides of oxidized material of all natural samples Š—ȱŒž•ž›ŽœȱŠ—ȱœŠ–™•Žœȱ˜ȱŽ¡›ŠŒŽȱŠ—ȱ™ž›’ęȱŽȱȱŠ›Žȱ‘Ž•ȱ’—ȱ the Laboratory of Protistology & Aquatic Ecology (Ghent University) and are available upon request. '1$H[WUDFWLRQDPSOL¿FDWLRQDQGVHTXHQFLQJ DNA was extracted from centrifuged diatom cultures following Zwart et al. (1998) using a bead-beating method with phenol extraction and ethanol precipitation. After extraction, DNA was ™ž›’ęȱŽȱ ’‘ȱ Šȱ ’£Š›țȱ ȱ •ŽŠ—Ȭž™ȱ œ¢œŽ–ȱ ǻ›˜–ŽŠǼǯȱ Sequences of the nuclear 18S and the D1-D2 region of 28S, the two plastid genes rbcL and psbA, and the mitochondrial gene cox1 were Š–™•’ęȱŽȱžœ’—ȱœŠ—Š›ȱȱ™›’–Ž›œȱŠ—ȱ™›˜˜Œ˜•œȱǻŒ‘˜•’— et al., 1994; Daugbjerg & Andersen, 1997; Guillou et al., 1999; Van Hannen et al., 1999; Yoon et al., 2002; Evans et al.ǰȱŘŖŖŝDzȱ’Ĵȱ—Ž› et al., 2008). PCR ™›˜žŒœȱ Ž›ŽȱŒ•ŽŠ—Žȱžœ’—ȱ šž’Œ”ȱȱž›’ęȱŒŠ’˜—ȱ ’ȱǻ’ŠŽ—ǰȱ Hilden, Germany) following the manufacturer’s instructions. The sequencing reaction was performed by cycle sequencing (initial step of 1 min at 96°C, 30 cycles of 10 s at 96°C, 10 s at 50°C and 1 min 15 s at 60°C) using the ABI Prism BigDye V 3.1 Terminator Cycle Sequencing kit (Applied Biosystems). The resulting sequencing reaction products were analysed on a Perkin-Elmer ABI Prism 3100 automated DNA sequencer (Applied Biosystems). Primer sequences of both PCR and sequencing reactions and PCR temperatures are listed in Appendix A.4. All newly generated sequences have been deposited in GenBank (Table 4.1).

6HTXHQFHDOLJQPHQW The sequences of 18S, 28S, rbcL, psbA and cox1 were edited separately and automatically aligned using ClustalW (Thompson et al., 1994), as implemented in BioEdit 7.0.3 (Hall, 1999). Plastid and mitochondrial markers aligned unambiguously without any gaps. The 18S and 28S alignments were corrected manually using the secondary structure of Toxarium undulatum (Alverson et al., 2006) and Apedinella radians (Ben Ali et al., 2001), respectively, after which ambiguously aligned regions were removed.

Time-calibrated phylogeny of Pinnularia 81 1 ------cox - L AM710506 AM710461 AM710427 AM710435 rbc AM710470 A - - - - psb - 28S AM502039 AM710595 AM501994 AM710550 AM501962 AM710516 AM502003 AM710559 18S - ”)

microstauron Krammer Krammer (Hustedt) Lange-Bertalot AM501969 AM710524 Krammer (Hustedt) Lange-Bertalot

subislandica

permitis borealis subislandica

permitis var. (Grunow) Krammer var. var. (Ehrenberg) Cleve (“southern Cleve (Ehrenberg) (Grunow) Lange-Bertalot Lange-Bertalot Krammer Carter & Bailey-Watts (Ehrenberg) Cleve (Ehrenberg) (Ehrenberg) W. Smith Krammer Ilka Schönfelder Krammer W. Smith Krammer Krammer Krammer Ehrenberg var. Ehrenberg cf. var. Ehrenberg var. Ehrenberg (Ehrenberg) W. Smith W. (Ehrenberg)

altiplanensis isselana marchica microstauron

. .

cf cf grunowii

Caloneis budensis Caloneis lauta Caloneis silicula Eolimna minima atomus Mayamaea Mayamaea atomus acuminata P. borealis P. borealis P. borealis P. borealis P. P. c f. P. c f. P. P. P. P. mesolepta neglectiformis P. neomajor P. neomajor P. P. n o d o s a parvulissima P. Cal 890 TM Pin 706 F (Wes2)f Pin 876 TM Alka 1 (Ecrins4)a (B2)c (Tor11)b Strain Taxon Corsea 2 Pin 885 TM (Tor12)d Pin 889 MG (Ecrins7)a (Tor3)a (Tor1)a Pin 877 TM Cal 878 TM : Taxon list with Genbank accession numbers. Missing sequences are indicated a dash. Data taken from GenBank in bold . 4.1 : Taxon Table

82 Time-calibrated phylogeny of Pinnularia 1 - - - - - cox - L AM710490 rbc AM710503 A - - psb - 28S - AM502023 AM710579 - AM502036 AM710592 18S Krammer Van de Vijver, Cahttová & Metzeltin Cahttová de Vijver, Van - Krammer D.G. Mann & S. Droop Mann & S. D.G. D.G. Mann & S. Droop Mann & S. D.G. W. Smith nonfasciata Krammer subcapitata

elongata var. var. var. var. var. var. Krammer Krammer Krammer (Nitzsch) Ehrenberg (divergens-group) (divergens-group) (gibba-group) (gibba-group) (subcommutata-group) (subcommutata-group)

P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . australogibba P. P. s p . P. s p . subanglica P. subcapitata P. subcommutata P. P. substreptoraphe viridiformis P. P. v i r i d i f o r m i s P. viridis Pinnularia acrosphaeria blackfordensis Sellaphora blackfordensis Sellaphora (Enc2)b (Enc2)a (Wie)c Pin 870 MG Strain(Tor4)r Taxon (Wie)a PinnC7 (Tor1)b (Tor7)c (Tor7)f (Bfp04)02 (Tor8)b (W045)b Pin 883 Pin 650 K Pin 649 K Corsea 10 (Tor4)i Pin 873 TM (Bfp5x8)F1-3

Time-calibrated phylogeny of Pinnularia 83 μ m 10 μ m) # stria per and morphometric C. Souffreau 151.4 ± 3.6 ± 0.4 24.9 8.2 ± 0.4 C. Souffreau ± 0.5 17.9 ± 0.3 4.5 20.0 ± 0.0 D.G. MannD.G. MannD.G. 41.9 ± 0.8 105.3 ± 3.9 ± 0.2 7.9 18.5 ± 0.5 13.0 ± 0.8 8.1 ± 0.2 C. Souffreau 22.8 ± 1.3 10.6 ± 0.4 12.1 ± 0.3 C. Souffreau ± 0.4 27.3 5.4 ± 0.4 15.6 ± 0.7 Collector Length ( μ m) Width ( Podkova (Czech Republic) – 19.IV.2006 Republic) (Czech Podkova A. Poulícková ± 1.3 37.4 8.2 ± 0.6 ± 0.3 4.6 Threipmuir Resr. (Scotland) – 02.III.2008 Resr. Threipmuir Mann D.G. 33.4 ± 1.1 ± 0.3 7.4 12.1 ± 0.3 Threipmuir Resr. (Scotland) – 02.III.2008 Resr. Threipmuir Mann D.G. 38.9 ± 2.6 11.5± 0.8 10.0 ± 0.0 Glen Corse Resr. (Scotland) – 06.IV.2008 Corse Resr. Glen Vanormelingen P. 169.2 ± 1.9 28.4 ± 0.5 ± 0.3 7.8 Balerno (Scotland) – 02.III.2008 Loch (Scotland) – 23.I.2008 Figgate (Scotland) – 02.III.2008 Resr. Threipmuir Mann D.G. 58.3 ± 1.5 9.8 ± 0.3 10.0 ± 0.0 De Panne (Belgium) – 03.III.2008De Panne C. Souffreau ± 0.1 8.7 3.9 ± 0.2 22.4 ± 1.9 Torres del Paine (Chile) – 30.I.2007 del Paine Torres C. Souffreau ± 0.6 27.3 9.6 ± 0.3 6.0 ± 0.0 Seno Otway (Chile) – 02.II.2007 Seno Otway C. Souffreau 36.8 ± 1.6 9.5 ± 0.5 5.0 ± 0.0 Torres del Paine (Chile) – 30.I.2007 del Paine Torres Ailfroide (France) – 23.IX.2006 (France) Ailfroide C. Souffreau 33.0 ± 1.7 8.1 ± 0.3 5.3 ± 0.4 Locality and date of collection – I.2006 Peninsula) (Antarctic Beak Island E. Verleyen 38.9 ± 1.4 9.9 ± 0.3 ± 0.4 14.0

borealis subislandica

permitis W. Smith W. (Chile) – 22.I.2007 Ovalle var. var. (Ehrenberg) Cleve Cleve (Ehrenberg) Lange-Bertalot (Chile) – 01.II.2007 del Paine Torres Krammer (Ehrenberg) Cleve (Ehrenberg) (Scotland) – 02.III.2008 Resr. Threipmuir Mann D.G. 48.8 ± 3.7 13.0 ± 0.9 ± 0.5 17.4 Krammer Ilka Schönfelder – 22.IX.2006 (France) Ailfroide K. Krammer W. Smith W. Krammer Krammer Krammer Krammer Ehrenberg var. Ehrenberg cf. var. Ehrenberg var. Ehrenberg (Ehrenberg) W. Smith W. (Ehrenberg) (Scotland) – 02.III.2008 Resr. Threipmuir Mann D.G. 42.1 ± 1.2 ± 0.2 6.7 10.0 ± 0.0 (Hustedt) Lange-Bertalot Krammer Krammer Caloneis silicula atomus Mayamaea Pinnularia acrosphaeria acuminata P. borealis P. borealis P. subislandica borealis P. borealis P. altiplanensis cf. P. isselana cf. P. marchica cf. P. microstauron cf. P. (“southern microstauron”) grunowii P. neglectiformis P. neomajor P. neomajor P. P. n o d o s a parvulissima P. Pin 706 F Cal 890 TM (Enc2)b (Tor11)b (Ecrins7)a (Tor12)d Pin 885 TM (Tor3)a (Tor1)a Pin 877 TM Pin 876 TM Strain Taxon Pin 889 MG (Ecrins4)a (Wes2)f Alka 1 Cal 878 TM (B2)c Corsea 2 measurements (length, width and stria density from 10 valves per taxon, ± standard deviation, n.m. = not measured). measurements (length, width and stria density from 10 valves Table 4.2 : List of the 38 taxa cultured and sequenced for this study, with source locality date collection, identity collector Table

84 Time-calibrated phylogeny of Pinnularia μ m 10 μ m) # stria per C. SouffreauC. Souffreau 61.2 ± 1.6 40.0 ± 0.5 8.9 ± 0.2 5.9 ± 0.3 10.1 ± 0.5 11.8 ± 0.4 C. SouffreauC. Souffreau 51.5 ± 2.1 88.4 ± 1.7 10.4 ± 0.3 12.5 ± 0.4 10.8 ± 0.8 10.4 ± 0.5 C. SouffreauC. Souffreau 33.3 ± 1.3 42.6 ± 0.4 9.4 ± 0.5 5.8 ± 0.3 ± 0.0 14.0 12.4 ± 0.5 D.G. MannD.G. 80.5 ± 2.3 ± 0.3 16.7 9.2 ± 0.3 C. Souffreau ± 1.8 74.9 ± 0.5 17.7 8.8 ± 0.4 Collector Length ( μ m) Width ( Torres del Paine (Chile) – 30.I.2007 del Paine Torres (Chile) – 31.I.2007 del Paine Torres – 02.XII.2007 Billabong (Australia) Kew (Scotland) – 02.III.2008 Resr. Threipmuir K.M. Evans Mann D.G. 53.0 ± 3.2 63.1 ± 2.8 ± 0.3 11.7 ± 0.1 14.1 10.1 ± 0.2 10.3 ± 0.5 Ovalle (Chile) – 22.I.2007 Ovalle Balerno (Scotland) – 02.III.2008 Kew Billabong (Australia) – 02.XII.2007 Billabong (Australia) Kew K.M. Evans 46.2 ± 0.3 8.2 ± 0.2 11.1 ± 0.7 Glen Corse Resr. (Scotland) – 06.IV.2008Glen Corse Resr. Vanormelingen P. 50.1 ± 1.8 ± 0.1 10.7 11.8 ± 0.4 Torres del Paine (Chile) – 31.I.2007 del Paine Torres (Chile) – 31.I.2007 del Paine Torres Amsterdam Island – 06.XII.2007Amsterdam Island de Vijver Van B. ± 0.8 37.1 ± 0.2 8.7 11.2 ± 0.6 Locality and date of collection collection BCCM/DCGCulture collection BCCM/DCGCulture - - 38.1 ± 13.6 9.0 ± 1.4 n.m. 20.2 ± 1.1 n.m. n.m. Torres del Paine (Chile) – 31.I.2007 del Paine Torres (Chile) – 31.I.2007 del Paine Torres De Wieden (The Netherlands) – 26.II.2007 (Scotland) – 02.III.2008 Resr. Threipmuir Vanormelingen P. – XII.2004 (Sub-Antarctica) Iles Crozet ± 0.9 46.7 Mann D.G. ± 0.2 9.7 de Vijver Van B. 28.3 ± 2.8 11.8 ± 0.8 12.1 ± 0.2 10.2 ± 0.4 6.3 ± 0.3 12.3 ± 0.5 13.8 ± 0.6

Van Krammer De Wieden (The Netherlands) – 26.II.2007 Vanormelingen P. 53.3 ± 0.6 6.3 ± 0.3 11.9 ± 0.3 D.G. Mann D.G. Mann D.G.

nonfasciata subcapitata

elongata var. var. var. var. var. var. Krammer Krammer Krammer (divergens-group) (divergens-group) (gibba-group) (gibba-group) (subcommutata-group) (subcommutata-group) Krammer de Vijver, Cahttová & Metzeltin Cahttová de Vijver, P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . P. s p . australogibba P. P. s p . P. s p . subanglica P. subcapitata P. subcommutata P. P. v i r i d i f o r m i s P. v i r i d i f o r m i s blackfordensis Sellaphora Droop & S. blackfordensis Sellaphora Droop & S. (Tor4)i (Bfp04)02 (Enc2)a Pin 649 K Corsea 10 Strain Taxon (Bfp5x8) F1-3 Pin 873 TM PinnC7 (Tor1)b (Tor4)r (Wie)a Pin 870 MG (Wie)c Pin 883 TM Pin 650 K (Tor8)b (W045)b (Tor7)c (Tor7)f

Time-calibrated phylogeny of Pinnularia 85 Model testing and phylogenetic analyses Nine alternative partitioning strategies were tested: partitioning into genes, codon positions, stem and loop regions of rDNA regions, functionality and some combinations of these. Selection of a suitable ™Š›’’˜—’—ȱ œ›ŠŽ¢ȱ Š—ȱ –˜Ž•œȱ ˜›ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ ™Š›’’˜—œȱ Šœȱ based on the Bayesian Information Criterion (BIC, Schwarz, 1978). For each partitioning strategy six substitution models were optimized (JC, F81, K80, HKY, SYM, GTR) with or without a proportion of ’—ŸŠ›’Š‹•Žȱ œ’Žœȱ Š—Ȧ˜›ȱ Šȱ Š––Šȱ ’œ›’‹ž’˜—ȱ ˜ȱ ŠŒŒ˜––˜ŠŽȱ rate variation across sites. All parameters were unlinked between partitions. The preferred model and partitioning strategy was a GTR Ƹȱ̆Śȱ’—ȱ ‘’Œ‘ȱŗŞȱŠ—ȱŘŞȱŽŠŒ‘ȱ˜›–ŽȱŠȱœŽ™Š›ŠŽȱ›ȱ™Š›’’˜—ǰȱ while plastid and mitochondrial genes were separated by genome and were both partitioned into three codon positions. Single genes and the complete concatenated dataset were analysed by maximum likelihood phylogenetic inference using RAxML 7.2.6 (Stamatakis, 2006) under the preferred model and partition strategy with 10,000 independent tree searches from randomized MP starting trees. Maximum likelihood bootstrap analyses (Felsenstein, 1985) consisted of 1,000 replicates. Bayesian phylogenetic inference was carried out with MrBayes v.3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) under the same model and partitioning scheme. Using default œŽĴȱ’—œǰȱ  ˜ȱ ’—Ž™Ž—Ž—ȱ ›ž—œȱ ’‘ȱ ˜ž›ȱ ’—Œ›Ž–Ž—Š••¢ȱ ‘ŽŠŽȱ Ž›˜™˜•’œȬŒ˜ž™•Žȱ˜—ŽȬŠ›•˜ȱŠ›”˜Ÿȱ‘Š’—œȱ Ž›Žȱ›ž—ȱ˜›ȱęȱŸŽȱ million generations for individual genes and 70 million generations for the concatenated dataset. Runs were sampled every 1,000th generation, and convergence and stationarity of the log-likelihood and parameter values was assessed using Tracer v.1.5 (Rambaut ǭȱ›ž––˜—ǰȱŘŖŖŝǼǯȱ‘Žȱęȱ›œȱ–’••’˜—ȱŽ—Ž›Š’˜—œȱŠ—ȱŗŖȱ–’••’˜—ȱ generations were discarded as burn-in for the single-gene and multi-gene analyses, respectively. Runs for psbA converged only when using a heating factor of 0.1. We therefore also analysed the concatenated dataset with a heating factor of both 0.2 and 0.1 but —˜ȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ˜™˜•˜¢ǰȱ •’”Ž•’‘˜˜ȱ ˜›ȱ ™˜œŽ›’˜›ȱ ™›˜‹Š‹’•’’Žœȱ Ž›ŽȱŽŽŒŽǯȱ‘Žȱ™˜œȬ‹ž›—Ȭ’—ȱ›ŽŽœȱ›˜–ȱ‘Žȱ’ěȱŽ›Ž—ȱ›ž—œȱ Ž›Žȱ summarized and posterior probabilities (PPs) were calculated in MrBayes using the sumt command. All analyses were performed using the computer cluster Bioportal (Kumar et al., 2009).

86 Time-calibrated phylogeny of Pinnularia Fossil Pinnularia In order to assist with the temporal calibration of the multi-gene phylogeny, we document a new fossil occurrence of the genus Pinnularia from Middle Eocene lacustrine facies in northwestern Š—ŠŠǯȱ ‘Žȱ ’›ŠěȱŽȱ ”’–‹Ž›•’Žȱ ˜œœ’•ȱ •˜ŒŠ•’¢ȱ ǻŜŚɃŚŞȂǰȱ ŗŗŖɃŖŚȂǼȱ contains unpermineralized diatom-rich organic sediments, which Œ˜—œ’žŽȱ‘Žȱ™˜œȬŽ›ž™’ŸŽȱ’—ęȱ••’—ȱ˜ȱ‘Žȱœ’ŽȂœȱ–ŠŠ›ȱŒ›ŠŽ›ǯȱ‘ŽœŽȱ sediments are dated between 40 and 48 Ma (Lutetian Stage), and ‘ŠŸŽȱŠ•›ŽŠ¢ȱ›ŽŸŽŠ•Žȱęȱ›œȱ˜ŒŒž››Ž—ŒŽœȱ˜›ȱŠȱ—ž–‹Ž›ȱ˜ȱ›Žœ‘ ŠŽ›ȱ diatom lineages (Siver & Wolfe, 2007; Wolfe & Siver, 2009; Siver et al.ǰȱŘŖŗŖǼǯȱ‘ŽȱŽ¡ŒŽ••Ž—ȱ™›ŽœŽ›ŸŠ’˜—ȱ˜ȱ ’›ŠěȱŽȱPinnularia specimens is illustrated by a range of light and scanning electron micrographs (Fig. 4.3).

Relaxed molecular clock analysis A time-calibrated phylogeny was inferred using a relaxed molecular clock method as implemented in BEAST v.1.5.4 (Drummond & Rambaut, 2007). An uncorrelated lognormal clock model and Yule ›ŽŽȱ™›’˜›ȱ Ž›Žȱœ™ŽŒ’ęȱŽȱŠ•˜—ȱ ’‘ȱ‘ŽȱœŠ–Žȱ™Š›’’˜—’—ȱœŒ‘Ž–Žȱ and models of sequence evolution used for the phylogenetic ›ŽŒ˜—œ›žŒ’˜—ǯȱ ’ěȱŽ›Ž—ȱ ŒŠ•’‹›Š’˜—ȱ œ›ŠŽ’Žœȱ ‹ŠœŽȱ ˜—ȱ ‘Žȱ ˜œœ’•ȱ record were carried out to assess congruence between calibration points. The root node calibration prior was varied (uniform, gamma and truncated normal probability distribution), and all internal calibration points had a uniform prior (Ho & Phillips, 2009). All calibration points and strategies are summarized in Table 4.3 and fossil constraints are explained below. For each calibration strategy, three independent runs were carried out, starting from a user- Žęȱ—Žǰȱ•’—ŽŠ›’£Žȱ’–ŽȬŒ˜—œ›Š’—ŽȱœŠ›’—ȱ›ŽŽȱŒ˜—œ›žŒŽȱ’—ȱ›Şœȱ (Sanderson, 2003) based on the ML tree of the phylogenetic analysis. Markov chains were run for 50 million generations and sampled every 1,000 generations. Convergence and stationarity of log-likelihood and parameter values were assessed using Tracer v.1.5 (Rambaut & Drummond, 2007) and 10% of the generations were discarded as burn-in. The post-burn-in trees of three independent runs were combined, after which a maximum clade credibility chronogram with mean node heights was calculated with TreeAnnotator v.1.5.4. Fossil diatoms were used to calibrate the tree in geological time using the following constraints. The root node of Pinnularia was given a minimum age of 40 Ma following the recovery of Pinnularia

Time-calibrated phylogeny of Pinnularia 87 Table 4.3: List of calibration points and alternative calibration schemes used to date the phylogenetic tree, with indication of the minimum (min) and maximum (max) age Œ˜—œ›Š’—œǯȱž–‹Ž›œȱ›ŽŽ›ȱ˜ȱ‘ŽȱŒŠ•’‹›Š’˜—ȱ™˜’—œȱ˜—ȱ‘Žȱ™‘¢•˜Ž—Ž’Œȱ›ŽŽȱǻ’ǯȱŚǯŚǼǯ

Calibration scheme with age node Constraints (Ma) Bauplan Reference root A B C E min 40 40 40 40 40 1 root node Pinnularia spp. this study max 75 75 75 75 100

neomajor- min - 11.7 11.7 11.7 11.7 Saint Martin & Saint 2 neglectiformis P. viridis Martin (2005) clades max - 40 40 40 40

nodosa min - 14.5 14.5 14.5 14.5 pers. comm. A. 3 P. n o d o s a acrospaeria max - 40 40 40 40 Menicuci

grunowii min - - 11.7 11.7 - Saint Martin & Saint 4 P. mesolepta mesolepta max - - 40 40 - Martin (2005) min - - - 13 - borealis Servant-Vidary et 5 P. borealis microstauron max - - - 70 - al. (1988)

’—ȱ œŽ’–Ž—œȱ ›˜–ȱ ‘Žȱ ’›ŠěȱŽȱ •˜ŒŠ•’¢ȱ ǻ’ǯȱ ŚǯřǼǯȱ  ˜ȱ ’ěȱŽ›Ž—ȱ –Š¡’–ž–ȱŠŽȱœŒŽ—Š›’˜œȱ Ž›ŽȱŒ˜—œ’Ž›Žǯȱȱęȱ›œȱ–Š¡’–ž–ȱŠŽȱ˜ȱ the root node was set at 100 Ma (Albian, Lower Cretaceous), based ˜—ȱ‘Žȱ˜ŒŒž››Ž—ŒŽȱ˜ȱ›’Œ‘ȱ’Š˜–ȱĚȱ˜›Šœȱ’—ȱœ˜ž‘Ž›—ȱ‘Ž–’œ™‘Ž›Žȱ˜ŒŽŠ—ȱ sediments containing a range of centric morphologies but neither raphid nor araphid pennate taxa (Gersonde & Harwood, 1990; Harwood & Gersonde, 1990). This date can be assumed to be highly conservative, and therefore we also considered an alternate upper boundary for Pinnularia at 75 Ma (Campanian, Upper Cretaceous), the period for which the earliest araphid pennate diatoms have ‹ŽŽ—ȱŒ˜—ęȱ›–Žȱǻ‘Š–‹Ž›œǰȱŗşŜŜDzȱ Š“àœȱǭȱ›Š—Ž›ǰȱŗşŝśǼǯȱŽŒŠžœŽȱ these fossils are abundant but not diverse, it is believed that araphid pennate forms had evolved only recently by this time (Sims et al., 2006). Following this reasoning, we assume that raphid pennates had not yet evolved. Four internal calibration points were also used (Fig. 4.4), ‹ŠœŽȱ ˜—ȱ ęȱ›œȬŠ™™ŽŠ›Š—ŒŽȱ ŠŽœȱ ˜›ȱ Œ‘Š›ŠŒŽ›’œ’Œȱ –˜›™‘˜•˜’ŒŠ•ȱ types or Baupläne recovered from late-Oligocene to mid-Miocene freshwater deposits. The following morphological types were used: diatoms morphologically similar to extant P. viridis (11.7 Ma; Saint Martin & Saint Martin, 2005), P. mesolepta (11.7 Ma; Saint Martin & Saint Martin, 2005), P. nodosa (14.5 Ma; pers. comm. A. Menicucci) and P. borealis (13.0 Ma; Servant-Vildary et al., 1988). These fossil occurrences were used as minimum estimates for the

88 Time-calibrated phylogeny of Pinnularia Fig. 4.3 Middle Eocene Pinnulariaȱ’Š˜–œȱ›˜–ȱ‘Žȱ ’›ŠěȱŽȱ”’–‹Ž›•’Žȱ™’™Žȱ˜œœ’•ȱ•˜ŒŠ•’¢ȱ with a minimum age of 40 Ma. In light microscopy, valve (a-c) and girdle (d) views illustrate morphologies consistent with the genus as currently circumscribed. Under scanning electron microscopy, the valve overview (e), close-ups of proximal (f) and distal external ›Š™‘ŽȱŽ—’—œȱǻǼǰȱŠœȱ Ž••ȱŠœȱŽŠ’•œȱ˜ȱ‘Žȱ˜žŽ›ȱǻ‘Ȭ“ǼȱŠ—ȱ’——Ž›ȱǻ”ǼȱŸŠ•ŸŽȱœž›ŠŒŽœȱŠ••ȱŒ˜—ęȱ›–ȱ Œ˜—œ’Ž›Š‹•ŽȱŠĜȱȱ—’¢ȱ ’‘ȱŽ¡Š—ȱ˜›–œǯȱ‘ŽȱŠ•ŸŽ˜•ŠŽȱœ›’ŠŽȱ˜ȱ‘Žȱ˜ŒŽ—Žȱ’Š˜–ȱǻ”ǼȱŠ›Žȱ directly comparable with numerous modern congeners, here shown is a representatives of the P. subgibba subclade [(Tor4)r] in (l). Scale bars are 10 μm (a-d), 20 μm (e), 5 μm (f,i,j), and 2 μm (g,h,k,l).

Time-calibrated phylogeny of Pinnularia 89 Fig. 4.4 Phylogenetic relationships within the genus Pinnulariaȱ’—Ž››Žȱ›˜–ȱŠȱęȱŸŽȬ•˜Œžœȱ DNA alignment using maximum likelihood under a partitioned model. Numbers at nodes indicate statistical support, ML bootstrap proportions - BI posterior probabilities (both given as percentages). Encircled numbers represent nodes constrained in the relaxed molecular clock analysis (see Table 4.3).

90 Time-calibrated phylogeny of Pinnularia corresponding Bauplan, thus constraining the MRCA (most recent common ancestor) of clades containing species within each of these ǻ’ǯȱŚǯŚǼǯȱ‘Žȱ–Š¡’–ž–ȱŠŽȱ˜›ȱ‘ŽœŽȱ’ěȱŽ›Ž—ȱŠž™•§—Žȱ ŠœȱœŽȱŠȱ 75 Ma when using the conservative calibration scheme, and 40 Ma for the less conservative calibration strategy. Although specimens originating from the Wagon Gap Formation clearly belong to Pinnularia (Lohman & Andrews, 1968), in the absence of electron –’Œ›˜œŒ˜™’ŒŠ•ȱ˜‹œŽ›ŸŠ’˜—œȱ‘Ž¢ȱŒŠ——˜ȱ‹ŽȱŠœœ’—Žȱ ’‘ȱŒ˜—ęȱŽ—ŒŽȱ to any of the modern morphological types used in our phylogeny. Linked to the uncertain dating of this locality, Wagon Gap Pinnularia were not used as an explicit constraint for our phylogeny.

4.3 Results Dataset properties ž›ȱŚŚȬŠ¡˜—ǰȱęȱŸŽȬ•˜ŒžœȱŠŠœŽȱ’œȱŞŝƖȱęȱ••ŽȱǻŗşŘȱœŽšžŽ—ŒŽœDzȱŠ‹•Žȱ 4.1) and includes 4852 sites of which 1012 (21%) are parsimony- informative. The most complete markers are 28S rDNA and rbcL (0 of 44 missing), followed by 18S rDNA (4 sequences or 9% missing), psbA (8 or 18% missing) and cox1 (16 or 36% missing). The 18S rDNA sequences provided most characters (1706) followed by rbcL (1386), psbA (762), cox1 (615) and 28S rDNA (383). The percentage of parsimony-informative characters varied between genes, with the highest percentages for 28S rDNA (42%) and cox1 (37%), the lowest for psbA (10%), and 18S rDNA (18%) and rbcL (17%) being intermediate.

Phylogenetic relationships ‘¢•˜Ž—’Žœȱ ˜ȱ ’—’Ÿ’žŠ•ȱ Ž—Žœȱ ›ŽŸŽŠ•Žȱ —˜ȱ œ›˜—ȱ Œ˜—Ěȱ’ŒœDzȱ therefore we show only the results of the concatenated analysis. Similarly, ML and BI analyses of the concatenated dataset produced identical topologies so we show only the ML phylogeny with both ML bootstrap support (BS) and BI posterior probabilities (PP) (Fig. 4.4). Based on our concatenated dataset, taxa representing Pinnularia and Caloneis form a monophyletic group comprising three robustly supported clades that each contain several well-supported subclades. Clade A comprises Caloneis silicula, C. lauta, and two species of Pinnularia cf. divergens. No apparent morphological synapomorphies unite these taxa, Caloneis silicula being characterized by linear external central raphe endings (Fig. 4.2, a), small alveolar apertures

Time-calibrated phylogeny of Pinnularia 91 (Fig. 4.2, b) and parallel striae (Fig. 4.1, d), while the divergens-group has drop-like external central raphe endings (Fig. 4.2, c), large alveolar apertures (Fig. 4.2, d) and oblique striae (Fig. 4.1, e, f). Clade B includes small, linear Pinnularia species (Fig. 4.1, g–p) that have drop-like external central raphe endings (Fig. 4.2, c). Clade B is subdivided into three well-supported subclades: the grunowii, nodosa and subgibba subclades. The grunowii subclade contains P. grunowii, P. subanglica and P. marchica. Species in this group contain a single H-shaped plastid with two (Fig. 4.1, b’-c’), ‘Ž›ŽŠœǰȱ ’‘ȱ ‘Žȱ Ž¡ŒŽ™’˜—ȱ ˜ȱ œ˜–Žȱ œ™ŽŒ’Žœȱ ǻœŽŽȱ ˜žěȱ›ŽŠžȱ et al., unpubl. a, for detailed information) all other clades of the tree are characterized by two linear, strip-like plastids (Fig. 4.1, y–z). The nodosa subclade includes P. nodosa and P. acrosphaeria, which are both characterized by irregular wart-like structures on the external valve face (Fig. 4.1, j, k; detail in Fig. 2, c). The subgibba subclade Œ˜—Š’—œȱ’ěȱŽ›Ž—ȱœ™ŽŒ’Žœȱ›ŽœŽ–‹•’—ȱP. subgibba, P. parvulissima, and P. subcapitata, all characterized by a combination of an elongated œ‘Š™Žȱ˜Ž—ȱ ’‘ȱ‘˜œȱœ›’ŠŽȱǻœ›’ŠŽȱ‘ŠȱŠ›Žȱ™Š›’Š••¢ȱęȱ••Žȱ’—ȱ ’‘ȱ silica) and a broad, non-porous, central area (fascia) (Fig. 4.1, l–p). Clade C is composed of two subclades. Subclade C1 contains Caloneis budensis and Pinnularia cf. altiplanensis (Fig. 4.1, x), but is poorly supported (BS=56; PP=87). Subclade C2 is further subdivided into moderately to highly supported groups, all of which have characteristic morphologies. The borealis-microstauron group includes the P. borealis species complex, which is easily recognizable by its relatively broad cells and coarse striae (Fig. 4.1, w), and P. microstauron with its relatively robust shape and wedge-shaped ends (Fig. 4.1, v). The remaining groups (the subcommutata and viridiformis clades) contain large, elongated-elliptical species, with almost parallel striae and small central areas (Fig. 4.1, q-t), undulate Ž¡Ž›—Š•ȱ ›Š™‘Žȱ ęȱœœž›Žœǰȱ ’—Ž›–Ž’ŠŽȬœ’£Žȱ Š•ŸŽ˜•Š›ȱ ˜™Ž—’—œȱ ǻ’ǯȱ 4.2, f), and plastids without pyrenoids. The subcommutata group contains Pinnularia species with linear central raphe endings (Fig. 4.2, e) while species of the viridiformis group have round central raphe endings (Fig. 4.2, g) and a complex raphe system, visible as three parallel (Fig. 4.1, q) or twisting lines (Fig. 4.1, r) with light microcopy (Round et al., 1990; Krammer, 1992, 2000). Sister to the viridiformis and subcommutata groups is the isolate (Wie)a (Fig. 4.1, u), an undescribed Pinnularia species morphologically similar to P. microstauron. In the single-gene trees, (Wie)a is always retrieved in clade C, but with a closer (unsupported) relationship to the viridiformis-group based on

92 Time-calibrated phylogeny of Pinnularia 18S and 28S rDNA, or with a sister relationship to P. cf. divergens and P. borealis based on rbcL and psbA.

Newly-observed fossil Pinnularia specimens Pinnulariaȱ œ™ŽŒ’–Ž—œȱ ›˜–ȱ ‘Žȱ ’•Žȱ ˜ŒŽ—Žȱ ’›ŠěȱŽȱ ”’–‹Ž›•’Žȱ •˜ŒŠ•’¢ȱœ‘˜ ȱŒ˜—œ’Ž›Š‹•ŽȱŠĜȱȱ—’¢ȱ˜ȱ–˜Ž›—ȱ›Ž™›ŽœŽ—Š’ŸŽœȱ˜ȱ‘Žȱ Ž—žœǯȱ ‘’•Žȱ ‘Ž¢ȱ Š›Žȱ —ŽŸŽ›ȱ Š‹ž—Š—ȱ ’—ȱ ‘’œȱ –ŠŽ›’Š•ǰȱ œžĜȱȱŒ’Ž—ȱ numbers have been observed to document their morphology in light and scanning electron microscopy (Fig. 4.3). The specimens are characterized by an alveolate valve structure (Fig. 4.3, k), placing ‘Ž–ȱ Œ˜—ęȱŽ—•¢ȱ ’—ȱ ‘Žȱ Ž—žœȱ Pinnulariaǯȱ ˜›Ž˜ŸŽ›ǰȱ ‘Žȱ ’›ŠěȱŽȱ Pinnularia forms have large alveolar openings (Fig. 3, k), identical to the Pinnularia species from clades A, B, C1 and the microstauron- borealis group of clade C (e.g. Fig. 4.3, l; Fig. 4.2, d,h). However, the particular combination of morphological characters of the fossil specimens, including wart-like structures on the valves (similar to P. acrosphaeria), the very wide axial area (similar to P. acuminata) and the distinctly lanceolate or “naviculoid” shape (not encountered in our species) meant that we were not able to place these specimens within a known Pinnularia Bauplan in the present phylogeny nor, to our knowledge, with any currently described species. Their distribution in samples spanning tens of meters of core, typically associated with chrysophyte and euglyphid siliceous microfossils and benthic eunotioid diatoms, and their occurrence within the mudstone matrix discounts the possibility that they are contaminants. ȱ–˜›ŽȱŒ˜–™•ŽŽȱŠ—Š•¢œ’œȱ˜ȱ‘ŽȱŠž‘Ž—’Œ’¢ȱ˜ȱ ’›ŠěȱŽȱ–’Œ›˜˜œœ’•œȱ ’œȱ ’ŸŽ—ȱ Ž•œŽ ‘Ž›Žȱ ǻ˜•Žȱ ǭȱ ’ŸŽ›ǰȱ ŘŖŖşǼǯȱ Ž’—ȱ ǃŚŖȱ Šȱ ’—ȱ ŠŽǰȱ these Pinnularia specimens represent the earliest known forms of Pinnularia, providing us with a fossil calibration point to constrain the basal node of our phylogeny temporally.

Time-calibrated phylogeny ‘Žȱ ’ěȱŽ›Ž—ȱ ŒŠ•’‹›Š’˜—ȱ œŒ‘Ž–Žœȱ Š—Š•¢£Žȱ ’—ȱ ȱ Š••ȱ ›ŽŒ˜ŸŽ›ȱ identical relationships to the RAxML and MrBayes analyses with comparable posterior probabilities. The average node ages and şśƖȱ ȱǻ ’‘Žœȱ˜œŽ›’˜›ȱŽ—œ’¢Ǽȱ›Žœž•’—ȱ›˜–ȱ‘Žȱ’ěȱŽ›Ž—ȱ calibration schemes are given in Fig. 4.5. Estimates using the internal calibration points based on the frustule morphologies of viridis, nodosa and borealis were consistent with estimates using only a root calibration. However, adding the internal calibration point based on

Time-calibrated phylogeny of Pinnularia 93 Fig. 4.5 Resulting mean node ages (indicated as “x”; in Ma) and 95% HPD (error bars; in Ma) for nine of the alternative calibration œŒ‘Ž–Žœȱ ǻœŽŽȱ Š‹•Žȱ ŚǯřǼǰȱ Ÿ’œžŠ•’£Žȱ ˜›ȱ ‘Žȱ ’ěȱŽ›Ž—ȱŒŠ•’‹›Š’˜—ȱ™˜’—œȱǻ—ž–‹Ž›ŽȱŒ’›Œ•Žœȱ ›ŽŽ›ȱ ˜ȱ ‘Žȱ Œ˜—œ›Š’—Žȱ —˜Žœȱ ’—ȱ ’ǯȱ ŚǯŚǼǯȱ The preferred calibration scheme used for ’ǯȱŚǯŜȱ’œȱ’—’ŒŠŽȱ’—ȱ›Ž¢ǯȱȃ˜˜ȄȱœŒ‘Ž–Žœȱ were only constrained on the root. Scheme C used a less conservative calibration, with a maximum of 75 Ma and all internal calibration points. Scheme E used a very conservative calibration with a maximum of 100 Ma and all internal calibration ™˜’—œǯȱ‘Žȱ’—ĚȱžŽ—ŒŽȱ˜ȱ‘ŽȱŒ˜—œ›Š’—ȱ‹ŠœŽȱ on the grunowii-mesolepta Bauplan is Œ•ŽŠ›•¢ȱŸ’œ’‹•ŽȱŠœȱ‘Žȱ’ěȱŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱŠŽȱ estimations based on “root” and “scheme C” or “scheme E”.

94 Time-calibrated phylogeny of Pinnularia grunowii-mesolepta resulted in larger 95% HPD intervals and higher average node ages (plus 5–12 Ma) at all nodes. Using only the root constraint, the grunowii-mesolepta node is estimated as being 3.5– 12.6 Ma. Constraining this node to have a minimum age of 11.7 Ma therefore pushes its own time-estimate, and that of all other nodes, back in time (Fig. 4.5). Using the conservative maximum root age of 100 Ma resulted in a 7–11 Ma higher average root node age and a 12–20 Ma higher 95% HPD maximum root age compared with the alternative 75 Ma maximum age boundary, but for the internal nodes, changes in mean age and 95% HPD were only 1–6 Ma. Furthermore, the use of ’ěȱŽ›Ž—ȱ™›˜‹Š‹’•’¢ȱ’œ›’‹ž’˜—œȱ˜—ȱ‘Žȱ›˜˜ȱŒŠ•’‹›Š’˜—ȱǻž—’˜›–ǰȱ Š––Šȱ˜›ȱ›ž—ŒŠŽȱ—˜›–Š•Ǽȱ›Žœž•Žȱ’—ȱ™›Ž’ŒŠ‹•Žȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ average node ages and 95% HPD up to 6 Ma for the less-conservative 75 Ma schemes and up to 10 Ma for the conservative 100 Ma scheme. Because the Eocene fossil record is so fragmentary, we chose the conservative uniform prior probability distribution as the preferred calibration strategy. Fig. 4.6 presents our preferred relaxed molecular clock as applied to the Pinnularia phylogeny, constrained by all four internal calibration points (scheme C = viridis, borealis, nodosa and mesolepta), with the root age constrained between 40 and 75 Ma using a uniform distribution. This estimate places the origin of Pinnularia around 64 Ma, between the Campanian and Early Eocene [75–50]. The Pinnularia complex began to diversify between the Maastrichtian and Middle Eocene 60 Ma [73–45] and continued through to the Pliocene, with no ˜‹Ÿ’˜žœȱŽŸ’Ž—ŒŽȱ˜›ȱ’—Œ›ŽŠœŽȱ›ŠŽœȱ˜ȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ŸŽ›ȱŠ—¢ȱ’–Žȱ ™Ž›’˜ǯȱ •ŠŽœȱȱ Š—ȱ ȱ ’ŸŽ›œ’ęȱŽȱ –˜œ•¢ȱ ž›’—ȱ ‘Žȱ Š•Ž˜ŒŽ—ŽȮ Eocene (respectively, 49 Ma [65–33] and 52 Ma [64–38]), while clade B started to diverge between the Eocene and Oligocene (39 Ma [50– 28]).

4.4 Discussion Relationships within Pinnularia The current study presents a multi-gene phylogeny of the genus Pinnularia and extends the sampling of Bruder et al. (2008) three- ˜•ǯȱž›ȱęȱŸŽȬ•˜ŒžœȱŠ—Š•¢œ’œȱ¢’Ž•ŽȱŠȱ Ž••Ȭœž™™˜›Žȱ™‘¢•˜Ž—Ž’Œȱ tree, with Pinnularia and Caloneis resolved in a single monophyletic clade, in accordance with the results of Bruder and Medlin (2008) and Bruder et al. (2008). Our phylogeny shows that Caloneis (as

Time-calibrated phylogeny of Pinnularia 95 Fig. 4.6 Chronogram of the genus Pinnularia from a Bayesian relaxed molecular clock analysis performed with BEAST (Drummond and Rambaut, 2007), time-constrained by four internal fossil calibration points (viridis, borealis, nodosa and mesolepta) and a 40 Ma minimum and 75 Ma maximum root age with uniform probability distribution (scheme Ǽȱ‹ŠœŽȱ˜—ȱ‘Žȱ˜œœ’•ȱŠŠȱ›˜–ȱ‘Žȱ ’›ŠěȱŽȱ”’–‹Ž›•’Žȱ’™ŽǯȱŠ•žŽœȱŠȱ—˜ŽœȱŠ›Žȱ–ŽŠ—ȱ—˜Žȱ ages and grey bars represent 95% HPD (highest probability density) intervals.

96 Time-calibrated phylogeny of Pinnularia Œž››Ž—•¢ȱ Žęȱ—ŽǼȱ ’œȱ —˜ȱ –˜—˜™‘¢•Ž’Œǰȱ ‹žȱ ›Š‘Ž›ȱ ‘Šȱ ’œȱ œ™ŽŒ’Žœȱ were recovered in various places among the Pinnularia species. ‘’œȱ ęȱ—’—ȱ œž™™˜›œȱ ‘Žȱ ˜›”ȱ ˜ȱ ˜¡ȱ ǻŗşŞŞǼǰȱ ˜ž—ȱ et al. (1990) and Mann (2001) who concluded that the current separation of Caloneis from Pinnularia was not supported by plastid and frustule structure. Cleve (1894) delimited Caloneis from Pinnularia using •’‘ȱ–’Œ›˜œŒ˜™¢ǰȱ‹žȱ‘ŽȱŠ–’ĴȱŽȱ‘Šȱ‘Ž’›ȱ’œŒ›’–’—Š’˜—ǰȱ‹ŠœŽȱ ˜—ȱœ›’Šȱ˜›’Ž—Š’˜—ǰȱ‘Žȱ™Š‘ȱ˜ȱ‘ŽȱŽ›–’—Š•ȱ›Š™‘Žȱęȱœœž›Žœǰȱ™•Šœ’œȱ and the presence of “longitudinal lines” (the margins of the alveolar apertures on the inner side of the valve) was not consistent. While Krammer & Lange-Bertalot (Krammer & Lange-Bertalot, 1986; Krammer, 1992) argued that Caloneis can indeed be distinguished from Pinnulariaȱ‹ŠœŽȱ˜—ȱŠȱœ™ŽŒ’ęȱŒȱŒ˜–‹’—Š’˜—ȱ˜ȱŒ‘Š›ŠŒŽ›œǰȱ˜ž—ȱ et al. (1990) suggested that, although Pinnularia–Caloneis is a natural group characterized by the double-walled, chambered (alveolated) valve structure, any split of the Pinnularia–Caloneis complex would not follow the traditional boundary between the two genera. Despite the fact that our molecular phylogeny contained only three Caloneis species, there is no apparent genetic boundary between Pinnularia and Caloneis. Nevertheless, ultrastructural characters, e.g. ‘Žȱœ’£Žȱ˜ȱ‘ŽȱŠ•ŸŽ˜•’ǰȱŠ—Ȧ˜›ȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›œȱŒŠ—ȱŠ™™Š›Ž—•¢ȱ‹Žȱ used, alongside molecular synapomorphies, to delimit groups or genera within this complex. However, much further genetic and morphological investigation of the Pinnularia–Caloneis complex ’œȱ ›Žšž’›Žȱ ‹Ž˜›Žȱ Š—¢ȱ ŠĴȱŽ–™ȱ ’œȱ –ŠŽȱ ˜ȱ ˜›–Š••¢ȱ œž‹’Ÿ’Žȱ ’ǯȱ Alternatively, subdivision could be considered unnecessary, given the highly characteristic general morphology of the complex. Pinnularia is a morphologically diverse genus and the ’—Ž›œ™ŽŒ’ęȱŒȱ›Ž•Š’˜—œ‘’™œȱ‹ŠœŽȱ˜—ȱ˜ž›ȱęȱŸŽȬ•˜ŒžœȱŠŠœŽȱŽ—Ž›Š••¢ȱ ˜••˜ ȱ –˜›™‘˜•˜’ŒŠ•ȱ ™ŠĴȱŽ›—œǯȱ ž›ȱ ŠŠœŽȱ ›ŽŸŽŠ•Žȱ ‘›ŽŽȱ •Š›Žǰȱ well-supported clades that were also recovered with lower or no support in the concatenated (18S, 28S, rbcL) dataset of Bruder et al. (2008). With the exception of clade A, which contains two Caloneis species and the Pinnularia divergens group, the remaining clades are –˜›™‘˜•˜’ŒŠ••¢ȱ Ž••ȬŽęȱ—Žǯȱȱ•ŠŽȱȱ’—Œ•žŽœȱPinnularia taxa of intermediate size that have a fascia, and is subdivided into three ‘’‘•¢ȱœž™™˜›ŽȱŠ—ȱ–˜›™‘˜•˜’ŒŠ••¢ȱ Ž••ȬŽęȱ—Žȱœž‹Œ•ŠŽœǯȱ‘Žȱ structural similarities between P. acrosphaeria and P. nodosa have been described by Cleve (1895) and more recently by Krammer & Lange-Bertalot (1986). The grunowii and subgibba subclades are also Ž••ȬŽęȱ—Žȱ‹¢ȱ Ȭœ‘Š™Žȱ™•Šœ’œȱŠ—ȱŠȱ ’ŽȱŠœŒ’Šǰȱ›Žœ™ŽŒ’ŸŽ•¢ǯȱ

Time-calibrated phylogeny of Pinnularia 97 Clade C contains the larger and more robust forms of Pinnularia, and is subdivided into well-supported subclades, each with a distinct morphology. The combined viridiformis and subcommutata group, characterized by intermediate alveolar openings (Fig. 4.2, f), was previously described by Cleve (1895) as the Maiores and Complexae, and more recently as a single group by Krammer & Lange-Bertalot (1986). Žœ’Žœȱ ‘ŽœŽȱ Ž••ȬŽęȱ—Žȱ Š—ȱ Ž••Ȭœž™™˜›Žȱ Œ•ŠŽœǰȱ œ˜–Žȱ clusters are less easily interpreted. Some enigmatic relationships within clade A can only be further resolved and understood through additional taxon sampling. This is also the case for the positions of the undescribed species (Wie)a and P. cf. altiplanensis, and the relationship between P. microstauron and P. borealis. Because only a small subset of the described Pinnularia species were included in this analysis, it is plausible that they represent more elaborate clusters. Adding taxa in those parts of the tree could therefore improve our understanding of the evolution of morphological features.

Evolution of the genus Pinnularia Based on our preferred time-calibration, Pinnularia originated between the Campanian (Late Cretaceous, ca. 75 Ma) and Early Eocene (ca. 50 Ma). This estimate is 10 to 35 Ma older than the ca. 40 Ma origin deduced from the chronogram of Sorhannus (2007). ˜ ŽŸŽ›ǰȱ ‘Žȱ ˜Š•ȱ ˜ȱ ‘Žȱ •ŠĴȱŽ›ȱ œž¢ȱ Šœȱ ˜ȱ Ž•žŒ’ŠŽȱ ŽŽ™Ž›ȱ divergences within major diatom lineages, and furthermore only two Pinnularia taxa were included and analyzed with a single genetic marker (nuclear-encoded SSU rDNA). More comprehensive taxon sampling (Sanderson, 1990), the use of multiple genes (Rodríguez-Trelles et al., 2003), and full integration of the fossil record (Donoghue & Benton, 2007) have all been shown to improve the accuracy of molecular dating. In the case of Pinnulariaǰȱ‘ŽȱǃŚŖȱ Šȱ ’›ŠěȱŽȱœ™ŽŒ’–Ž—œȱŒ˜—Ÿ’—Œ’—•¢ȱœž™™˜›ȱ‘Žȱ˜•Ž›ȱ›Š—Žȱ˜ȱ˜ž›ȱ estimated ages for the origination of the genus (i.e. Late Cretaceous). ’ŸŽ—ȱ ‘Žȱ –˜›™‘˜•˜’ŒŠ•ȱ œ’–’•Š›’¢ȱ ˜ȱ ’›ŠěȱŽȱPinnularia forms to Ž¡Š—ȱŠ¡Šǰȱ ŽȱŠ›ŽȱŒ˜—ęȱŽ—ȱ‘ŠȱœžŒ‘ȱ˜•Ž›ȱ˜›–œȱŽ¡’œǯȱ‘’•Žȱ‘Žȱ ’›ŠěȱŽȱœ™ŽŒ’–Ž—œȱŠ›Žǰȱœ˜ȱŠ›ǰȱ‘Žȱ˜•Žœȱ›Ž™›ŽœŽ—Š’ŸŽœȱ›˜–ȱ Ž••Ȭ dated sediments, they do not inform the search for morphologically primitive Pinnularia, or its immediate ancestor. The new estimate for the origin of Pinnularia implies a considerable gap in the fossil record of freshwater diatoms. The magnitude of this ghost lineage (ca. 10-35 Ma) should not be

98 Time-calibrated phylogeny of Pinnularia surprising given that freshwater deposits are underrepresented and understudied in the palaeontological record. Similar gaps apply to nearly all extant raphid diatom lineages, and the scarcity of fossil raphid diatoms of Late Cretaceous to Paleocene age has resulted in a lack of consensus on plausible minimum ages for most genera (but see Singh et al.ǰȱŘŖŖŜǼǯȱ ȱ’œȱ‘Ž›Ž˜›Žȱ’ĜȱȱŒž•ȱ˜ȱ™•ŠŒŽȱ‘Žȱ™›˜™˜œŽȱ age for Pinnularia in a broader context, although generally our observations are consistent with the preferred model of Berney & Pawlowski (2006), in which pennate diatoms arose some 98 (110– 77) Ma ago, leaving the entire Late Cretaceous for innovations such as the raphe. Apart from Pinnularia, no raphid diatom genera have yet been dated by phylogenetic methods, but the time-calibrated phylogeny of Sorhannus (2007) suggests that several raphid genera are as old as, or even older than, our estimate for Pinnularia. Given the available fossil and phylogenetic records, our estimated timing of 60 Ma for the origin of Pinnularia seems plausible. Since its origin, Pinnulariaȱ‘Šœȱ’ŸŽ›œ’ęȱŽȱ ’Ž•¢ȱ’—˜ȱŠȱ large number of species and a range of morphologies. The evolution of particular morphological innovations appears to have sparked the appearance of new lineages, such as the evolution of the “complex” raphe, which may have allowed the development of larger cells, as seen in the viridiformis group, or the evolution of H-shaped plastids in the grunowii group. Further research will be needed to integrate the ecological, morphological, genetic and evolutionary processes ž—Ž›•¢’—ȱ‘Žȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ’Š˜–ȱŽ—Ž›ŠȱœžŒ‘ȱŠœȱPinnularia. Our time-calibrated multi-gene phylogeny of Pinnulariaȱ˜›–œȱŠȱęȱ›œȱ important step towards this goal by providing a temporal context in ‘’Œ‘ȱ˜ȱ’—Ž›™›Žȱ‘Žȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ‘ŽȱŽ—žœǰȱŠ—ȱ‘Šœȱ˜—•¢ȱ‹ŽŽ—ȱ possible by integrating molecular and palaeontological information.

Acknowledgments Žȱ ‘Š—”ȱ •˜’œ’Žȱ ˜ž•Ç²”˜Ÿ¤ȱ ˜›ȱ ™›˜Ÿ’’—ȱ Œž•ž›Žœȱ ˜ȱ Pinnularia borealis and Elie Verleyen for providing live environmental samples. Alex Ball enthusiastically assisted with confocal microscopy. Sequencing was done by Andy Vierstrate. Funding was provided ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱŽœŽŠ›Œ‘Ȭ•Š—Ž›œȱǻȬ•Š—Ž›œDzȱ‘ȱ fellowship to CS, post-doctoral fellowships to HV and PV, and ›ŽœŽŠ›Œ‘ȱ›Š—ȱř ȦŖśřřȦŖŝǼǯȱŽœŽŠ›Œ‘ȱ˜—ȱ˜œœ’•ȱ’Š˜–œȱ’œȱ™Š›’Š••¢ȱ supported by the U.S. National Science Foundation (DEB-0716606 to PAS) and the Natural Sciences and Engineering Council of Canada

Time-calibrated phylogeny of Pinnularia 99 (APW). Morphological analyses at the Natural History Museum, London, were supported by an EU framework 7 SYNTHESYS grant (GB-TAF-77) to CS.

100 Time-calibrated phylogeny of Pinnularia Appendix 4.A DNA regions, primer sequences and PCR conditions. F= forward, R= reverse.

DNA region Primer sequence PCR protocol (°C, min:sec) 18S rDNA P2F: CTG GTT GAT TCT GCC AGT 94°C, 3:00 + 40 x (94°C, 1:00 – P4R : TGA TCC TTC YGC AGG TTC 55°C, 1:00 – 72°C, 1:50) + 72°C, AC 10:00 P12: CGG CCA TGCACC ACC P14: CGG TAA TTC CAG CTC C P15 13: TTT GAC TCA ACA CGG G P16: GWA TTA CCG CGG CKG CTG 28S rDNA DIR-F: ACC CGC TGA ATT TAA GCA 95°C, 5:00 + 35 x (94°C, 1:00 – TA 45°C, 1:00 – 74°C, 1:00) + 72°C, D2C-R: CCT TGG TCC GTG TTT 10:00 CAA GA rbcL DPrbcL1F: AAG GAG AAA THA ATG 94°C, 3:00 + 40 x (94°C, 1:00 – TCT 55°C, 1:00 – 72°C, 1:50) + 72°C, DPrbcL7R: AAC AAC CTT GTG TAA 5:00 GTC TC rbcL13F: CGT TTA GAA GAT ATG CGT ATT C NDrbcL6F: GTA AAT GGA TGC GTA NDrbcL12R: GCA CCT AAT AAT GG 15R: ACA CCA GAC ATA CGC ATC CA 17R: TGA CCA ATT GTA CCA CC psbA psbAF: ATG ACT GCT ACT TTA GAA 94°C, 3:00 + 35 x (94°C, 1:00 – AGA CG 46°C, 1:00 – 72°C, 1:00) + 72°C, psbAR: GCT AAA TCT ARW GGG 10:00 AAG TTG TG cox1 GazF2: CAA CCA YAA AGA TAT WGG 95°C, 3:00 + 35 x (95°C, 0:30 – TAC 50°C, 1:00 – 72°C, 1:50) + 72°C, KedtmR: AAA CTT CWG GRT GAC 5:00 CAA AAA

Time-calibrated phylogeny of Pinnularia 101

5. Phylogenetic signals in the valve and plastid morphology of the diatom genus Pinnularia

Š›˜•’—Žȱ˜žěȱ›ŽŠž1, Eileen J. Cox2, Koen Sabbe1 and Wim Vyverman1

ǐȱ 1 Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 - S8, B-9000 Gent, Belgium ǐȱ 2 Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Unpublished manuscript

Morphology of Pinnularia 103 Abstract The diatom genus Pinnularia is characterized by broad variation in frustule and plastid morphology, making it an interesting genus in which to analyze the phylogenetic signal of these characters ’‘ȱ ›Žœ™ŽŒȱ ˜ȱ ’—Ž›œ™ŽŒ’ęȱŒȱ ›Ž•Š’˜—œ‘’™œǯȱ Žȱ ™Ž›˜›–Žȱ Šȱ cladistic analysis on 48 strains using 17 frustule and 3 plastid characters and made a comparison with a multi-gene phylogeny of the same taxa. Independent phylogenetic analyses of molecular and morphological data generated similar clades, and Mantel Žœœȱ ˜ž—ȱ Šȱ œ’—’ęȱŒŠ—ȱ Œ˜››Ž•Š’˜—ȱ ‹Ž ŽŽ—ȱ –˜›™‘˜•˜’ŒŠ•ȱ Š—ȱ –˜•ŽŒž•Š›ȱ ’œŠ—ŒŽœǯȱ ˜ ŽŸŽ›ǰȱ ‘’•Žȱ ™‘¢•˜›Š–œȱ ‹ŠœŽȱ ˜—ȱ ęȱŸŽȱ molecular markers containing in total 1012 parsimony-informative sites were fully resolved, the lower number of phylogenetically informative morphological characters inevitably resulted in fewer clades being recovered, and we were never able to fully resolve the ’—Ž›œ™ŽŒ’ęȱŒȱ›Ž•Š’˜—œ‘’™œȱ˜ȱPinnularia based on morphology. The ‹Žœȱ ›Žœ˜•ž’˜—ȱ ˜›ȱ –˜›™‘˜•˜¢Ȭ‹ŠœŽȱ œ™ŽŒ’Žœȱ ’ěȱŽ›Ž—’Š’˜—ȱ Šœȱ acquired by analyzing all morphological characters simultaneously. Mainly “non-structural” frustule characters were found to be homoplasious while “structural” characters (such as central raphe endings, raphe complexity and alveolus openings) and one plastid character (number of pyrenoids) were informative for reconstructing the phylogenetic relationships within the genus. Some problems of homology were encountered and are discussed.

Key words: ancestral state reconstruction, Caloneis, cladistics, nuclear genes, Pinnularia, phylogeny, plastid genes, plastid morphology, valve morphology

104 Morphology of Pinnularia 5.1 Introduction ’Š˜–ȱ Š¡˜—˜–¢ȱ Š—ȱ Œ•Šœœ’ęȱŒŠ’˜—ȱ Š›Žȱ œ’••ȱ •Š›Ž•¢ȱ ‹ŠœŽȱ ˜—ȱ ‘Žȱ œ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒȱ œ‘Š™Žȱ Š—ȱ ˜›—Š–Ž—Š’˜—ȱ ˜ȱ ‘Žȱ œ’•’ŒŠȱ ŒŽ••ȱ Š••ǰȱ revealed by light and scanning electron microscopy (Round et al., 1990). To a lesser extent, cytological information, such as chloroplast morphology and organelle location, has been incorporated into diatom systematics (Mereschkowsky, 1902; Cox, 1981; Round et al., 1990; Cox & Williams, 2006). Genetic information in the form of nucleotide sequences from (parts of) faster and slower evolving genes are increasingly being used to infer relationships in this microalgal group (reviewed in Alverson, 2008), but as with morphology and cytology, there is the risk that some level of parallel evolution and convergence in base composition obscures the real relationships. For DNA nucleotides, the knowledge on their biological function (i.c. the coding of amino acids used to construct proteins) and chemical properties (e.g. the stronger hydrogen bound between guanine and cytosine than between adenine and thymine) allowed to model their evolution using mathematical language. By applying such models on a larger number of nucleotides originating from ’ěȱŽ›Ž—ȱ Š¡Šǰȱ ‘Žȱ ™‘¢•˜Ž—Ž’Œȱ ›Ž•Š’˜—œ‘’™œȱ ‹Ž ŽŽ—ȱ ‘ŽœŽȱ Š¡Šȱ (including probability levels) can be estimated (Felsenstein, 2004). In contrast, morphological and cytological features are expected to be generated by the coordinated action of multiple genes (by analogy with higher plants, e.g. Mathur, 2006; Qian et al., 2009) making the selection of the used characters and character states, ‘Žȱ Ž’‘’—ȱ˜ȱ’ěȱŽ›Ž—ȱœŽœȱ˜ȱŒ‘Š›ŠŒŽ›œǰȱŠ—ȱ‘Žȱ™›˜‹Š‹’•’’Žœȱ˜ȱ gains and losses of character states more ambiguous, and thus more prone to interpretational (e.g.ȱŠ›Žȱ‘ŽœŽȱ’ěȱŽ›Ž—ȱŒ‘Š›ŠŒŽ›ȱœŠŽœȱ˜ȱ Šȱœ’—•ŽȱŒ‘Š›ŠŒŽ›ǰȱ˜›ȱ’ěȱŽ›Ž—ȱŒ‘Š›ŠŒŽ›œǼȱŠ—ȱŠ—Š•¢’ŒŠ•ȱ–’œŠ”Žœǯȱ Moreover, the low number of morphological characters commonly used to infer relationships (see for example Edgar & Theriot, 2004; Bleidorn et al., 2009; Kooistra et al., 2010 and compare the number of morphological characters with the number of nucleotides) enhances the impact of potentially misleading characters on the outcome, making the reconstruction of phylogenetic relationships based on morphological datasets very challenging. Meanwhile, cladistic analyses have provided useful results at higher (intergeneric) (e.g. Kociolek & Stoermer, 1986; Cox & Williams, 2000; Marivaux et al., 2004; Cox & Williams, 2006; Ohl & Spahn, 2010) and lower (intrageneric) taxonomic levels (e.g. Julius & Tanimura, 2001; Uriz & Carballo, 2001; Edgar & Theriot, 2004; Kooistra et al.,

Morphology of Pinnularia 105 2010). In addition, phylogenetic analysis of morphological datasets can provide insights into the phylogenetic signal and resolution of ’ěȱŽ›Ž—ȱŒ‘Š›ŠŒŽ›ȱ¢™Žœȱ˜›ȱ’—Ž››’—ȱ›Ž•Š’˜—œ‘’™œȱǻ˜¡ȱǭȱ’••’Š–œǰȱ 2000; Maximino, 2008), reveal the evolution of morphological stages (Maximino, 2008) and the selective pressure behind morphological evolution (Stark & O’grady, 2010). Morphology is also the link that allows the integration of fossil taxa and large molecular datasets (Edgar & Theriot, 2004; Smith & Turner, 2005; Giribet, 2010), and thus ‘Žȱ ’—Ž›™›ŽŠ’˜—ȱ ˜ȱ ŽŸ˜•ž’˜—Š›¢ȱ ™ŠĴȱŽ›—œȱ ŠŒ›˜œœȱ ’–Žȱ ǻŠ›’ŸŠž¡ȱ et al.ǰȱ ŘŖŖŚǼǯȱ ˜›™‘˜•˜¢ȱ –Š¢ȱ Œ˜–™•Ž–Ž—ȱ ‘Žȱ ™ŠĴȱŽ›—œȱ Ž›’ŸŽȱ from molecular data (e.g. Jacobs et al., 2008; Mizuno, 2008; Ivanovic et al., 2009) and, interestingly, molecular-phylogenetic analyses of diatom genera often support previous morphological observations (Lundholm et al., 2002; 2003; Edgar & Theriot, 2004; Lundholm et al., 2006; Chen et al., 2007; Sarno et al., 2007). There is also evidence ›˜–ȱ’ěȱŽ›Ž—ȱ˜›Š—’œ–œȱ‘Šȱ‘ŽȱŒ˜–‹’—ŽȱŠ—Š•¢œ’œȱ˜ȱ–˜•ŽŒž•Š›ȱ and morphological datasets can enhance the resolution (Wortley & Scotland, 2006) and overall probability of the phylogenetic signal (Lee & Camens, 2009). For all these reasons morphological, cytological, biochemical, ecological and developmental data remain important components for the inference of evolutionary relationships and understanding of evolutionary processes. Despite the recognized importance of using only phylogenetically informative data when reconstructing relationships, there is a lack of knowledge on the phylogenetic value of morphological characters in diatoms. Morphological data are mostly analyzed using cladistics, a technique that describes evolutionary history based on shared (homologous), derived characters (Hennig, 1965, 1966), but identifying homologous characters and Žęȱ—’—ȱ Œ‘Š›ŠŒŽ›ȱ œŠŽœȱ ŒŠ—ȱ ‹Žȱ Š’›•¢ȱ œž‹“ŽŒ’ŸŽǯȱ ȱ ’œȱ ’–™˜›Š—ȱ to use positional, structural and developmental information to interpret potential phylogenetically informative characters (Cox, ŘŖŗŖǼȱ ‹ŽŒŠžœŽȱ œ’–’•Š›ȱ ŽŠž›Žœȱ –Š¢ȱ ‹Žȱ ˜›–Žȱ ’—ȱ ’ěȱŽ›Ž—ȱ Š¢œȱ (Cox, 2001) while contrasting features may share developmental pathways (Cox, 2002). Even if the systematics and cladistic analysis of diatoms have been dominated by frustule characters, cytological features such as shape and number of have also been used to infer relationships (Mereschkowsky, 1902; Kociolek & Stoermer, 1986; Round et al., 1990; Cox & Williams, 2000; Cox & Reid, 2004; Cox & Williams, 2006). Partitioned analyses of protoplast and frustule data have shown that both datasets are informative at

106 Morphology of Pinnularia ’ěȱŽ›Ž—ȱ•ŽŸŽ•œȱǻ˜¡ȱǭȱ’••’Š–œǰȱŘŖŖŖǼǯȱŽŒŠžœŽȱ‘ŽȱŽ—žœȱPinnularia exhibits a broad variety of plastid morphology potentially useful for subgeneric groupings (Cox, 1988), as well as large variation in frustule characters (Round et al., 1990; Krammer, 2000), it is an ideal genus with which to analyze the phylogenetic signal of both valve and plastid characters at the infrageneric level using a cladistic approach. Moreover, the availability of a molecular-phylogenetic ›ŽŽȱ˜ȱ‘ŽȱŽ—žœȱ‹ŠœŽȱ˜—ȱęȱŸŽȱ–˜•ŽŒž•Š›ȱ–Š›”Ž›œȱǻ˜žěȱ›ŽŠžȱet al., œž‹–’ĴȱŽǼȱŠ••˜ œȱžœȱ˜ȱŒ˜–™Š›Žȱ‘Žȱ–˜›™‘˜•˜’ŒŠ•ȱœ’—Š•ȱ ’‘ȱ‘Žȱ molecular one. The genus Pinnularia Ehrenberg contains biraphid, benthic diatoms and occurs world-wide, mainly in freshwater habitats. It was described by Ehrenberg (1843) based on Pinnularia viridis ǻ’ĵȱœŒ‘Ǽȱ‘›Ž—‹Ž›ȱŠ—ȱ’œȱ˜—Žȱ˜ȱ‘Žȱ–˜œȱœ™ŽŒ’˜œŽȱ’Š˜–ȱŽ—Ž›Šǯȱ At the time of writing, Algaebase (Guiry & Guiry, 2011) includes 2462 species names and varieties of which 413 are currently accepted taxonomically, but in the light of recent discoveries of pseudocryptic species (Sarno et al., 2005; Mann & Evans, 2007; Vanormelingen et al., 2008) it is believed that the worldwide species diversity of Pinnularia could exceed this last number by almost ten-fold (pers. comm. Bart Van de Vijver). The fossil record of the genus dates back to the Middle-Eocene (ca.ȱŚŖȱŠȱŠ˜Ǽȱǻ˜‘–Š—ȱǭȱ—›Ž œǰȱŗşŜŞDzȱ˜žěȱ›ŽŠžȱ et al.ǰȱœž‹–’ĴȱŽǼȱ™•ŠŒ’—ȱ’——ž•Š›’ŠȱŠ–˜—ȱ‘ŽȱŽŠ›•’Žœȱ›Žœ‘ ŠŽ›ȱ diatoms yet recovered, and a fossil-calibrated molecular clock Žœ’–ŠŽœȱ’œȱ˜›’’—ȱŠȱŠ›˜ž—ȱŜŖȱŠȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼǯ Pinnularia is morphologically characterized by the possession of alveolate or “chambered” valves in which the striae (as seen using light microscopy) correspond to separate alveoli (chambers) (Round et al., 1990; Krammer, 2000). The outer wall of each chamber is a porous plate with many rows of small round poroids (occluded by hymenes), while the inner wall consists of a plain plate perforated by one (large or small) aperture. The raphe system is central and the Ž›–’—Š•ȱęȱœœž›ŽœȱŠ›Žȱ•˜—ȱ‘˜˜”œǯȱPinnularia is readily distinguished from other diatom genera by these features, including the most closely related genera Sellaphora and Eolimna (Round et al., 1990; Bruder & Medlin, 2008; Evans et al., 2008), but not from Caloneis Cleve, which also has an alveolated valve (Round et al., 1990; ›Š––Ž›ǰȱŗşşŘǰȱŘŖŖŖǼǯȱ‘Ž—ȱęȱ›œȱŽœŒ›’‹’—ȱCaloneis, Cleve (1894) noted the similarities with Pinnularia. The controversy still exists, and while Cox (1988), Round et al. (1990) and Mann (2001) consider it no longer possible to make a clear distinction along the traditional

Morphology of Pinnularia 107 boundary between these two genera, Krammer & Lange-Bertalot (1985, 1986) and Krammer (1992, 2000) consider that the combination of a lanceolate valve outline, parallel or radial orientation of the striae at the apices and marginal longitudinal lines separate Caloneis from Pinnularia. In molecular phylogenies (Bruder & Medlin, 2008; Bruder et al., 2008) Pinnularia and Caloneis were recovered as a single clade, but with low bootstrap support. The present study does not aim to resolve this issue, but we have added some strains of Caloneis to complete the sampling. Given its distinguishing morphological characteristics, Pinnularia exhibits considerable morphological diversity, including very small to very large forms (Round et al., 1990; Krammer, 2000). Valve shape varies from linear to undulate, apices can be rounded to capitate, and the raphe system can be simple and linear or very complex with a tongue and groove system visible as multiple parallel or twisting lines in LM (Round et al., 1990; Krammer, 1992, 2000). Plastid morphology varies from two girdle-appressed, linear chloroplasts per cell to a single H-shaped plastid with varying numbers of pyrenoids (Cox, 1988). Relationships within Pinnularia have never been resolved based on morphology. A number of Šž‘˜›œȱ‘ŠŸŽȱ›ŽŒ˜—’£Žȱ’ěȱŽ›Ž—ȱ–˜›™‘˜•˜’ŒŠ•ȱ›˜ž™œȱ ’‘’—ȱ‘Žȱ genus based on valve size and outline and stria orientation (Cleve, 1895; Krammer & Lange-Bertalot, 1985, 1986), but these have not ‹ŽŽ—ȱžœŽȱ’—ȱŠȱŒ•Šœœ’ęȱŒŠ’˜—ȱǽŽ¡ŒŽ™ȱ’—ȱŠ›’Œ”ȱǭȱŽ’–Ž›ȱǻŗşŜŜǼǾȱŠ—ȱ were only intended to group the broad variety of morphologies for ’Ž—’ęȱŒŠ’˜—ȱ ™ž›™˜œŽœǯȱ ȱ –˜•ŽŒž•Š›Ȭ™‘¢•˜Ž—Ž’Œȱ Š—Š•¢œ’œȱ ‹ŠœŽȱ ˜—ȱŚŚȱŠ¡Šȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼȱ›ŽŸŽŠ•Žȱ‘›ŽŽȱ•Š›ŽȱŒ•ŠŽœǰȱ ŽŠŒ‘ȱ˜ȱ‘Ž–ȱŒ˜—Š’—’—ȱ’ěȱŽ›Ž—ǰȱœŠ’œ’ŒŠ••¢ȱœž™™˜›Žȱœž‹Œ•ŠŽœǰȱ ‘’Œ‘ȱ Ž›Žȱ›ŽšžŽ—•¢ȱ‹žȱ—˜ȱŠ• Š¢œȱ–˜›™‘˜•˜’ŒŠ••¢ȱŽęȱ—Žǯ ȱ ‘ŽȱŠ’–ȱ˜ȱ‘’œȱœž¢ȱ Šœȱ˜ȱŠ—Š•¢£Žȱ‘Žȱž’•’¢ȱ˜ȱ’ěȱŽ›Ž—ȱ ŸŠ•ŸŽȱ Š—ȱ ™•Šœ’ȱ Œ‘Š›ŠŒŽ›œȱ ˜›ȱ ’—Ž››’—ȱ ‘Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ relationships in the genus Pinnularia and to compare this with the ’—˜›–Š’˜—ȱ›Ž›’ŽŸŽȱ›˜–ȱ‘ŽȱęȱŸŽȱŽ—Ž’Œȱ–Š›”Ž›œȱ’—ȱ˜žěȱ›ŽŠž et al. ǻœž‹–’ĴȱŽǼǯȱ’›œǰȱ ŽȱŒ˜—žŒŽȱŠȱŒ•Š’œ’ŒȱŠ—Š•¢œ’œȱ˜—ȱ‹˜‘ȱ‘ŽȱŸŠ•ŸŽȱ and plastid morphology to reconstruct evolutionary relationships in the genus Pinnularia and to identify which characters contribute most to the reconstruction of these relationships. Secondly, the congruence between the morphological and multi-gene phylogeny ǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼȱ ŠœȱŽŽ›–’—Žȱ‹¢ȱŠ—Ž•ȱŽœœȱǻŠ—Ž•ǰȱ 1967; Mantel & Valand, 1970). Finally, we performed ancestral state reconstructions of the morphological characters based on the multi-

108 Morphology of Pinnularia Ž—Žȱ™‘¢•˜Ž—¢ȱ˜ȱ˜žěȱ›ŽŠž et al.ȱǻœž‹–’ĴȱŽǼȱŠ—ȱŒ˜–™Š›Žȱ˜ž›ȱ results with the available fossil record.

5.2 Materials & Methods 6WUDLQLVRODWLRQDQGLGHQWL¿FDWLRQ ›Š’—œȱ žœŽȱ ˜›ȱ ‘’œȱ œž¢ȱ Ž›Žȱ ’œ˜•ŠŽȱ ‹¢ȱ –’Œ›˜™’™ŽĴȱŽȱ ˜›ȱ ‹¢ȱ the lens-tissue technique from environmental samples of aquatic œŽ’–Ž—œȱ Š—ȱ œ˜’•œȱ Œ˜••ŽŒŽȱ ›˜–ȱ ’ěȱŽ›Ž—ȱ ›Ž’˜—œȱ ’—ȱ ‘Žȱ ˜›•ȱ between 2006 and 2008 (Table 5.1). All cultures were kept in liquid Ȭ–Ž’ž–ȱǽǻ ž’••Š›ȱǭȱ˜›Ž—£Ž—ǰȱŗşŝŘǼȱ‹žȱ ’‘˜žȱŠ’’˜—ȱ˜ȱ Ÿ’Š–’—œǾȱž—Ž›ȱœŠ—Š›ȱŒ˜—’’˜—œȱ˜ȱŗŞǚȱƹȱŘǚǰȱŘśȬřŖȱΐ–˜•ȱ™‘ȱ m-² s-1 light intensity and a 12:12 hours light:dark period. Cultures were re-inoculated in fresh medium when reaching late exponential phase. For morphological and genetic characterization, cells were harvested in exponential phase and concentrated by centrifugation. Ž••Žœȱ ˜›ȱ ȱ Œ‘Š›ŠŒŽ›’£Š’˜—ȱ Ž›Žȱ Œ˜—œŽ›ŸŽȱ Šȱ ȬŘŖǚȱ Š—ȱ ™›˜ŒŽœœŽȱ Šœȱ ŽœŒ›’‹Žȱ ’—ȱ ˜žěȱ›ŽŠžȱ et al.ȱǻœž‹–’ĴȱŽǼDzȱ ™Ž••Žœȱ ˜›ȱ morphological study by light microscopy (LM) were instantly oxidized in hydrogen peroxide and, after several washing steps, embedded in Naphrax®. Pictures of the cleaned valves were taken using a Zeiss Axioplan 2 microscope equipped with an AxioCam Mrm camera. Valve length, width and stria density of 10 valves per œ›Š’—ȱ Ž›Žȱ –ŽŠœž›Žȱ žœ’—ȱ –ŠŽ ȱ ŗǯřŝŸȱ œ˜ Š›Žǯȱ Ž—’ęȱŒŠ’˜—ȱ of the cleaned valves was based on Krammer (2000) for Pinnularia, and Krammer & Lange-Bertalot (1986) for Caloneis. Voucher slides of all natural samples and cultures are kept in the Laboratory of Protistology & Aquatic Ecology and are available upon request. To cover the wide range of morphological variation of the genus Pinnularia, a total of 48 morphologically dissimilar strains were selected for further analysis.

0RUSKRORJLFDOFKDUDFWHUL]DWLRQ The morphology of cleaned frustules was examined and photographed using both LM and scanning electron microscopy (SEM). For SEM, the oxidized material was coated with gold for 60 sec with a JEOL JFC-1200 Fine Coater and examined using a JEOL JSM-5600LV SEM. Cytological observations of plastids and pyrenoids were made on living cells of non-synchronized, exponentially growing strains using a Zeiss Axioplan 2 microscope equipped with

Morphology of Pinnularia 109 an AxioCam Mrm camera. To improve the visibility of the plastid shape and pyrenoids, Leica Confocal Laser Scanning Microscopy ǻǼȱ ŠœȱžœŽȱ˜ȱŸ’œžŠ•’£Žȱ‘ŽȱŠž˜Ěȱž˜›ŽœŒŽ—ŒŽȱ˜ȱ‘Žȱ™•Šœ’œȱ ˜ȱ ‹˜‘ȱ •’Ÿ’—ȱ Š—ȱ ŘƖȱ •žŠ›Š•Ž‘¢ŽȬęȱ¡Žȱ ŒŽ••œǯȱ ¢›Ž—˜’œȱ Ž›Žȱ œŠ’—Žȱ Šœȱ Ž¡™•Š’—Žȱ ’—ȱ Ĵȱ•ȱ ǻŗşŝŜǼȱ ’‘ȱ ŠŒ’’ęȱŽȱ £˜ŒŠ›–’—ŽȬ ȱ solution (Sigma, Germany) prepared following Gerlach (1977).

&KDUDFWHUFRGLQJ ›žœž•Žȱ Š—ȱ Œ¢˜•˜’ŒŠ•ȱ Œ‘Š›ŠŒŽ›œȱ Ž›Žȱ Œ‘˜œŽ—ȱ ‹ŠœŽȱ ˜—ȱ ęȱŸŽȱ criteria: characters must (i) show minimal variation within a taxon, (ii) be variable between taxa, (iii) be independent, (iv) be discrete, (v) be heritable (Pimentel & Riggins, 1987; Farris, 1990). Table 5.2 gives an overview of the 17 frustule and 3 plastid characters and their ›Žœ™ŽŒ’ŸŽȱŒ‘Š›ŠŒŽ›ȱœŠŽœǯȱŽœŒ›’™’˜—œȱ˜ȱ‘Žȱ’ěȱŽ›Ž—ȱŒ‘Š›ŠŒŽ›œȱ are given with comments and micrographs in Appendix 5.1-3 and terminology is based on Ross et al. (1979), Cox & Ross (1981) and Round et al. (1990). Character states were coded from simple to complex. To assign the primitive states we did not use the outgroup method (Kociolek, 1986) because the intergeneric relationships of Pinnularia and Caloneis are not clear and character states of the non- alveolate genera Sellaphora, Eolimna or Mayamaea (see molecular ˜ž›˜ž™œȱ ’—ȱ ˜žěȱ›ŽŠžȱ et al.ǰȱ œž‹–’ĴȱŽǼȱ Š›Žȱ ˜˜ȱ ’œœ’–’•Š›ȱ ›˜–ȱ those of Pinnularia to be workable. The ancestral states were thus based on the earliest known fossil material of Pinnularia described by Lohman & Andews (1968), and the same character states apply for the Middle Eocene Pinnulariaȱœ™ŽŒ’Žœȱ›Ž™˜›Žȱ’—ȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼȱŠ™Š›ȱ›˜–ȱ‘ŽȱŠ‹œŽ—ŒŽȱ˜ȱœž›ŠŒŽȱ’››Žž•Š›’’ŽœȱŠ—ȱ the cuneate apices. The taxon/character matrix is given in Table 5.3.

&ODGLVWLFDQDO\VLV Frustule characters included both “structural” features, such as type of raphe slit, extent and position of alveolus opening and girdle band areolae, which are expected to have a genetic background and thus phylogenetic value, and “non-structural” characters, such as valve outlines, shapes of hyaline areas and stria orientation, which Ž™Ž—ȱ˜—ȱ‘ŽȱŠ››Š—Ž–Ž—ȱ˜ȱ˜‘Ž›ȱǻęȱ›œȱ˜›–ŽȱŠ—ȱŽ—Ž’ŒŠ••¢ȱ constrained) valve components but are independent of the type of these valve components (e.g. stria orientation is independent of the type of stria and pore construction, but will be constrained by the ˜—˜Ž—Ž’Œȱ œŽšžŽ—ŒŽȱ ˜ȱ œ’•’ŒŠȱ Ž™˜œ’’˜—ȱ Šȱ œ™ŽŒ’ęȱŒȱ ™•ŠŒŽœǼȱ ǻ˜¡ǰȱ

110 Morphology of Pinnularia Table 5.1 Overview of the strains used in the morphological and molecular phylogenetic Š—Š•¢œŽœȱ ’‘ȱ‘Ž’›ȱ’Ž—’ęȱŒŠ’˜—ǰȱ˜›’’—ȱŠ—ȱ–˜›™‘˜–Ž›’ŒȱŒ‘Š›ŠŒŽ›’œ’Œœǯ 1 Geographic location in case the cultures were isolated by the authors from environmental œŠ–™•ŽœDzȱ’—ȱ‘Žȱ˜‘Ž›ȱŒŠœŽǰȱ‘Žȱ™Ž›œ˜—ȱ ‘˜ȱ™›˜Ÿ’Žȱ‘ŽȱŒž•ž›Žȱ’œȱ–Ž—’˜—Žǯ 2ȱ˜›™‘˜–Ž›’Œȱ–ŽŠœž›Ž–Ž—œȱ Ž›Žȱ™Ž›˜›–Žȱ˜—ȱŗŖȱ˜¡’’£Žȱœ™ŽŒ’–Ž—œȱ™Ž›ȱŒž•ž›ŽǰȱŠ—ȱ are given as average ± the standard deviation. Strain Taxon Origin1 Length Width # striae (μm)2 (μm)b per 10 μmb % F 3FIPLFURVWDXURQ $QWDUFWLF3HQLQVXOD 38.9 ± 1.4 9.9 ± 0.3 14.0 ± 0.4 (“southern – Beak Island PLFURVWDXURQ”) (B2)g10 3FIPLFURVWDXURQ $QWDUFWLF3HQLQVXOD 40.8 ± 1.2 10.7 ± 0.3 14.1 ± 0.5 (“southern – Beak Island PLFURVWDXURQ”) (FULQV D 3FIPDUFKLFD Ilka )UDQFH±/HV(FULQV 27.3 ± 0.4 5.4 ± 0.4 15.6 ± 0.7 6FK|QIHOGHU (FULQV G &DORQHLVVLOLFXOD )UDQFH±/HV(FULQV 24.2 ± 2.1 8.3 ± 0.7 20.7 ± 1.0 (Ehrenberg) Cleve (FULQV D P. borealis Ehrenberg )UDQFH±/HV(FULQV 33.0 ± 1.7 8.1 ± 0.3 5.3 ± 0.4 (QF D P. v i r i d i f o r m i s Krammer Chile – Valle de 74.9 ± 1.8 17.7 ± 0.5 8.8 ± 0.4 (QFDQWR (QF E 3DFURVSKDHULD W. Chile – Valle de 22.8 ± 1.3 10.6 ± 0.4 12.1 ± 0.3 Smith (QFDQWR (No5)j P. isselana Krammer Norway – Bergen 31.2 ± 8.4 8.3 ± 0.4 12.0 ± 0.0 (Pinn P. s p . 6XE$QWDUFWLF,OHV 11.8 ± 0.8 6.3 ± 0.3 13.8 ± 0.6 C-Noel)7 &UR]HW (Tor1)a P. neomajor Krammer Chile – Torres del 151.4 ± 3.6 24.9 ± 0.4 8.2 ± 0.4 Paine (Tor1)b P. s p . (divergens- Chile – Torres del 51.5 ± 2.1 10.4 ± 0.3 10.8 ± 0.8 group) Paine (Tor1)g P. neomajor Krammer Chile – Torres del 102.8 ± 2.6 24.7± 1.3 8.3 ± 0.5 Paine (Tor11)b 3FIDOWLSODQHQVLV Chile – Torres del 17.9 ± 0.5 4.5 ± 0.3 20.0 ± 0.0 Lange-Bertalot Paine (Tor12)d P. borealis Ehrenberg Chile – Torres del 36.8 ± 1.6 9.5 ± 0.5 5.0 ± 0.0 Paine (Tor3)a P. borealis Ehrenberg Chile – Torres del 27.3 ± 0.6 9.6 ± 0.3 6.0 ± 0.0 Paine (Tor4)i P. s p . Chile – Torres del 33.3 ± 1.3 9.4 ± 0.5 14.0 ± 0.0 Paine (Tor4)r P. s p . Chile – Torres del 42.6 ± 0.4 5.8 ± 0.3 12.4 ± 0.5 Paine 7RU F P. s p . (divergens- Chile – Torres del 88.4 ± 1.7 12.5 ± 0.4 10.4 ± 0.5 group) Paine (Tor7)f P. s p . (gibba-group) Chile – Torres del 61.2 ± 1.6 8.9 ± 0.2 10.1 ± 0.5 Paine (Tor8)b P. s p . (gibba-group) Chile – Torres del 40.0 ± 0.5 5.9 ± 0.3 11.8 ± 0.4 Paine (Tor8)d P. s p . (gibba-group) Chile – Torres del 28.2 ± 0.5 5.6 ± 0.2 12.2 ± 0.6 Paine

Morphology of Pinnularia 111 Strain Taxon Origin1 Length Width # striae (μm)2 (μm)b per 10 μmb (Val1)b 3DFURVSKDHULD W. Chile – Valdivia 45.7 ± 1.3 10.4 ± 0.3 11.3 ± 0.5 Smith (W045)b P. s p . (gibba-group) 6XE$QWDUFWLFD 37.1 ± 0.8 8.7 ± 0.2 11.2 ± 0.6 Amsterdam Island (W123)a P. s p . 6XE$QWDUFWLFD 23.5 ± 1.2 6.8 ± 0.1 13.7 ± 0.3 Amsterdam Island (Wie)a P. s p . The Netherlands – 46.7 ± 0.9 9.7 ± 0.2 12.1 ± 0.2 De Wieden :LH F 3VXEFDSLWDWD var. The Netherlands – 53.3 ± 0.6 6.3 ± 0.3 11.9 ± 0.3 elongata Krammer De Wieden (Yde1)a 3VXEFRPPXWDWD Belgium – Ter Yde 62.3 ± 2.0 11.4 ± 0.4 10.1 ± 0.2 Krammer Alka 1 P. borealis Ehrenberg Prof. A. Pouli?ková 37.4 ± 1.3 8.2 ± 0.6 4.6 ± 0.3 Cal 769 B &DORQHLVVLOLFXOD Prof. D.G. Mann 27.5 ± 2.9 10.5 ± 0.5 18.6 ± 0.5 (Ehrenberg) Cleve Cal 856 L &DORQHLVVLOLFXOD Prof. D.G. Mann 27.4 ± 3.2 8.7 ± 0.3 19.4 ± 0.5 (Ehrenberg) Cleve Cal 878 TM P. FI. isselana Krammer Prof. D.G. Mann 33.4 ± 1.1 7.4 ± 0.3 12.1 ± 0.3 Cal 890 TM &DORQHLVVLOLFXOD Prof. D.G. Mann 48.8 ± 3.7 13.0 ± 0.9 17.4 ± 0.5 (Ehrenberg) Cleve Corsea 10 3VXEFRPPXWDWD var. 6FRWODQG 50.1 ± 1.8 10.7 ± 0.1 11.8 ± 0.4 QRQIDVFLDWD Krammer Corsea 11 3VXEFRPPXWDWD var. 6FRWODQG 51.0 ± 1.8 10.7 ± 0.1 11.8 ± 0.4 QRQIDVFLDWD Krammer Corsea 2 P. neomajor Krammer 6FRWODQG 169.2 ± 1.9 28.4 ± 0.5 7.8 ± 0.3 Corsea 6 3VXEFRPPXWDWD var. 6FRWODQG 46.5 ± 2.0 11.3 ± 0.3 11.5 ± 0.5 QRQIDVFLDWD Krammer Pin 12 TM P. parvulissima Prof. D.G. Mann 33.2 ± 2.4 8.9 ± 0.2 11.4 ± 0.5 Krammer Pin 649 K P. s p . VXEFRPPXWDWD Prof. D.G. Mann 53.0 ± 3.2 11.7 ± 0.3 10.1 ± 0.2 group) Pin 650 K 3VXEDQJOLFDKrammer Prof. D.G. Mann 46.2 ± 0.3 8.2 ± 0.2 11.1 ± 0.7 Pin 706 F 3QHJOHFWLIRUPLV Prof. D.G. Mann 105.3 ± 3.9 18.5 ± 0.5 8.1 ± 0.2 Krammer Pin 867 inv P. grunowii Krammer Prof. D.G. Mann 42.2 ± 0.3 8.2 ± 0.2 11.1 ± 0.7 Pin 870 MG P. v i r i d i f o r m i s Krammer Prof. D.G. Mann 80.5 ± 2.3 16.7 ± 0.3 9.2 ± 0.3 Pin 873 TM P. s p . Prof. D.G. Mann 28.3 ± 2.8 10.2 ± 0.4 12.3 ± 0.5 Pin 876 TM 3DFXPLQDWD W. Smith Prof. D.G. Mann 38.9 ± 2.6 11.5± 0.8 10.0 ± 0.0 Pin 877 TM P. parvulissima Prof. D.G. Mann 58.3 ± 1.5 9.8 ± 0.3 10.0 ± 0.0 Krammer Pin 883 TM P. s p . VXEFRPPXWDWD Prof. D.G. Mann 63.1 ± 2.8 14.1 ± 0.1 10.3 ± 0.5 group) Pin 885 TM P. n o d o s a (Ehrenberg) Prof. D.G. Mann 42.1 ± 1.2 6.7 ± 0.2 10.0 ± 0.0 W. Smith Pin 888 MG P. n o d o s a (Ehrenberg) Prof. D.G. Mann 37.7 ± 1.5 7.3 ± 0.4 10.6 ± 0.7 W. Smith Pin 889 MG P. grunowii Krammer Prof. D.G. Mann 41.9 ± 0.8 7.9 ± 0.2 13.0 ± 0.8

112 Morphology of Pinnularia Table 5.2 Summary of the 17 frustule and 3 plastid characters and their respective character states and codes used for the cladistic analyses. cȱ›žŒž›Š•ǰȱ—˜—Ȭœ›žŒž›Š•ȱŠ—ȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›œȱ Ž›ŽȱœŽ•ŽŒŽǯȱ‘Š›ŠŒŽ›œȱ˜ȱ‘Žȱ›žœž•Žȱ ŒŠ—ȱ‹Žȱœ›žŒž›Š•ȱ˜›ȱ—˜—Ȭœ›žŒž›Š•ǯȱŽŽȱ‘ŽȱŽ¡ȱ˜›ȱž›‘Ž›ȱŽŠ’•œǯ d Descriptions of the characters and character states can be found in Appendix 5.1. e Coding refers to the code of the character states used in the cladistic analyses and mentioned in Table 5.3.

Character typec Characterd Character statesd Codinge 1 1RQVWUXFWXUDO Margins Convex 0 Parallel 1 Undulate 2 &RQVWULFWHGLQWKHPLGGOH 3 ,QÀDWHGLQWKHPLGGOH 4 2 1RQVWUXFWXUDO $SLFHV Cuneate 0 Rounded 1 Rostrate 2 Capitate 3 3 6WUXFWXUDO Path of external raphe slit Curved 0 Undulate 1 4 6WUXFWXUDO Central raphe endings Elongated drop-like 0 Round 1 Linear 2 5 6WUXFWXUDO +HOLFWRJORVVD Tongue-like 0 Hooked 1 6 6WUXFWXUDO 5DSKHFRPSOH[LW\ Simple 0 Three lines visible 1 Complex 2 7 1RQVWUXFWXUDO Axial area: relative width at Intermediate: 1/4 – 1/6 0 PLGEUDQFK Narrow: < 1/6 1 Broad: > 1/4 2 8 1RQVWUXFWXUDO Axial area: relative width at Narrow: < 1/2 0 FHQWUDOUDSKHHQGLQJV Broad: 1/2 – 1/1 1 Valve width: 1/1 2 9 1RQVWUXFWXUDO )DVFLD Absent 0 Unilateral 1 Bilateral 2 10 1RQVWUXFWXUDO Central area: shape (OOLSWLFDO 0 Diamond 1 5HFWDQJXODU 2 11 6WUXFWXUDO Ghost striae Absent 0 Present 1 12 6WUXFWXUDO 6XUIDFHLUUHJXODULWLHV Absent 0 Present 1 13 1RQVWUXFWXUDO 6WULDRULHQWDWLRQFHQWUH Radiate 0 Transverse 1 14 1RQVWUXFWXUDO Stria orientation: apex Convergent 0 Radiate 1 Transverse 2 15 6WUXFWXUDO Alveolar opening length: > 2/3 0 proportion of half valve width 2/3 – 1/4 1 < 1/4 2 16 6WUXFWXUDO $OYHRODURSHQLQJORFDWLRQ Central 0 Distal 1

Morphology of Pinnularia 113 Character typec Characterd Character statesd Codinge 17 6WUXFWXUDO Girdle bands: shape of areolae Elongate 0 Round 1 18 &\WRORJLFDO Plastid: shape Linear 0 H-shaped 1 19 &\WRORJLFDO Plastid: extension under valve Narrow 0 VXUIDFH Broad 1 20 &\WRORJLFDO Pyrenoids: number per plastid One 0 Two 1 Absent 2

Table 5.3 Taxon/character matrix of the 48 strains. The a priori determined ancestral states are given in the last line (“ancestral”).

Character Strain 1234567891011121314151617181920 % F 02000000010000000111 (B2)g10 02000000010000000111 (FULQV D 02000001210000000111 (FULQV G 01021010100011211110 (FULQV D 01000000000000000010 (QF D 11110210000000100002 (QF E 01000021000112210000 (No5)j 01120000000000100002 (Pinn CNoel)7 01000012210000000010 (Tor1)a 40110100000000100002 (Tor1)b 01000000210000000010 (Tor1)g 00110100000000100002 (Tor11)b 0102000222000000011? (Tor12)d 01000000000001000010 (Tor3)a 01000000000012000010 (Tor4)i 01000010200000000111 (Tor4)r 32000002210000000010 7RU F 41000002210000000010 (Tor7)f 01100022201000000010 (Tor8)b 33000022211000000010 (Tor8)d 01000002211000000010 (Val1)b 01000021000112210000 (Wie)a 01020000000000000111 :LH F 33100002210000000010 (Yde1)a 01120000000000100002 Cal 769 01021010000011211110 Cal 856 01021010000011211110 Cal 878 0012000000000010011?

114 Morphology of Pinnularia Character Strain 1234567891011121314151617181920 Cal 890 40021000000011211110 Corsea 10 01120000000000100002 Corsea 11 01120000000000100002 Corsea 2 41110100000000100??? Corsea 6 01120000000000100002 Pin 12 01000002211000000010 Pin 649 00110100000000100012 Pin 650 13000002211000000111 Pin 706 01110200000000100012 Pin 867 23000011211000000111 Pin 870 11110200000000100??? Pin 873 01020010000010100012 Pin 876 100200210000021000?? Pin 877 01000022201000000010 Pin 883 00110100000000100012 Pin 885 22000001201000000010 Pin 888 32000001201000000010 Pin 889 23000001210000000111 W045b 01000002211000000010 W123a 01000002210000000010 $QFHVWUDO 00000000000000000???

2010). Based on this, the morphological dataset was subdivided into three subsets: all frustule characters (characters 1-17 in Table 5.2), only structural frustule characters (3-6, 11-12, 15-17), and plastid characters (19-20), which were analysed separately and in combination. Cladistic analyses were performed in PAUP* 4.0b10 ǻ ˜ěȱ˜›ǰȱ ŘŖŖŘǼȱ žœ’—ȱ Šȱ Š¡’–ž–ȱ Š›œ’–˜—¢ȱ ǻǼȱ ‘Žž›’œ’Œȱ search with branch swapping and tree bisection-reconnection (TBR) rearrangement followed by bootstrap analysis with 1,000 replicates. All characters were unordered and unweighted. Because a large number of most parsimonious trees was recovered in all analyses, strict consensus trees were computed, together with the consistency index (CI) and retention index (RI) of these trees and the single characters. The CI measures the relative amount of homoplasy in a character or cladogram (with CI=1 for non-homoplasious characters/ cladograms), while the RI measures the amount of synapomorphy expected from a data set which is retained as synapomorphy on a cladogram (with RI=1 for strongly informative characters/ cladograms).

Morphology of Pinnularia 115 ’’˜—Š••¢ǰȱ ˜ȱ Œ‘ŽŒ”ȱ ‘Žȱ ŽěȱŽŒȱ ˜ȱ Ž¡Œ•žœ’˜—ȱ ˜ȱ —˜—Ȭ informative characters, we selected for every analysis the characters ’‘ȱŠȱ ȱǃȱśȱ˜›ȱ’ȱ‘Žȱ ȱ˜ȱ‘ŠȱŒ‘Š›ŠŒŽ›ȱ Šœȱœ–Š••Ž›ȱ‘Š—ȱśǰȱŠ—ȱ  ȱ ǃȱ śȱ Šœȱ ȃ’—˜›–Š’ŸŽȄȱ Š—ȱ žœŽȱ ‘Ž–ȱ œž‹œŽšžŽ—•¢ȱ ’—ȱ Šȱ œŽŒ˜—ȱ cladistic analysis. Afterwards, tree length, CI and RI were compared for both analyses (all characters/only informative characters) of ‘Žȱ ’ěȱŽ›Ž—ȱ Œ‘Š›ŠŒŽ›ȱ œž‹œŽœǯȱ —ȱ Š’’˜—ǰȱ ‘Žȱ  ȱ Š—ȱ  ȱ ˜ȱ ‘Žȱ morphological characters were also computed based on a molecular ›ŽŽȱ Œ˜—œ›žŒŽȱ žœ’—ȱ ęȱŸŽȱ –˜•ŽŒž•Š›ȱ –Š›”Ž›œȱ Šœȱ ŽœŒ›’‹Žȱ ’—ȱ ˜žěȱ›ŽŠžȱet al.ȱǻœž‹–’ĴȱŽǼǯ

Mantel tests To evaluate whether morphological and molecular distances ‹Ž ŽŽ—ȱ œ›Š’—œȱ Š›Žȱ œ’—’ęȱŒŠ—•¢ȱ Œ˜››Ž•ŠŽȱ Žȱ žœŽȱ Š—Ž•ȱ Žœœȱ (Mantel, 1967; Mantel & Valand, 1970). Mantel tests were computed using the ZT software tool (Bonnet & Van De Peer, 2002) with 100,000 permutations. The genetic distances of the concatenated molecular data set were derived from the most likely molecular ›ŽŽȱ‹¢ȱ›ŽŽęȱ—Ž›ȱǻ ˜‹‹ȱet al., 2004). The morphological distances between the strains were calculated as total distance by PAUP* ŚǯŖ‹ŗŖȱǻ ˜ěȱ˜›ǰȱŘŖŖŘǼȱ‹ŠœŽȱ˜—ȱ‘ŽȱŠ¡˜—ȦŒ‘Š›ŠŒŽ›ȱ–Š›’¡ȱǻŠ‹•Žȱ 5.3) for all subsets (all characters, and frustule, structural frustule and plastid characters separately and in pairwise combinations). ‘Žȱœ’—’ęȱŒŠ—ŒŽȱ•ŽŸŽ•ȱ Šœȱp=0.05.

$QFHVWUDOVWDWHUHFRQVWUXFWLRQ Ancestral state estimations were performed by Mesquite 2.73 (Maddison & Maddison, 2010). As a backbone we used the most likely molecular tree recovered by the concatenated DNA Š—Š•¢œŽœȱ ŽœŒ›’‹Žȱ ’—ȱ ˜žěȱ›ŽŠžȱ et al.ȱǻœž‹–’ĴȱŽǼȱ ’—Œ˜›™˜›Š’—ȱ all morphologically dissimilar strains per species (see Table 5.1). ‘Žȱ›ŽŽȱ Šœȱęȱ›œȱ™›ž—Žȱ˜ȱŽ•ŽŽȱ˜ž›˜ž™œȱŠ—ȱœŽšžŽ—ŒŽœȱ›˜–ȱ GenBank. In a phylogenetic tree, branch lengths are proportional to the amount of molecular evolution in the genes used to build the ›ŽŽǯȱŸŽ›ȱ‘Žȱ’ěȱŽ›Ž—ȱ‹›Š—Œ‘ŽœǰȱŸŠ›’Š’˜—œȱ’—ȱ‘Žȱ–žŠ’˜—ȱ›ŠŽȱ ’••ȱ occur. Because the genes we used in our study are not assumed to be linked to the morphological characters we investigate, this rate variation was smoothed out by constructing an ultrametric tree in which branch lengths are roughly proportional to evolutionary time instead of to amounts of molecular evolution. The original

116 Morphology of Pinnularia phylogenetic tree was therefore smoothed into an ultrametric tree using penalized likelihood (Sanderson, 2002, 2003). The same character coding was used as for the cladistic analyses, and ancestral state reconstructions were using both maximum parsimony (MP) Š—ȱ–Š¡’–ž–ȱ•’”Ž•’‘˜˜ȱǻǼȱ–Ž‘˜œȱ ’‘ȱŽŠž•ȱœŽĴȱ’—œǯ

5.3 Results 6WUDLQVHOHFWLRQ —Š•¢œŽœȱ Ž›Žȱ™Ž›˜›–Žȱ˜—ȱŚŞȱ–˜›™‘˜•˜’ŒŠ••¢ȱ’ěȱŽ›Ž—ȱœ›Š’—œǰȱŚŚȱ ˜ȱ ‘’Œ‘ȱ Ž›Žȱ’Ž—’ęȱŽȱŠœȱPinnularia and 4 as Caloneis silicula (Table 5.1, Figs 5.1-50). A total of 31 morphological species (not including varieties) were recognized, of which only 15 could be assigned to a described species. Of the remaining 16 taxa, 11 could not even be assigned to a morphologically closely resembling taxon and can be considered as undescribed species. Table 5.1 gives an overview of the œŽ•ŽŒŽȱ œ›Š’—œȱ Š—ȱ ‘Ž’›ȱ ’Ž—’ęȱŒŠ’˜—ǰȱ ˜›’’—ȱ Š—ȱ –˜›™‘˜–Ž›’Œȱ characteristics. Oxidized material of all strains is shown in Figs. 5.1- 50.

0RUSKRORJLFDOFKDUDFWHUV Table 5.2 gives an overview of the 20 selected characters and their character states. In total 17 frustule characters (Table 5.2; 1-17) and 3 cytological characters (Table 5.2; 18-20) were used and most characters had more than two character states (Table 5.2). For frustule characters, we discriminated between structural and non-structural wall characters as described above (see Materials and methods).

&ODGLVWLFDQDO\VHV All cladistic analyses resulted in a large number of most parsimonious trees, and therefore strict consensus trees (SCTs) were constructed based on these most parsimonious trees to examine the resulting ™ŠĴȱŽ›—œȱ˜ȱ›Ž•Š’˜—œ‘’™œǯȱ˜˜œ›Š™ȱŸŠ•žŽœȱŠ›Žȱ’ŸŽ—ȱ˜›ȱ‘Žȱ›ŽŒ˜ŸŽ›Žȱ clades but are in general very low. An overview of the recovered Œ•ŠŽœȱ›˜–ȱ‘Žȱ’ěȱŽ›Ž—ȱŠ—Š•¢œŽœȱ’œȱ’ŸŽ—ȱ’—ȱŠ‹•ŽȱśǯŚǯȱŽ—‘ȱ˜ȱ‘Žȱ trees, CI and RI of SCTs and characters are summarized in Table 5.5. Cladistic analysis of all characters revealed four clades in addition to a cluster containing the two stains of P. cf. microstauron (Fig. 5.51; Table 5.4). Three of the four clades corresponded closely ˜ȱ ‘Žȱ Œ•ŠŽœȱ ›ŽŒ˜ŸŽ›Žȱ ’—ȱ ‘Žȱ –˜•ŽŒž•Š›ȱ ™‘¢•˜Ž—¢ȱ ǻ˜žěȱ›ŽŠžȱ et

Morphology of Pinnularia 117 118 Morphology of Pinnularia Figs 5.1-34 Oxidized material of the strains used for the cladistic analyses and reconstruction ˜ȱ‘Žȱ–˜•ŽŒž•Š›Ȭ™‘¢•˜Ž—Ž’Œȱ›ŽŽǯȱ’œȱŗȬŜȱœ‘˜ ȱœ›Š’—œȱ˜ȱ•ŠŽȱǯȱ’œȱŝȬŘśȱœ‘˜ ȱœ›Š’—œȱ ˜ȱ•ŠŽȱǰȱ ‘’Œ‘ȱ’œȱœž‹’Ÿ’Žȱ’—˜ȱ‘ŽȱȃgrunowiiȄȬŒ•ŠŽȱǻ’œȱŝȬŗŗǼǰȱ‘ŽȱȃnodosaȄȬŒ•ŠŽȱ ǻ’œȱŗŘȬŗśǼȱŠ—ȱ‘ŽȱȃsubgibbaȄȬŒ•ŠŽȱǻ’œȱŗŝȬŘśǼǯȱ’œȱŘŞȬřŚȱœ‘˜ ȱ˜—Žȱ™Š›ȱ˜ȱ‘Žȱœ›Š’—œȱ ˜ȱ•ŠŽȱǰȱ‹Ž•˜—’—ȱ˜ȱ‘Žȱȃborealis-microstauronȄȬŒ•ŠŽȱǻ’œȱŘşȬřřǼȱŠ—ȱ ˜ȱœ’—•Žȱ •’—ŽŠŽœȱǻ’œȱŘŞǰȱřŚǼǯȱ’œȱŘŜȬŘŝȱŠ›Žȱ›Š ’—œȱ˜ȱ‘ŽȱŸŠ•ŸŽȱŠ—ȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›œȱ˜ȱ‘Žȱ ancestral Pinnularia resulting from ancestral state reconstruction (ASR) (see text). ’ǯȱ ŗǯȱ Pinnularia sp. (divergensȬ›˜ž™Ǽȱ ǻ˜›ŝǼŒǯȱ ’ǯȱ Řǯȱ Pinnularia sp. (divergensȬ ›˜ž™Ǽȱǻ˜›ŗǼ‹ǯȱ’ǯȱřǯȱCaloneis siliculaȱǻŠ•ȱŞşŖǼǯȱ’ǯȱŚǯȱCaloneis siliculaȱǻŠ•ȱŝŜşǼǯȱ ’ǯȱśǯȱCaloneis siliculaȱǻŠ•ȱŞśŜǼǯȱ’ǯȱŜǯȱCaloneis siliculaȱǻŚǼǯȱ’ǯȱŝǯȱPinnularia subanglicaȱǻ’—ȱŜśŖǼǯȱ’ǯȱŞǯȱPinnularia sp.ȱǻ˜›ŚǼ’ǯȱ’ǯȱşǯȱPinnularia cf. marchica ǻŒ›’—œŚǼŠǯȱ’ǯȱŗŖǯȱPinnularia grunowiiȱǻ’—ȱŞŜŝǼǯȱ’ǯȱŗŗǯȱPinnularia grunowii (Pin ŞŞşǼǯȱ’ǯȱŗŘǯȱPinnularia acrosphaeiraȱǻ—ŒŘǼ‹ǯȱ’ǯȱŗřǯȱPinnularia acrosphaeria (Val1) ‹ǯȱ’ǯȱŗŚǯȱPinnularia nodosaȱǻ’—ȱŞŞśǼǯȱ’ǯȱŗśǯȱPinnularia nodosaȱǻ’—ȱŞŞŞǼǯȱ’ǯȱŗŜǯȱ Pinnularia subcapitata var. elongateȱǻ’ŽǼŒǯȱ’ǯȱŗŝǯȱPinnularia sp.ȱǻ˜›ŚǼ›ǯȱ’ǯȱŗŞǯȱ Pinnularia sp. ǻ’——ȱ Ȭ˜Ž•Ǽŝǯȱ ’ǯȱ ŗşǯȱ Pinnularia sp. ǻŗŘřǼŠǯȱ ’ǯȱ ŘŖǯȱ Pinnularia sp. (subgibbaȬ›˜ž™Ǽȱǻ˜›ŞǼ‹ǯȱ’ǯȱŘŗǯȱPinnularia sp. (subgibbaȬ›˜ž™Ǽȱǻ˜›ŞǼǯȱ’ǯȱ 22. Pinnularia sp. (subgibbaȬ›˜ž™Ǽȱǻ˜›ŝǼǯȱ’ǯȱŘřǯȱPinnularia sp. (subgibbaȬ›˜ž™Ǽȱ ǻŖŚśǼ‹ǯȱ ’ǯȱ ŘŚǯȱ Pinnularia sp. (subgibbaȬ›˜ž™Ǽȱ ǻ’—ȱ ŗŘǼǯȱ ’ǯȱ Řśǯȱ Pinnularia sp. (subgibbaȬ›˜ž™Ǽȱ ǻ’—ȱ ŞŝŝǼǯȱ ’ǯȱ ŘŜǯȱ ›Š ’—ȱ ˜ȱ ‘Žȱ ŸŠ•ŸŽȱ Œ‘Š›ŠŒŽ›œȱ ˜ȱ Šȱ ‘¢™˜‘Ž’ŒŠ•ȱ ancestral Pinnulariaǰȱ Šœȱ Žœ’–ŠŽȱ ‹¢ȱǯȱ ’ǯȱ Řŝǯȱ ›Š ’—ȱ ˜ȱ ‘Žȱ ™•Šœ’ȱ Œ‘Š›ŠŒŽ›œȱ of a hypothetical ancestral Pinnulariaǰȱ Šœȱ Žœ’–ŠŽȱ ‹¢ȱ ǯȱ ’ǯȱ ŘŞǯȱ Pinnularia cf. altiplanensisȱǻ˜›ŗŗǼ‹ǯȱ’ǯȱŘşǯȱPinnularia cf. microstauronȱǻŘǼŒǯȱ’ǯȱřŖǯȱPinnularia cf. microstauronȱ ǻŘǼŗŖǯȱ ’ǯȱ řŗǯȱ Pinnularia borealisȱ ǻ˜›řǼŠǯȱ ’ǯȱ řŘǯȱ Pinnularia borealisȱǻŒ›’—œŝǼŠǯȱ’ǯȱřřǯȱPinnularia borealisȱǻ˜›ŗŘǼǯȱ’ǯȱřŚǯȱPinnularia sp. (Wie) a. Scale bar represents 10 μm.

Morphology of Pinnularia 119 120 Morphology of Pinnularia Figs 5.35-50 Oxidized material of the strains used for the cladistic analyses and ›ŽŒ˜—œ›žŒ’˜—ȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›Ȭ™‘¢•˜Ž—Ž’Œȱ›ŽŽǰȱœ‘˜ ’—ȱ‘Žȱœ›Š’—œȱ‹Ž•˜—’—ȱ˜ȱ•ŠŽȱǯȱ ’œȱřśȬŚŗȱœ‘˜ ȱœ›Š’—œȱ›˜–ȱ‘Žȱœž‹Œ•ŠŽȱȃsubcommutataȄǰȱ’ǯȱŚŘȱœ‘˜ œȱP. acuminataǰȱ Š—ȱ’œȱŚřȬśŖȱœ‘˜ ȱœ›Š’—œȱ›˜–ȱ‘Žȱœž‹Œ•ŠŽȱȃviridiformisȄǯȱ’ǯȱřśǯȱPinnularia sp. (Pin ŞŝřǼǯȱ’ǯȱřŜǯȱPinnularia cf. isselanaȱǻŠ•ȱŞŝŞǼǯȱ’ǯȱřŝǯȱPinnularia subcommutata var. nonfasciataȱǻ˜›œŽŠȱŗŖǼǯȱ’ǯȱřŞǯȱPinnularia subcommutata var. nonfasciata (Corsea ŗŗǼǯȱ’ǯȱřşǯȱPinnularia subcommutata var. nonfasciataȱǻ˜›œŽŠȱŜǼǯȱ’ǯȱŚŖǯȱPinnularia isselanaȱ ǻ˜śǼ“ǯȱ ’ǯȱ Śŗǯȱ Pinnularia subcommutataȱ ǻŽŗǼŠǯȱ ’ǯȱ ŚŘǯȱ Pinnularia acuminataȱǻ’—ȱŞŝŜǼǯȱ’ǯȱŚřǯȱPinnularia sp. (subcommutataȬ›˜ž™Ǽȱǻ’—ȱŞŞřǼǯȱ’ǯȱŚŚǯȱ Pinnularia sp. (subcommutataȬ›˜ž™Ǽȱǻ’—ȱŜŚşǼǯȱ’ǯȱŚśǯȱPinnularia neglectiformis ǻ’—ȱŝŖŜǼǯȱ’ǯȱŚŜǯȱPinnularia viridiformisȱǻ’—ȱŞŝŖǼǯȱ’ǯȱŚŝǯȱPinnularia viridiformis ǻ—ŒŘǼŠǯȱ’ǯȱŚŞǯȱPinnularia neomajorȱǻ˜›ŗǼǯȱ’ǯȱŚşǯȱPinnularia neomajor (Tor1)a. ’ǯȱśŖǯȱPinnularia neomajor (Corsea 2). Scale bars represent 10 μm.

Morphology of Pinnularia 121 œ›Š’—œȱ characters ȱŽ›Ž—ȱ–˜›™‘˜•˜’ŒŠ•ȱ Structural + plastid taxa only 2 -Pin876 -Pin873, x -Pin870, characters xxxx xxxx -Pin876 Structural frustule -Pin873, x -Pin870, Plastid characters x -Cal878 x x taxa only 2 ȱ›Žœž•’—ȱ›˜–ȱ‘Žȱȱ‘Žž›’œ’ŒȱŠ—Š•¢œŽœȱ‹ŠœŽȱ˜—ȱ‘Žȱ’ě x x x taxa only 2 xxxx xxxx xx (+Wiea)x xx xxx All characters Frustule characters x -Tor4i [7RUF All char. Inform. All char. Inform. All char. All char. Inform. All char. Inform. ´FODGH ´FODGH ´VXEFODGH ´FODGH ´FODGH ´FODGH ´VXEFODGH ȱŽǼǯȱ—ȱȃ¡ȄȱŽœ’—ŠŽœȱ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱŠ••ȱŠ¡Šȱǻœ‘ŠŽȱ’—ȱŠ›”ȱ›Ž¢Ǽǯȱ›ŽœŽ—ŒŽȱ˜ȱŠ’’˜—Š•ȱœ›Š’—œȱǻȃ¡ȱƸȄǼȱŠ—ȱŠ‹œŽ—ŒŽȱ˜ȱ

&VLOLFXOD P. n o d o s a borealis P.

grunowii divergens 3DFURVSKDHULD subgibba 3PLFURVWDXURQ “ “ “ Molecular clades Character subset viridiformis “ VXEFRPPXWDWD

DFURVSKDHULDQRGRVD “ “ et al. ȱǻœž‹–’Ĵ

VXEFRPPXWDWDDFXPLQDWDYLULGLIRUPLV ȱ›ŽŠžȱ “ Table 5.4 ȱŸŽ›Ÿ’Ž ȱ˜ȱ‘ŽȱŒ•ŠŽœȱ›ŽŒ˜ŸŽ›Žȱ’—ȱ‘Žȱœ›’ŒȱŒ˜—œŽ—œžœȱ›ŽŽœTable œž‹œŽœȱǻŠ••ȱŒ‘Š›ŠŒŽ›œǰȱ›žœž•ŽȱŒ‘Š›ŠŒŽ›œǰȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›œǰȱœ›žŒž›Š•ȱ›žœž•ŽȱŒ‘Š›ŠŒŽ›œǰȱœ›žŒž›Š•ȱ›žœž•ŽȱƸȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›œǼȱ ‘Ž—ȱŠ—Š•¢£’—ȱ characters (Inform.). The morphological clades are compared with the molecular of all selected characters (All char.) or only the “informative” ˜žě (“x –“) compared to the molecular clades is indicated by light grey shading.

122 Morphology of Pinnularia al.ǰȱ œž‹–’ĴȱŽǼȱ Š—ȱ Ž›Žȱ Ž›–Žȱ ‘Žȱ ȃgrunowii”, “œž‹Œ˜––žŠŠȬ ŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” and “subgibba” clade, respectively. The “grunowii” clade contained smaller strains with H-shaped plastids while the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade contained the more robust Pinnularia’s. The “subgibba” clade contained the “subgibba”-like Pinnularia’s, smaller Pinnularia’s characterized by ghost striae, together with (Tor7)c and P. nodosa which were placed separately in the molecular phylogeny. The “œ’•’Œž•ŠȬŠŒ›˜œ™‘ŠŽ›’Š” clade contained Caloneis silicula and P. acrosphaeria and was never recovered as a single clade in the molecular phylogeny. When plastid characters were left out of the analysis (Fig. 5.52; Table 5.4), the “grunowii” and “subgibba” clades were not recovered, and (Wie)a was included in the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade. Analysis of structural characters only (Fig. 5.53; Table 5.4) resulted in the “œ’•’Œž•ŠȬŠŒ›˜œ™‘ŠŽ›’Š” and “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬ viridiformis” clade, but without Pin870 and Pin873. Interestingly, a “viridiformis”-subclade (identical to the molecular “viridiformis” subclade) was found inside this clade, separating the “viridiformis” strains from the “subcommutata” strains. Analysis of the structural and plastid characters only revealed the “œ’•’Œž•ŠȬŠŒ›˜œ™‘ŠŽ›’Š” clade, and no clades were formed when using the three plastid characters only (Figs not shown).

&KDUDFWHUVVXSSRUWLQJWKHPRUSKRORJLFDOFODGHV The “grunowiiȄȱ Œ•ŠŽȱ ǽ ’‘˜žȱ ǻ˜›ŚǼ’ȱ Œ˜–™Š›Žȱ ˜ȱ ‘Žȱ –˜•ŽŒž•Š›ȱ Œ•ŠŽǾȱ Šœȱœž™™˜›Žȱ‹¢ȱŠȱ‹’•ŠŽ›Š•ȱŠœŒ’ŠǰȱŠȱ’Š–˜—Ȭœ‘Š™ŽȱŒŽ—›Š•ȱ area and H-shaped plastids with two pyrenoids, none of which were synapomorphies. This clade disappears when plastid characters are discarded, indicating the importance of these characters to recover the relationship. The same applies to the “subgibba” clade (+ (Tor7) c and P. nodosa compared to the molecular clade) which was partly supported by a bilateral fascia, but also by linear plastids having each a single . The two other clades were supported by structural characters and were therefore also recovered when plastid or non-structural Œ‘Š›ŠŒŽ›œȱ Ž›Žȱ ˜–’ĴȱŽǯȱ ‘Žȱ ȃœ’•’Œž•ŠȬŠŒ›˜œ™‘ŠŽ›’Š” clade was characterized by a transverse orientation of the apical striae and the synapomorphic small, distal opening of the alveoli. The characters supporting the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade were ‘Žȱž—ž•ŠŽȱŽ¡Ž›—Š•ȱ›Š™‘Žȱęȱœœž›Žǰȱ‘Žȱ—˜—Ȭ›˜™Ȭ•’”ŽȱŒŽ—›Š•ȱ›Š™‘Žȱ endings, the intermediate length of the alveolar opening, and the

Morphology of Pinnularia 123 Fig. 5.51 Strict consensus tree (SCT) from the most parsimonious trees of the cladistic Š—Š•¢œ’œȱ‹ŠœŽȱ˜—ȱŠ••ȱŘŖȱ–˜›™‘˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›œǰȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ‘Žȱ›Žœ˜•ŸŽȱŒ•ŠŽœǯȱ ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱŠ’’˜—Š•ȱœ›Š’—œǰȱ˜›ȱŠ‹œŽ—ŒŽȱ˜ȱœ›Š’—œǰȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱŒ•ŠŽœȱ’œȱ noted on the right of the cladogram and indicated by a star (*) on the tree.

124 Morphology of Pinnularia Fig. 5.52 Strict consensus tree (SCT) from the most parsimonious trees of the cladistic Š—Š•¢œ’œȱ ‹ŠœŽȱ ˜—ȱ ‘Žȱ ŗŝȱ ›žœž•Žȱ Œ‘Š›ŠŒŽ›œǰȱ ’‘ȱ ’—’ŒŠ’˜—ȱ ˜ȱ ‘Žȱ ›Žœ˜•ŸŽȱ Œ•ŠŽœǯȱ ‘Žȱ ™›ŽœŽ—ŒŽȱ˜ȱŠ’’˜—Š•ȱœ›Š’—œǰȱ˜›ȱŠ‹œŽ—ŒŽȱ˜ȱœ›Š’—œǰȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱŒ•ŠŽœȱ’œȱ noted on the right of the cladogram and indicated by a star (*) on the tree.

Morphology of Pinnularia 125 Fig. 5.53 Strict consensus tree (SCT) from the most parsimonious trees of the cladistic Š—Š•¢œ’œȱ‹ŠœŽȱ˜—ȱ‘Žȱşȱœ›žŒž›Š•ȱ›žœž•ŽȱŒ‘Š›ŠŒŽ›œǰȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ‘Žȱ›Žœ˜•ŸŽȱŒ•ŠŽœǯȱ ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱŠ’’˜—Š•ȱœ›Š’—œǰȱ˜›ȱŠ‹œŽ—ŒŽȱ˜ȱœ›Š’—œǰȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱŒ•ŠŽœȱ’œȱ noted on the right of the cladogram and indicated by a star (*) on the tree.

126 Morphology of Pinnularia absence of pyrenoids. Because all these characters, except for pyrenoids, were structural characters, this clade is also supported in the cladistic analysis of those characters. Support for the “viridiformis” subclade in the structural character analysis resulted from the synapomorphic round central raphe endings, undulate Ž¡Ž›—Š•ȱ›Š™‘Žȱęȱœœž›ŽœȱŠ—ȱŒ˜–™•Ž¡ȱ›Š™‘Žœȱ˜›ȱ›Š™‘Žœȱ ’‘ȱřȱŸ’œ’‹•Žȱ lines.

(IIHFWRIGHOHWLQJQRQLQIRUPDWLYHFKDUDFWHUV Š‹•Žȱśǯśȱœž––Š›’£Žœȱ‘Žȱ ȱŠ—ȱ ȱ˜ȱ‘Žȱ’ěȱŽ›Ž—ȱŒ‘Š›ŠŒŽ›œȱ›˜–ȱ all analyses. Because none of the plastid characters was recovered as ȃ’—˜›–Š’ŸŽȄȱ’—ȱ‘Žȱęȱ›œȱŠ—Š•¢œ’œȱ‹ŠœŽȱ˜—ȱ‘Žȱ ȱŠ—ȱ ǰȱŠȱœž‹œŽšžŽ—ȱ analysis including only “informative” characters was impossible. In all analyses the most informative characters (CI=1, RI=1) were the helictoglossa, surface irregularities, alveolus opening and location, and girdle band areolae, all structural frustule characters. Stria orientation and the number of pyrenoids had a CI of 0.5. The CI of all other characters was lower than 0.5. However, selecting only the more “informative” characters based on the CI and RI had a negative ’—ĚȱžŽ—ŒŽȱ ˜—ȱ ‘Žȱ —ž–‹Ž›ȱ ˜ȱ Œ•ŠŽœȱ ˜‹Š’—Žȱ ǻŠ‹•Žȱ śǯŚǼǰȱ ™›˜‹Š‹•¢ȱ partly due to the even lower number of characters included in the analysis. This shows that characters with low CI and RI can still make a valuable contribution to the recovery of relationships. When analyzing the morphological character matrix using the ˜™˜•˜¢ȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱ›ŽŽǰȱŒ‘Š›ŠŒŽ›œȱ ’‘ȱŠȱ ȱǃȱŖǯśȱ Ž›ŽȱŠŠ’—ȱ‘Žȱ helictoglossa, surface irregularities, alveolus opening and location, girdle band areolae and number of pyrenoids, but additionally also central raphe endings, raphe complexity and fasciae. Again, most of these features are structural characters. Note that stria orientation had a low CI when based on the molecular tree topology, and that the molecular topology was much less parsimonious (see the higher tree length in Table 5.5) and thus contained many more changes in character states of the morphological characters over the tree, compared to the MPTs resulting from the maximally parsimonious cladistic analyses (Table 5.5).

$QFHVWUDOVWDWHUHFRQVWUXFWLRQ Fig. 5.54 shows ultrametric molecular phylogenies on which the Œ‘Š›ŠŒŽ›ȱ œŠŽœȱ ˜›ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ –˜›™‘˜•˜’ŒŠ•ȱ Œ‘Š›ŠŒŽ›œȱ Š›Žȱ ™•˜ĴȱŽǰȱ ˜Ž‘Ž›ȱ ’‘ȱ ‘Žȱ ™›˜‹Š‹•Žȱ œŠŽœȱ ǻǼȱ ˜ȱ ‘Žȱ Š—ŒŽœ›Š•ȱ

Morphology of Pinnularia 127 $OOFKDUDFWHUV )UXVWXOHFKDUDFWHUV &KDUDFWHU1/tree All7 Inf.8 Mol.9 Allg Inf.h Mol.i CI RI CI RI CI RI CI RI CI RI CI RI 1 margins 0.3 0.1 0.3 0.1 0.3 0.0 0.3 0.1 DSLFHV 0.2 0.3 0.2 0.3 0.2 0.1 0.2 0.3 3 ext. raphe path 0.2 0.7 0.2 0.7 0.3 0.8 0.2 0.7 0.3 0.9 0.3 0.8 FHQWUDOUDSKHHQGLQJV 0.2 0.5 0.4 0.9 0.5 0.9 0.2 0.6 0.4 0.9 0.5 0.9 KHOLFWRJORVVDH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 UDSKHFRPSOH[LW\ 0.3 0.0 0.5 0.7 0.3 0.0 0.5 0.7 D[LDODUHDPLGEUDQFK 0.2 0.3 0.2 0.1 0.2 0.3 0.2 0.1 D[LDODUHDFHQWUDO 0.3 0.7 0.1 0.3 0.3 0.7 0.2 0.4 0.3 0.7 IDVFLD 0.3 0.8 0.2 0.7 0.5 0.9 0.3 0.8 0.2 0.7 0.5 0.9 FHQWUDODUHD 0.3 0.7 0.2 0.4 0.2 0.6 0.2 0.6 0.2 0.4 0.2 0.6 11 ghost striae 0.1 0.3 0.2 0.6 0.1 0.2 0.2 0.9 VXUIDFHLUUHJXODULWLHV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 VWULDHFHQWUDO 0.5 0.9 0.5 0.9 0.3 0.6 0.5 0.9 0.5 0.9 0.3 0.6 14 striae apex 0.5 0.7 0.5 0.7 0.4 0.6 0.5 0.7 0.5 0.7 0.4 0.6 15 alveolar opening 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 0.7 1.0 DOYHRODUORFDWLRQ 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 0.8 17 girdle areolae 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 18 plastid shape 0.2 0.6 0.1 0.2 0.2 0.7 19 plastid extension 0.1 0.3 0.3 0.8 20 pyrenoid number 0.5 0.9 0.2 0.6 0.7 0.9 SCT10 0.3 0.6 0.3 0.7 --0.3 0.6 0.3 0.7 -- MPT11’s 0.4 0.8 0.5 0.9 0.3 0.7 0.5 0.8 0.6 0.9 0.3 0.7 SCTi: length 119 79 - 114 79 - MPTk’s: length 80 41 105 66 26 94

Table 5.5 Summary of the CI and RI values of the morphological characters based on the œ›’ŒȱŒ˜—œŽ—œžœȱ›ŽŽœǰȱŠ—ȱ ǰȱ ȱŠ—ȱ•Ž—‘ȱ˜ȱ‘Žȱœ›’ŒȱŒ˜—œŽ—œžœȱ›ŽŽȱǻǼȱŠ—ȱ–˜œȱ ™Š›œ’–˜—’˜žœȱ›ŽŽœȱǻȂœǼȱ˜›ȱŠ••ȱŒ•Š’œ’ŒȱŠ—Š•¢œŽœǰȱœž‹œŽœȱ˜ȱŒ‘Š›ŠŒŽ›œȱŠ—ȱžœ’—ȱŠ••ȱ Œ‘Š›ŠŒŽ›œȱǻŠ••ȱŒ‘Š›ǯǼȱ˜›ȱ˜—•¢ȱ‘Žȱ’—˜›–Š’ŸŽȱŒ‘Š›ŠŒŽ›œȱǻ’—˜›–Š’ŸŽȱŒ‘Š›ǯǼǰȱŠ—ȱ‹ŠœŽȱ˜—ȱ ‘Žȱ˜™˜•˜¢ȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱ™‘¢•˜Ž—¢ȱǻ–˜•ŽŒž•Š›ȱ›ŽŽǼǯȱŠ•žŽœȱǃȱŖǯśȱŠ›Žȱ’ŸŽ—ȱ’—ȱ‹•ŠŒ”ȱŠ—ȱ boldǰȱŸŠ•žŽœȱǀȱŖǯśȱŠ›Žȱ’ŸŽ—ȱ’—ȱ›Ž¢ǯȱ™Ž—ȱœ™ŠŒŽœȱŽœ’—ŠŽȱŒ‘Š›ŠŒŽ›œȱ‘Šȱ Ž›Žȱ—˜ȱžœŽȱ ’—ȱ‘Žȱ›Žœ™ŽŒ’ŸŽȱœž‹œŽœǯȱ’‘Ȭ›Ž¢ȱœ‘Š’—ȱ’—’ŒŠŽœȱŒ‘Š›ŠŒŽ›œȱ‘Šȱ Ž›Žȱ—˜ȱ’—˜›–Š’ŸŽȱ and were excluded during subsequent analyses using informative characters only. Ŝ See Table 5.2 and Appendix 5.1 for more information on the characters.

128 Morphology of Pinnularia 6WUXFWXUDOIUXVWXOHFKDUDFWHUV 3ODVWLGFKDUDFWHUV 6WUXFWXUDOSODVWLGFKDUDFWHUV Allg Inf.h Mol.i Allg Mol.i Allg Inf.h Mol.i CI RI CI RI CI RI CI RI CI RI CI RI CI RI CI RI

0.3 0.9 0.5 0.9 0.3 0.8 0.1 0.0 0.3 0.8 0.3 0.8 0.3 0.8 0.5 0.9 0.1 0.2 0.5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.7 0.5 0.7 0.5 0.7 0.3 0.0 0.5 0.3

0.1 0.0 0.2 0.6 0.1 0.0 0.2 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.5 0.9 0.5 0.9 0.7 1.0 0.1 0.2 0.7 0.6 1.0 1.0 1.0 1.0 0.5 0.8 0.5 0.8 1.0 1.0 0.5 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.0 0.2 0.7 0.1 0.2 0.2 0.1 0.1 0.0 0.3 0.8 0.1 0.1 0.3 0.3 0.1 0.0 0.7 0.9 0.1 0.0 0.7 0.6 0.4 0.8 0.5 0.9 --0.1 0.0 --0.1 0.2 1.0 1.0 -- 0.8 1.0 0.8 1.0 0.5 0.8 0.8 1.0 0.4 0.8 0.6 0.9 1.0 1.0 0.4 0.8 32 21 - 44 - 116 4 - 15132551126436

7ȱ••ƽȱ••ȱ Œ‘Š›ŠŒŽ›œȱ ‹Ž•˜—’—ȱ ˜ȱ ‘Žȱ Š‹˜ŸŽȬ–Ž—’˜—Žȱ Œ‘Š›ŠŒŽ›ȱ œž‹œŽȱ Ž›Žȱ ’—Œ•žŽȱ during the cladistic analysis 8 Inf.= Informative characters; only the informative characters (based on the CI and RI of the Š—Š•¢œ’œȱ ’‘ȱŠ••ȱŒ‘Š›ŠŒŽ›œȱ˜ȱ‘Žȱœ™ŽŒ’ęȱŒȱœž‹œŽǼȱ Ž›Žȱ’—Œ•žŽȱž›’—ȱ‘ŽȱŒ•Š’œ’ŒȱŠ—Š•¢œ’œ şȱ˜•ǯƽȱ˜•ŽŒž•Š›ȱ›ŽŽDzȱ‘Žȱ˜™˜•˜¢ȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱ›ŽŽȱ˜ȱ˜žěȱ›ŽŠžȱet al.ȱǻœž‹–’ĴȱŽǼȱ Šœȱ žœŽȱ˜ȱŽŽ›–’—Žȱ‘Žȱ ȱŠ—ȱ ȱŸŠ•žŽœȱ˜ȱ‘Žȱ’ěȱŽ›Ž—ȱ–˜›™‘˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›œ 10ȱƽȱ›’ŒȱŒ˜—œŽ—œžœȱ›ŽŽǰȱ11 MPT= Most parsimonious tree

Morphology of Pinnularia 129 nodes. Based on the ancestral state reconstruction (ASR) using both MP and LM, ancestral Pinnularia (see Figs 5.26-27) had valves with convex margins and rounded apices, a simple raphe with curved external path with elongated central raphe endings, an intermediate width axial area mid-branch, but narrow axial area by the central raphe endings. The central area was elliptical and a bilateral fascia was present, without ghost striae or surface irregularities. Striae were radiate at the centre, convergent near the apices, with large internal alveolar openings. The helictoglossa was simple, tongue- like and the girdle bands had elongated areolae. Plastids would have been linear with broad extensions and one pyrenoid per plastid (Fig. 5.27). These recovered ancestral states were also estimated a priori by us as being the primitive frustule character states (see Table 5.2 and 5.3) based on the morphology of the fossils reported by Lohman & Andrews (1968), except for the rounded apices and the presence of a fascia. Most of the fossil species of Lohman & Andrews (1968) had cuneate apices rather than rounded ones and no fascia, however, both alternative character states were also present in a single species. The fossil Pinnularia reported as being the earliest representative ˜ȱ‘ŽȱŽ—žœȱŒž››Ž—•¢ȱ›ŽŒ˜ŸŽ›Žȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼȱŠ•œ˜ȱ lacked a fascia and even had rostrate rather than rounded apices, and surface irregularities. Based on this ASR, most of the character states evolved multiple times during the evolution of Pinnularia, while other character states evolved only once, thereby often characterizing a single molecular clade. Of the 20 characters studied, only 8 contained character states which evolved once in the present phylogeny (central raphe endings, helictoglossae, girdle band areolae, surface irregularities, raphe complexity, length and location of alveolus openings, and pyrenoids). Round central raphe endings were synapomorphic for the “viridiformis” clade (Fig. 5.54, character 4), while linear central raphe endings evolved at the base of the cluster containing the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade, (Wie)a and (Tor11)b. Caloneis silicula also has linear central raphe endings, but note that ‘’œȱ•’—ŽŠ›’¢ȱŒ˜—›Šœœȱ ’‘ȱ‘Žȱęȱ›œȱ–Ž—’˜—Žȱ•’—ŽŠ›ȱ›Š™‘ŽȱŽ—’—œȱ (SEM photographs: Appendix 2, n-n´). Hooked helictoglossae and round girdle band areolae were synapomorphic for Caloneis silicula, while the presence of surface irregularities only evolved in P. acrosphaeria (Figs not shown). Raphes with three parallel lines visible in LM (Appendix 5.2, r) or three twisting lines (complex raphe, Appendix 5.2, s) evolved

130 Morphology of Pinnularia once at the base of the “viridiformis” clade (Fig. 5.54, character 6). However, the complex, twisting raphe structure evolved multiple times within this clade. Because we also observed raphes with a complex, twisting structure and with three parallel lines within monoclonal strains, those two characters states are probably part of a continuum and should be regarded as a single character. Intermediate alveolus openings were synapomorphic for the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade (Fig. 5.54, character 15), while small and distantly located alveolar openings occurred in both P. acrosphaeria and C. silicula. Also the absence of pyrenoids evolved at the base of the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade (Fig. 5.54, characters 20).

Mantel tests Mantel tests between the morphological pairwise distance matrices Š—ȱ‘Žȱ–˜•ŽŒž•Š›ȱ’œŠ—ŒŽȱ–Š›’ŒŽœȱ›ŽŸŽŠ•Žȱœ’—’ęȱŒŠ—ȱŒ˜››Ž•Š’˜—œȱ between the datasets (p=0.00001) for all morphological subsets.

5.4 Discussion Independent phylogenetic analyses of molecular and morphological ŠŠȱ ›˜–ȱ ŚŞȱ –˜›™‘˜•˜’ŒŠ••¢ȱ ’ěȱŽ›Ž—ȱ œ›Š’—œȱ ˜ȱ ‘Žȱ Ž—Ž›Šȱ Pinnularia and Caloneis recovered similar clades, and morphological Š—ȱ –˜•ŽŒž•Š›ȱ ’œŠ—ŒŽœȱ Ž›Žȱ œ’—’ęȱŒŠ—•¢ȱ Œ˜››Ž•ŠŽǯȱ ˜ ŽŸŽ›ǰȱ ‘’•Žȱ ™‘¢•˜›Š–œȱ ‹ŠœŽȱ ˜—ȱ ęȱŸŽȱ –˜•ŽŒž•Š›ȱ –Š›”Ž›œȱ Ž›Žȱ Š•–˜œȱ ž••¢ȱ ›Žœ˜•ŸŽȱ ǻ˜žěȱ›ŽŠžȱ et al.ǰȱ œž‹–’ĴȱŽǼǰȱ –˜›™‘˜•˜’ŒŠ•ȱ ŠŠȱ generated fewer clades, due to the lower number of phylogenetically informative characters compared to the molecular data, and was —ŽŸŽ›ȱŠ‹•Žȱ˜ȱž••¢ȱ›Žœ˜•ŸŽȱ‘Žȱ’—Ž›œ™ŽŒ’ęȱŒȱ›Ž•Š’˜—œ‘’™œȱ˜ȱPinnularia. ‘Žȱ™‘¢•˜›Š–œȱ’ŸŽȱ’—œ’‘ȱ’—˜ȱ‘Žȱ™‘¢•˜Ž—Ž’Œȱ™ŠĴȱŽ›—œȱ˜ȱ‘Žȱ ’ěȱŽ›Ž—ȱŒ‘Š›ŠŒŽ›œȱœŠŽœȱŠ—ǰȱ ‘’•Žȱ™›Ž˜–’—Š—•¢ȱ—˜—Ȭœ›žŒž›Š•ȱ frustule characters were found to be homoplasious, several œ›žŒž›Š•ȱ Š—ȱ ™•Šœ’ȱ Œ‘Š›ŠŒŽ›œȱ œ‘˜ Žȱ Šȱ ™‘¢•˜Ž—Ž’Œȱ ™ŠĴȱŽ›—ȱ Š—ȱ Ž›Žȱ ‘Ž›Ž˜›Žȱ ’—˜›–Š’ŸŽȱ ’—ȱ ›ŽŒ˜—œ›žŒ’—ȱ ‘Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ relationships. However, excluding the characters with low CI and RI in a subsequent analysis did not improve the resolution of the phylogeny. Inferences of the most likely ancestral states of characters ’—ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ Œ•ŠŽœȱ ˜ȱ Pinnularia are fairly congruent with the currently known sequence of appearances in the fossil record. Our molecular and morphological datasets supported similar clades. Most of the clades retrieved by the morphological data were

Morphology of Pinnularia 131 Fig. 5.54ȱ•›Š–Ž›’Œȱ›ŽŽœȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›Ȭ™‘¢•˜Ž—Ž’Œȱ›ŽŽȱŒ˜—œ›žŒŽȱŠœȱŽœŒ›’‹Žȱ’—ȱ ˜žěȱ›ŽŠžȱet al.ȱǻœž‹–’ĴȱŽǼȱžœ’—ȱŗŞǰȱŘŞǰȱrbcǰȱpsbA and coxŗǰȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ‘Žȱ ancestral state reconstruction of 18 of the 20 morphological characters using maximum •’”Ž•’‘˜˜ǯȱ ’”Ž•’‘˜˜ȱ ˜ȱ ŽŠŒ‘ȱ Œ‘Š›ŠŒŽ›œȱ œŠŽȱ Šȱ ŽŠŒ‘ȱ —˜Žȱ ’œȱ ’ŸŽ—ȱ ™›˜™˜›’˜—Š••¢ȱ ‹¢ȱ Šȱ shaded circle. Shading legend is given for each tree separately. Bootstrap support – Posterior ™›˜‹Š‹’•’¢ȱ’œȱ’ŸŽ—ȱ˜›ȱ‘Žȱęȱ›œȱ›ŽŽȱǻŒ‘Š›ŠŒŽ›ȱŗǼǯ

132 Morphology of Pinnularia Morphology of Pinnularia 133 134 Morphology of Pinnularia Morphology of Pinnularia 135 136 Morphology of Pinnularia also recovered by molecular-genetic analyses: the “grunowii” and “subgibba” clades, and the “viridiformis” and “subcommutata” clades; Š—ȱ Œ˜—›žŽ—ŒŽȱ Šœȱ Ž–™‘Šœ’£Žȱ ‹¢ȱ ‘Žȱ œ’—’ęȱŒŠ—ȱ Œ˜››Ž•Š’˜—ȱ ˜ȱ genetic and morphological distances using Mantel tests. Congruence between morphological and molecular data has been encountered in a wide variety of organisms (e.g. Marvaldi et al., 2002; Scotland et al., 2003; Edgar & Theriot, 2004; Lundholm et al., 2006; Jacobs et al., 2008) and retrieving independent support for clades strengthens ‘Žȱ ™•Šžœ’‹’•’¢ȱ ˜ȱ ‘Žȱ ™‘¢•˜Ž—Ž’Œȱ ‘¢™˜‘ŽœŽœȱ ǻŠĴȱŽ›œ˜—ǰȱ ŗşŞŘǼǯȱ ˜ ŽŸŽ›ǰȱ Šœȱ ’—ȱ ˜ž›ȱ œž¢ǰȱ –˜œȱ Œ˜–™Š›Š’ŸŽȱ œž’Žœȱ ęȱ—ȱ •˜ Ž›ȱ resolution in morphological data compared to molecular sequences (Wortley & Scotland, 2006). Morphological analyses could not assign Š••ȱŠ¡Šȱ˜ȱŠȱŒ•ŠŽǰȱŠ—ȱ’ěȱŽ›Ž—ȱŒ•ŠŽœȱ›Ž›’ŽŸŽȱ’—ȱ‘Žȱ–˜•ŽŒž•Š›ȱ analysis could not be recovered with the morphological dataset, e.g. the kinship of the P. borealisȱœ›Š’—œȱŠ—ȱ‘ŽȱŠĜȱȱ—’¢ȱ‹Ž ŽŽ—ȱP. nodosa and P. acrosphaeria, nor were the deeper relations between the clades resolved. Moreover, bootstrap support was never high. The low resolution and support of morphological phylogenies is likely caused by the low number of morphological characters (Scotland et al., 2003; Giribet, 2010) and, because of the low character/taxon ratio, bootstrap percentages of morphological studies are inherently low (Bremer et al.ǰȱ ŗşşşǼǯȱ ŽŠ— ‘’•Žǰȱ ’ĜȱȱŒž•’Žœȱ Š›Žȱ Š•œ˜ȱ Ž—Œ˜ž—Ž›Žȱ with molecular data when seeking to recover relationships with a small number of nucleotides or non-informative markers (Rokas et al., 2003). For the current molecular phylogeny of Pinnularia ęȱŸŽȱ ’ěȱŽ›Ž—ȱ –Š›”Ž›œȱ ǻŒ˜ŸŽ›’—ȱ ŚŞśŘȱ —žŒ•Ž˜’Žœǰȱ ’—Œ•ž’—ȱ ŗŖŗŘȱ parsimony-informative sites) were needed to obtain support at the ŽŽ™Ž›ȱ•ŽŸŽ•œȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼǯȱ In this study we used 20 morphological characters, mostly with two or three character states, which is low compared to the 48 taxa studied. Only discrete variables were used, but incorporating continuous data for example for size measurements and shape could increase the number of characters and enhance the phylogenetic resolution. Morphometric data are known to improve phylogenetic estimates (Edgar & Theriot, 2004) and new algorithms have been ŽŸ’œŽȱ ˜ȱ Š—Š•¢£Žȱ Œ˜—’—ž˜žœȱ ŠŠȱ ǻ’Ž—œǰȱ ŘŖŖŗDzȱ ˜•˜‹˜ěȱȱet al., 2006; Gonzalez-Jose et al., 2008). Nevertheless, at the intrageneric level relatively low variation in morphology is to be expected since diatom genera are delimited based on morphological similarity and homogeneity (Kociolek, 1997). Cladistic analyses are mostly successful at intergeneric levels (Kociolek & Stoermer, 1986; Cox

Morphology of Pinnularia 137 & Williams, 2000; Marivaux et al., 2004; Cox & Williams, 2006; Ohl & Spahn, 2010), while using only morphological data to estimate ’—Ž›œ™ŽŒ’ęȱŒȱ ›Ž•Š’˜—œ‘’™œȱ ŒŠ—ȱ ‹Žȱ šž’Žȱ ™›˜‹•Ž–Š’Œȱ ǻ•Ž’˜›—ȱ et al., 2009; Denk & Grimm, 2009; Ohl & Spahn, 2010) as is further demonstrated here. It has been argued that incorporating as much ŠŠȱ Šœȱ ™˜œœ’‹•Žȱ ›˜–ȱ ’ěȱŽ›Ž—ȱ œ˜ž›ŒŽœǰȱ ’—Œ•ž’—ȱ –˜›™‘˜•˜’ŒŠ•ǰȱ biochemical, ecological and molecular ones, best approximates ‘Žȱ ›žŽȱ ™‘¢•˜Ž—¢ȱ ǻ’Ž—œǰȱ ŗşşŞǼǯȱ ˜–‹’—’—ȱ ’ěȱŽ›Ž—ȱ ŠŠœŽœȱ Ȭȱ ‹Žȱ ’ȱ ’ěȱŽ›Ž—ȱ Ž—Ž’Œȱ –Š›”Ž›œȱ ˜›ȱ –˜›™‘˜•˜’ŒŠ•ȱ Š—ȱ –˜•ŽŒž•Š›ȱ data - improves the resolution and support of phylogenies due ˜ȱ Š–™•’ęȱŒŠ’˜—ȱ ˜ȱ œ‘Š›Žȱ ‘’œ˜›’ŒŠ•ȱ œ’—Š•œȱ ǻŠ›ŸŠ•’ȱ et al., 2002; Edgar & Theriot, 2004; Wortley & Scotland, 2006; Lee & Camens, 2009), while examining data partitions independently gives insight ’—˜ȱ‘Žȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ‘Ž’›ȱ™‘¢•˜Ž—Ž’Œȱ‘’œ˜›’Žœȱǻ’Ž—œǰȱŗşşŞǼȱŠ—ȱ ‘Žȱ™‘¢•˜Ž—Ž’Œȱ’—˜›–Š’ŸŽ—Žœœȱ˜ȱ’ěȱŽ›Ž—ȱœž‹œŽœȱ˜ȱŒ‘Š›ŠŒŽ›œȱ (Cox & Williams, 2006). Žȱ Š—Š•¢£Žȱ ‘›ŽŽȱ ’ěȱŽ›Ž—ȱ œž‹œŽœȱ ˜ȱ –˜›™‘˜•˜’ŒŠ•ȱ characters: plastid, frustule appearance (LM) and frustule structure ǻǼǯȱ Š›’’˜—’—ȱ ˜ȱ ‘Žȱ –˜›™‘˜•˜’ŒŠ•ȱ Œ‘Š›ŠŒŽ›œȱ ŠěȱŽŒŽȱ ‘Žȱ number of resolved clades. Frustule structures contained most of the phylogenetically informative characters (external raphe path, central raphe endings, raphe structure, alveolus opening). However, excluding plastid characters prevented the resolution of the “subgibba” and “grunowii” clades, supporting the phylogenetic value of plastid characters emphasized by Cox (1988) and Cox & Williams (2000). The highest number of resolved clades was obtained by Š—Š•¢£’—ȱ Š••ȱ Œ‘Š›ŠŒŽ›œȱ œ’–ž•Š—Ž˜žœ•¢ǰȱ Œ˜—ęȱ›–’—ȱ ‘Žȱ ™˜œ’’ŸŽȱ ŽěȱŽŒœȱ˜ȱŒ˜–‹’—’—ȱŠŠœŽœǯ Based on the cladistic analyses, the most informative characters (CI=1, RI=1) for Pinnularia were the helictoglossa, girdle band areolae, surface irregularities, and alveolus opening Š—ȱ •˜ŒŠ’˜—ǯȱ ‘Žȱ ęȱ›œȱ ‘›ŽŽȱ ŽŠž›Žœȱ Š›Žȱ Š™˜–˜›™‘’Œȱ ˜›ȱ Caloneis silicula and P. acrosphaeria and were not informative for resolving ˜‘Ž›ȱ’—Ž›œ™ŽŒ’ęȱŒȱ›Ž•Š’˜—œ‘’™œǯȱ‘Ž›Žȱ Šœȱ‘˜ ŽŸŽ›ȱŠ—ȱ’—Ž›Žœ’—ȱ ™‘¢•˜Ž—Ž’Œȱ ™ŠĴȱŽ›—ȱ ’—ȱ Š•ŸŽ˜•žœȱ ˜™Ž—’—ȱ Šœȱ ‘Žȱ ȃœž‹Œ˜––žŠŠȬ ŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade is characterized by a synapomorphic intermediate alveolus opening length. Krammer & Lange-Bertalot (1985) used the alveolus openings to distinguish three groups within the Pinnularia/Caloneis complex: open alveoli (in our terminology having a length of > 1/3 valve width), half-closed alveoli (1/8 < x < 1/3; intermediate length), and almost completely closed alveoli (< 1/8

138 Morphology of Pinnularia valve width), seen in LM as more central or marginal longitudinal bands (Krammer, 2000). The clade characterized by intermediate alveolus opening length in our phylogenies corresponded to their group of “–Š“˜›ŽœȱǭȱŒ˜–™•Ž¡ŠŽ, P. gibba, C. amphisbaena, C. latiuscula”. The two other groups were not recovered. Of course, we did not sample all Pinnularia and Caloneis species and further taxon sampling is needed to support this preliminary result. Based on both the morphological and molecular analyses, homoplasious characters include valve margins, apical shape, stria orientation (both central and apical), all non-structural characters, and plastid extension. All other characters showed œ˜–Žȱ ™‘¢•˜Ž—Ž’Œȱ ™ŠĴȱŽ›—ǯȱ ˜–Žȱ —˜—Ȭœ›žŒž›Š•ȱ ŽŠž›Žœȱ Ž›Žȱ important for the delineation of phylogenetic groups, such as the axial area and presence of fascia for the “subgibba” clade, but on the whole structural characters were more informative. The number of ™¢›Ž—˜’œȱŠ•œ˜ȱœ‘˜ ŽȱŠ—ȱ’—Ž›Žœ’—ȱ™ŠĴȱŽ›—ǯȱ‹œŽ—ŒŽȱ˜ȱ™¢›Ž—˜’œȱ in the P. viridis group had already been noted by Schmid (2001) and we retrieved this in our “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬŸ’›’’˜›–’œ” clade. ˜¡ȱ ǻŗşŞŞǼȱ ‘Šȱ ’—’ŒŠŽȱ ‘Žȱ ™˜œœ’‹•Žȱ ™‘¢•˜Ž—Ž’Œȱ œ’—’ęȱŒŠ—ŒŽȱ of pyrenoids in this genus, and also remarked the great variety in plastid shape. Similarly, we found taxa with linear and H-shaped plastids. However, it was not always clear whether H-shaped plastids were truly single chloroplasts, or the result of integration of the outer plastid membranes (pers. comm. David Mann). This can only be resolved by thorough examination of the complete cell- cycle and/or TEM observations. Therefore, it is not clear whether the H-shaped plastids characteristic of the “grunowii” clade are homologous to the H-shaped plastid of C. silicula or P. microstauron (see Figs in Appendix 2, q-q’’). It should be noted that the plastids of the “grunowii” clade and P. cf. microstauron have two pyrenoids, compared to one pyrenoid in C. silicula, which would indeed suggest a two-plastid origin for the former. Problems in establishing homology were also encountered with respect to the elongated central raphe endings of the “viridiformis” clade and C. silicula (compare Appendix 5.2, n and n’), and in the short alveolar openings of P. acrosphaeria and C. silicula. Determination of homology of morphological characters is one of the most problematic issues in cladistics (Pimentel & Riggins, 1987; Scotland & Pennington, 2000; Wagner, 2001; Rieppel & Kearney, ŘŖŖŘǼȱŠ—ȱ›Žšž’›ŽœȱŠȱŒŠ›Žž•ȱŽ¡Š–’—Š’˜—ȱ˜ȱŽŸŽ•˜™–Ž—Š•ȱ™ŠĴȱŽ›—œȱ (Maximino, 2008; Cox, 2010) and an understanding of the processes

Morphology of Pinnularia 139 underlying morphological evolution (Scotland et al., 2003). However, in diatoms developmental pathways have not been investigated for most frustule and plastid characters (but see Cox, 1999). ‘Žȱ™ŠĴȱŽ›—œȱŽ›’ŸŽȱ›˜–ȱ™‘¢•˜Ž—Ž’ŒȱŠ—Š•¢œŽœȱŒŠ—ȱŠ•œ˜ȱ‹Žȱ žœŽȱ ˜ȱ ›ŽŒ˜—œ›žŒȱ ‘¢™˜‘ŽœŽœȱ ˜ȱ ‘’œ˜›’ŒŠ•ȱ ŽŸ˜•ž’˜—Š›¢ȱ ™ŠĴȱŽ›—œȱ (Pagel, 1997). Ancestral state reconstruction (ASR) is a statistical method using MP or ML to estimate the character states of ancestral nodes based on the present distributions (Cunningham et al., 1998). In our analysis, the most parsimonious and most likely ancestral states for Pinnularia were mostly congruent with the morphology ˜ȱ‘ŽȱŽŠ›•’Žœȱ”—˜ —ȱ˜œœ’•œȱǻ˜‘–Š—ȱǭȱ—›Ž œǰȱŗşŜŞDzȱ˜žěȱ›ŽŠžȱ et al.ǰȱœž‹–’ĴȱŽǼǰȱŽ¡ŒŽ™ȱ˜›ȱ‘Žȱ›˜ž—ȱŠ™’ŒŽœȱŠ—ȱ‹’•ŠŽ›Š•ȱŠœŒ’ŠŽǰȱ although a single fossil species (P. spatula Lohman & Andrews) did have a fascia. Complex raphe systems and intermediate alveolar openings, which are characteristic for the “œž‹Œ˜––žŠŠȬŠŒž–’—ŠŠȬ viridiformis” clade, are all derived character states for the genus, and this is in agreement with the presently known fossil sequence. Based on the fossil record, the larger viridis-like taxa are suggested to have evolved between the late Eocene and middle Miocene (Lohman & Andrews, 1968; Ognjanova-Rumenova & Vass, 1998). It is important to remember that phylogenies are only hypotheses of genealogies, Š—ȱ Œ˜—œŽšžŽ—•¢ȱ ’—ŠŒŒž›ŠŒ’Žœȱ ’—ȱ ™‘¢•˜Ž—’Žœȱ ’••ȱ ’—ĚȱžŽ—ŒŽȱ ‘Žȱ reliability of the ASR (Pagel, 1997). The most problematic drawback of the present phylogeny of Pinnularia is the low taxon sampling. ˜ ŽŸŽ›ǰȱ’ȱ™›˜Ÿ’ŽœȱŠȱęȱ›œȱŽœ’–ŠŽȱ˜ȱ‘Žȱ’—Ž›œ™ŽŒ’ęȱŒȱ›Ž•Š’˜—œ‘’™œȱ and broader clades within this large genus, and further taxon sampling of Pinnularia and Caloneis will undoubtedly improve these preliminary phylogenetic estimates.

Acknowledgements •˜’œ’Žȱ ˜ž•Ç²”˜Ÿ¤ǰȱ ŠŸ’ȱ Š——ȱ Š—ȱ ’Œ˜›ȱ ‘Ž™ž›—˜Ÿȱ ”’—•¢ȱ provided diatom cultures. Bart Van de Vijver, Elie Verleyen, Joris ˜žěȱ›ŽŠžȱ Š—ȱ ’ŽŽ›ȱ Š—˜›–Ž•’—Ž—ȱ™›˜Ÿ’Žȱ •’ŸŽȱ Ž—Ÿ’›˜—–Ž—Š•ȱ samples. Alex Ball assisted with confocal laser scanning microscopy Š—ȱ œŒŠ——’—ȱ Ž•ŽŒ›˜—ȱ –’Œ›˜œŒ˜™¢ǯȱ ‘’œȱ ›ŽœŽŠ›Œ‘ȱ Šœȱ ęȱ—Š—Œ’Š••¢ȱ œž™™˜›Žȱ ‹¢ȱ Ȭ•ŠŠ—Ž›Ž—ȱ ǻž—ȱ ˜›ȱ Œ’Ž—’ęȱŒȱ ŽœŽŠ›Œ‘ȱ Ȯȱ Flanders) through funding of CS, by the FWO-project 3G/0533/07, and by a European Union SYNTHESYS grant (GB-TAF-77) to CS.

140 Morphology of Pinnularia Appendix 5.1 Description of and comments on the selected frustule and plastid characters

Frustule outline 1. Margins: convex (0); parallel (1), undulate (2); constricted in the –’•ŽȱǻřǼDzȱ’—ĚȱŠŽȱ’—ȱ‘Žȱ–’•ŽȱǻŚǼǯȱ The margins of the frustules in valve view were delimited from halfway along one raphe branch, beside the central area, to halfway along the second raphe branch. The character, margin, therefore describes the central portion of the valve. The relationship between the opposite margins can be convex (App. 2, a), parallel (App. 2, b), ž—ž•ŠŽȱǻ™™ǯȱŘǰȱŒǼǰȱŒ˜—œ›’ŒŽȱ’—ȱ‘Žȱ–’•Žȱǻ™™ǯȱŘǰȱǼȱ˜›ȱ’—ĚȱŠŽȱ in the middle (App. 2, e). 2. Apices: cuneate (0); rounded (1); rostrate (2); capitate (3). ‘ŽȱŠ™Ž¡ȱ’œȱŽęȱ—ŽȱŠœȱ‘ŽȱŠ™’ŒŠ•ȱ™Š›ȱ˜ȱ‘ŽȱŸŠ•ŸŽǰȱ›˜–ȱ‘Š• Š¢ȱ along each raphe branch. In valve view, the outline of the apices can be abruptly narrowing toward the tip, like a wedge (cuneate; App. 2, f) or smoothly rounded (rounded; App. 2, g). Valve apices that have undulating margins towards the apex can be divided into two groups: the valve may narrow, but never become narrower than the apex itself (rostrate; App. 2, h), or it may narrow and then widen ŠŠ’—ȱ˜ Š›œȱ‘ŽȱŠ™Ž¡ȱ’œŽ•ǰȱ˜›–’—ȱŠȱ’œ’—Œȱ˜ěȱȬœŽȱ’œŠ•ȱ™Š›ȱ˜›ȱ “head” (capitates; App. 2, i).

5DSKHFKDUDFWHUV řǯȱŠ‘ȱ˜ȱ‘ŽȱŽ¡Ž›—Š•ȱ›Š™‘Žȱęȱœœž›ŽDZ curved (0); undulate (1). The line of the raphe slit which is visible on the outer side of ‘ŽȱŸŠ•ŸŽȱžœ’—ȱȱ’œȱŽ›–Žȱ‘ŽȱŽ¡Ž›—Š•ȱ›Š™‘Žȱęȱœœž›Žǯȱ‘’œȱęȱœœž›Žȱ can be continuously curved to one side of the valve only (curved; App. 2, j), or can switch its course between the two sides of the valve, and undulate over the valve (undulate; App. 2, k). 4. Central raphe endings: elongated drop-like (0); round (1), linear (2). The central raphe endings were observed using SEM and can be elongated and drop-like (App. 2, l), round (App. 2, m) or linear (App. 2, n-n’). 5. Helictoglossa: tongue-like (0); hooked (1). The helictoglossa (internal, apical raphe ending) was observed using SEM and can have an elongated, tongue-like form (tongue-

Morphology of Pinnularia 141 like; App. 2, o) or be hooked (App. 2, p). 6. Raphe complexity: simple (0); three lines visible (1); complex (2). In cross section, the raphe slit has a parallel “groove” and a ȃ˜—žŽȄȱǻœŽŽȱ ›Š––Ž›ȱŗşşŘȱ•ŠŽȱŘȱęȱœȱŗȬŚǼǰȱ ‘’Œ‘ȱęȱȱ˜—Žȱ’—ȱ‘Žȱ other (App. 2, t). The edge of the tongue and the two edges (external and internal) of the groove are visible in LM as thin, longitudinal lines. The number of visible lines depends on the relative positions of these margins. Usually, the outer and inner margins of the groove are superimposed and visible as a single line. In this case, two thin lines are visible: the groove margins and the tongue edge. Using LM, the course of the groove margin can be compared with the straight course of the tongue margin. If the groove margin follows the course of the tongue margin without crossing it, the raphe is termed “simple” and two thin, parallel lines are visible (App. 2, q). If the ›˜˜ŸŽȱ–Š›’—ȱŒ›˜œœŽœȱ‘Žȱœ›Š’‘ȱ˜—žŽȱ–Š›’—ȱŠȱ’ěȱŽ›Ž—ȱ™˜’—œȱ Š•˜—ȱ‘ŽȱŒ˜ž›œŽȱ˜ȱ‘Žȱ›Š™‘Žǰȱ‘Žȱ›Š™‘Žȱ’œȱŒ•Šœœ’ęȱŽȱŠœȱȃŒ˜–™•Ž¡Ȅȱ (App. 2, s). A special case of the simple raphe occurs when the two margins of the groove are not superimposed but are visible as separate lines. In LM, three non-crossing, thin lines are then visible (two lines of the groove and one line of the tongue). Because of the ž—Ž›•¢’—ȱ–˜›™‘˜•˜’ŒŠ•ȱ’ěȱŽ›Ž—ŒŽǰȱ ŽȱŒ•Šœœ’ęȱŽȱ‘’œȱŠœȱŠȱœŽ™Š›ŠŽȱ character state (three thin lines; App. 2, r).

Axial area 7. Axial area: ›Ž•Š’ŸŽȱ ’‘ȱŠȱ–’Ȭ‹›Š—Œ‘DZȱ’—Ž›–Ž’ŠŽDZȱŗȦŚȱȮȱŗȦŜȱ (0); narrow: < 1/6 (1); broad: > 1/4 (2). The relative width of the axial area was determined halfway along the raphe branches in LM and compared with the total width of the valve at the same position. 8. Axial area: relative width at central raphe endings: narrow: < 1/2 (0); broad: between 1/2 and 1/1 (1); valve width: 1/1 (2). The relative width of the axial area was determined at the junction between the central raphe ending and the raphe branch in LM, and compared with the total width of the valve at the same position.

Central area 9. Fascia: absent (0); unilateral (1); bilateral (2). ‘ŽȱŒŽ—›Š•ȱœ›’ŠŽȱŒŠ—ȱ‹Žȱ’—ęȱ••Žȱǻœ˜•’Ǽǰȱ‘žœȱ˜›–’—ȱŠȱŠœŒ’Šǯȱ A fascia can be absent (App. 3, a), only present on one side of a valve

142 Morphology of Pinnularia (unilateral; App. 3, b), or present at both sides of a valve (bilateral; App. 3, c). If both unilateral and bilateral fasciae were present on ’ěȱŽ›Ž—ȱŸŠ•ŸŽœȱ˜ȱŠȱœ’—•Žȱœ›Š’—ǰȱ ŽȱŒ•Šœœ’ęȱŽȱ‘’œȱœ›Š’—ȱŠœȱ‘ŠŸ’—ȱ a “bilateral” fascia. 10. Central area: shape: elliptical (0); diamond (1); rectangular (2). We delimited the central area by the junctions between the central pores and the raphe branches, thus including the central pores. The shape of the central area is determined by the arrangement of the adjacent striae. The striae can lengthen very gradually towards the apices, forming a convex edge and creating an elliptical central area (App. 3, d), or can lengthen more abruptly, forming a concave rim and creating a diamond-shaped central area (App. 3, e). If striae are absent or no variation in stria length is observed, the central area is rectangular (App. 3, f).

6XUIDFH 11. Ghost striae: absent (0); present (1). ‘˜œȱ œ›’ŠŽȱ Š›Žȱ ™Š›’Š••¢ȱ œ’•’Œ’ęȱŽȱ œ›’ŠŽȱ ‘Šȱ ‘ŠŸŽȱ ‹ŽŽ—ȱ ’—Œ˜–™•ŽŽ•¢ȱ ęȱ••ŽȬ’—ȱ ž›’—ȱ ‘Žȱ ˜—˜Ž—Žœ’œǯȱ ˜ȱ Š›Ž˜•ŠŽȱ Š›Žȱ present, but the outlines of the striae are more or less visible and create parallel darker shadows. Ghost striae are for example typical for the gibba-group of Pinnularia and can be seen as four spots in the central area (indicated by arrows in App. 3, g). ŗŘǯȱž›ŠŒŽȱ’››Žž•Š›’’ŽœDZ absent (0); present (1). On the outside of the valve, the central and axial areas can be Œ˜ŸŽ›Žȱ ’‘ȱ’››Žž•Š›ȱœ’•’Œ’ęȱŽȱ ›Šœȱǻ™™ǯȱřǰȱ‘Ǽǯ

Striae 13. Stria orientation: centre: radiate (0); transverse (1). The striae at the centre of the valve can be oriented parallel to the transapical axis of the valve (transverse; App. 3, j) or oblique to the transapical axis of the valve, the proximal (to the raphe) ends of the striae being closer to the valve centre than the distal ends (radiate; App. 3, i). 14. Stria orientation: apex: convergent (0); radiate (1); transverse (2). The striae near the valve apices can be oriented parallel to the transapical axis of the valve (transverse; App. 3, k). They can also be oblique to the transapical axis of the valve, distal ends of the striae being closer to the valve centre than the proximal ends (convergent; App. 3, i), or the proximal (to the raphe) ends of the striae being

Morphology of Pinnularia 143 closer to the valve centre than the distal ends (radiate; App. 3, l).

Alveoli ŗśǯȱ•ŸŽ˜•žœȱ˜™Ž—’—ȱ•Ž—‘DZȱproportion of half valve width: > 2/3 ǻŖǼDzȱŘȦřȱȮȱŗȦŚȱǻŗǼDzȱǀȱŗȦŚȱǻŘǼǯ The alveoli open on the inner side of the valves and are visible using SEM as openings in the chamber roofs above the striae. The length of the alveolus opening was determined halfway along the raphe branches and was calculated relative to the distance between the raphe slit and the valve margin at the same location. These ™›˜™˜›’˜—œȱŒ˜ž•ȱ‹ŽȱǁȱŘȦřȱǻ™™ǯȱřǰȱ–ǼDzȱŘȦřȱȮȱŗȦŚȱǻ™™ǯȱřǰȱ—ǼDzȱǀȱŗȦŚȱ (App. 3, o) ŗŜǯȱ•ŸŽ˜•žœȱ˜™Ž—’—DZ location: central (0); distal (1). Alveolus openings located halfway between the margin and the raphe are termed “central” (App. 3, m-n), while alveolus openings located adjacent to the valve margins are termed “distal” (App. 3, o).

Girdle bands 17. Girdle bands: shape of areolae: elongated (0); round (1). The girdle bands were visualized using SEM and bear a single row of areolae. Areolae can be elongated or roundish in shape.

Plastids 18. Plastid: shape: linear (0); H-shaped (1). Plastids were observed in non-synchronized, exponentially growing cultures using LM and confocal laser scanning microscopy (CLSM). Cells could contain two large, linear plastids lying along each side of the girdle and extending under the valves (linear; App. 3, p-p’’), or a single plastid, comprising two linear plates lying along the girdle and extending under the valves, connected by a narrow central bridge against one valve face, above the nucleus ǻ Ȭœ‘Š™ŽDzȱ™™ǯȱřǰȱšȬšȂȂǼǯȱœȱ‘’œȱ‹›’ŽȱŒŠ—ȱ‹Žȱ’ĜȱȱŒž•ȱ˜ȱœŽŽȱžœ’—ȱ Œ˜—ŸŽ—’˜—Š•ȱǰȱȱ ŠœȱžœŽȱ˜ȱŒ˜—ęȱ›–ȱ’œȱ™›ŽœŽ—ŒŽǯȱ›Š’—œȱ were categorized as having an H-shaped plastid if a bridge was observed in all examined cells. 19. Plastid: extension under valve face: narrow (0); broad (1). Both linear and H-shaped plastids have margins that extend under the valve face. The degree to which the margins extended was described as “narrow” if it was less than or equal to 1/4 valve width,

144 Morphology of Pinnularia and described as “broad” if it occupied more than 1/4 of the valve width. 20. Pyrenoids: number per plastid: one (0); two (1); absent (2). Pyrenoids are proteinaceous bodies located in the plastid, which contain high levels of the enzyme ribulose-1,5-biphosphate ŒŠ›‹˜¡¢•ŠœŽȦ˜¡¢Ž—ŠœŽǰȱ ‘’Œ‘ȱ –Ž’ŠŽœȱ ŘȬęȱ¡Š’˜—ǯȱ ˜ȱ œ˜›ŠŽȱ material is present around the pyrenoids in diatoms. Using regular ȱ˜›ȱǰȱ™¢›Ž—˜’œȱ Ž›ŽȱŸ’œ’‹•ŽȱŠœȱ™Š•ŽȱǻǼȱ˜›ȱ—˜—ȬĚȱž˜›ŽœŒŽ—ȱ (CLSM) regions in the plastid (indicated by arrows in App. 3, p-q’). We used additional staining with Azocarmine G to improve visualization of the pyrenoids in LM. If no staining was observed, ‘Žȱœ›Š’—œȱ Ž›ŽȱŒ•Šœœ’ęȱŽȱŠœȱ•ŠŒ”’—ȱ™¢›Ž—˜’œȱǻŠ‹œŽ—Ǽǯ

Morphology of Pinnularia 145 Appendix 5.2 Appendix 5.2ȱž™™˜›’—ȱęȱž›Žœȱ˜›ȱ‘ŽȱŽœŒ›’™’˜—ȱ˜ȱ‘Žȱ–˜›™‘˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›œǯ

146 Morphology of Pinnularia Appendix 5.3 Appendix 5.3ȱž™™˜›’—ȱęȱž›Žœȱ˜›ȱ‘ŽȱŽœŒ›’™’˜—ȱ˜ȱ‘Žȱ–˜›™‘˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›œǯȱ

Morphology of Pinnularia 147

6. Molecular evidence for the existence of distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys

Š›˜•’—Žȱ ˜žěȱ›ŽŠž1, Pieter Vanormelingen1, Bart Van de Vijver2, Tsvetelina Isheva1, Elie Verleyen1, Koen Sabbe1 and Wim Vyverman1

ǐȱ 1 Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281 - S8, 9000 Gent, Belgium ǐȱ 2 Department of Cryptogamy, National Botanic Garden of Belgium, Domein van Bouchout, 1860 Meise, Belgium

Unpublished manuscript

Genetic divergence in P. borealis and H. amphioxys 149 Abstract Recent studies based on morphology revealed that the Antarctic continent has a high percentage of endemic freshwater diatom species, besides a considerable percentage of presumed cosmopolitan species. Given the widespread (pseudo)cryptic species diversity in diatoms, we used two of these cosmopolitan taxa, Pinnularia borealis and Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ, to assess the molecular divergence between Antarctic strains and strains from other locations. Molecular phylogenies based on the plastid gene ›‹ŒL and the nuclear 28S rDNA (D1-D2 region) revealed that P. borealis and ǯȱŠ–™‘’˜¡¢œ are two species complexes consisting of multiple genetically distinct lineages, each including a distinct Antarctic lineage. A molecular time-calibration estimates the origin of the species complex P. borealis řśǯŜȱ–’••’˜—ȱ¢ŽŠ›œȱǻŠǼȱŠ˜ǰȱŠ—ȱ‘Žȱęȱ›œȱŽ¡Š—ȱ•’—ŽŠŽȱœ™•’Ĵȱ’—ȱŠȱ 22.0 Ma, making this the oldest known diatom species complex. The Antarctic P. borealis lineage is estimated to have diverged 7.7 (15-2) Ma ago from a European sister lineage, largely after the ęȱ—Š•ȱ˜™Ž—’—ȱ˜ȱ‘Žȱ›Š”ŽȱŠœœŠŽȱ ‘’Œ‘ȱ›Žœž•Žȱ’—ȱŽ˜›Š™‘’ŒŠ•ȱ isolation of the continent, and after the start of the Mid-Miocene cooling event which resulted in the formation of a permanent ice sheet and full polar conditions. In addition, the Antarctic lineages of both P. borealis andȱ ǯȱŠ–™‘’˜¡¢œ diverged physiologically from most lineages from more temperate regions and tend to have a higher relative growth rate at low temperature, a lower optimal temperature and lower lethal upper temperature, indicating niche ’ěȱŽ›Ž—’Š’˜—ǯȱŠ”Ž—ȱ˜Ž‘Ž›ǰȱ‘ŽœŽȱŠŠȱ’—’ŒŠŽȱ‘Šȱ–Š—¢ȱ˜ȱ‘Žȱ presumed cosmopolitan Antarctic diatom species are in fact species complexes, possibly containing Antarctic endemic species.

Key words: thermal adaptation, ›‹ŒL, LSU rDNA, cryptic diversity, diatoms, biogeography, Antarctica, dispersal limitation, allopatric speciation

150 Genetic divergence in P. borealis and H. amphioxys 6.1 Introduction The Antarctic continent is a geographically and thermally isolated area. Since the breakup of Gondwana 180 Ma ago it gradually drifted away from other land masses, resulting in a strong geographical isolation. During the Eocene (50-32 Ma), the gradual opening of the ocean between Antarctica and Australia respectively South America triggered the establishment of circumpolar winds and ocean currents which blocked heat transfer from the tropics. This resulted in the thermal isolation of the Antarctic continent and the formation of a continental ice sheet (Lawver & Gahagan, 2003; Barker & Thomas, 2004; Brown et al., 2006). Since at least 14 Ma, the Antarctic continent is therefore a cold and windy desert, characterized by extreme climatic conditions constituting an ecological challenge for any resident or colonizing organism (Block et al., 2009). The remaining ice-free regions Š›Žȱœ–Š••ȱŠ—ȱ‘’‘•¢ȱœŒŠĴȱŽ›ŽǰȱŽœ™ŽŒ’Š••¢ȱ’—ȱŒ˜—’—Ž—Š•ȱ—Š›Œ’ŒŠǰȱ Š—ȱœ›˜—•¢ȱ’—ĚȱžŽ—ŒŽȱ‹¢ȱ•ŠŒ’Š•ȱŒ¢Œ•Žœǰȱ›Žœž•’—ȱ’—ȱ‘’‘ȱ›Ž’˜—Š•ȱ extinction risks and low colonization rates (Pugh & Convey, 2008). As a result, the Antarctic region, and especially continental Antarctica, ’œȱŒ‘Š›ŠŒŽ›’£Žȱ‹¢ȱŠȱ‘’‘•¢ȱ’–™˜ŸŽ›’œ‘ŽȱĚȱ˜›ŠȱŠ—ȱŠž—ŠȱǻŽ ’œȱ Smith, 1984) and a high incidence of endemism in both freshwater and terrestrial habitats for macroscopic organisms such as dipterans (Currie & Adler, 2008), pycnogonids (Munilla & Membrives, 2009) and Collembola and Oribatida (Greenslade, 1995; Marshall & Pugh, 1996). Based on discontinuities in species distributions for several of the above taxonomic groups, the continent is subdivided into two biogeographic regions, namely the continental and maritime —Š›Œ’Œȱ›Ž’˜—œǰȱ ‘’Œ‘ȱŠ›ŽȱœŽ™Š›ŠŽȱ‹¢ȱ‘Žȱœ˜ȬŒŠ••Žȱ ›Žœœ’Ĵȱȱ•’—Žȱ situated in the South of the Antarctic Peninsula (Chown & Convey, 2007). For microalgae, inferring species’ geographic distributions was until recently hampered by undersampling and taxonomical problems due to the limited number of available morphological characters and the uncertain interpretation of small morphological ’ěȱŽ›Ž—ŒŽœǯȱ ˜›ȱ Ž››Žœ›’Š•ȱ Š•ŠŽǰȱ ›˜Š¢ȱ ǻŗşşŜǼȱ Œ˜—Œ•žŽȱ ‘Šȱ the Antarctic diversity is low, and lower in continental than in maritime Antarctica, with only a small element of endemic species. This conclusion is now contradicted by molecular phylogenies with separate Antarctic lineages of cyanobacteria and green algae, suggesting a long history of isolation on the continent (Taton et al., 2003; Taton et al., 2006; De Wever et al., 2009). For lacustrine diatoms, a substantial body of work in the (sub-)Antarctic based on careful

Genetic divergence in P. borealis and H. amphioxys 151 morphological analysis showed (1) a highly impoverished diatom Ěȱ˜›Šȱ Šȱ ‘’‘ȱ •Š’žŽœȱ ˜ȱ ‘Žȱ ˜ž‘Ž›—ȱ ‘Ž–’œ™‘Ž›Žȱ ǻ¢ŸŽ›–Š—ȱ et al., 2007), (2) an overrepresentation of typical terrestrial genera and poverty of globally successful genera and planktonic taxa (Verleyen et al.ǰȱ œž‹–’ĴȱŽǼǰȱ ǻřǼȱ Šȱ Œ•ŽŠ›ȱ œž‹’Ÿ’œ’˜—ȱ ’—˜ȱ ‘›ŽŽȱ ‹’˜Ž˜›Š™‘’Œȱ provinces, being the sub-, maritime, and continental Antarctic (Verleyen et al.ǰȱ œž‹–’ĴȱŽǼǰȱ Š—ȱ ǻŚǼȱ Šȱ ‘’‘ȱ ™Ž›ŒŽ—ŠŽȱ ˜ȱ ǻœž‹ȬǼ Antarctic endemic species (27-63%, Verleyen et al.ǰȱ œž‹–’ĴȱŽǼȱ Š—ȱ•’Ĵȱ•Žȱ˜ŸŽ›•Š™ȱ ’‘ȱ‘Žȱ›Œ’ŒȱĚȱ˜›ŠȱǻŠ—ȱŽȱ’“ŸŽ›ȱet al., 2005). Together, this suggests that colonization is limited on both a regional and continental scale, and that allopatric speciation, or •’—ŽŠŽȱ’ŸŽ›Ž—ŒŽȱž—Ž›ȱ’—ĚȱžŽ—ŒŽȱ˜ȱŽ—Ž’Œȱ›’ȱŠ—Ȧ˜›ȱ’ŸŽ›Ž—ȱ selection during long-term geographic isolation (after rare long-term ’œ™Ž›œŠ•ȱŽŸŽ—œȱŠ—Ȧ˜›ȱ‘Š‹’Šȱ›Š–Ž—Š’˜—ȱžŽȱ˜ȱŒ•’–ŠŽȱŒ‘Š—Žȱ or continental drift) (Mayr, 1963; Coyne, 1992; Rice & Hostert, 1993), ’œȱ›Žœ™˜—œ’‹•Žȱ˜›ȱ‘Žȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ‹˜‘ȱ—Š›Œ’Œȱ–ŠŒ›˜ȬȱŠ—ȱ microorganisms, contrary to the hypothesis that microorganisms have unlimited dispersal probabilities (Beijerinck, 1913; Finlay, 2002; Finlay et al., 2002). However, besides this high number of endemic morphospecies, there also appears to be a substantial fraction of cosmopolitan diatom morphospecies on the Antarctic continent (Verleyen et al.ǰȱœž‹–’ĴȱŽǼǯȱ How this should be interpreted is unclear, given the prevalence of (pseudo)cryptic species diversity in diatoms (e.g. Sarno et al., 2005; Evans et al., 2008; Trobajo et al., 2009). They might be truly generalistic, cosmopolitan species which have (recently) colonized the Antarctic, or it might concern cryptic species complexes containing genetic lineages with potentially restricted geographic distributions (Boo et al., 2010) and ecological niches (Vanelslander et al., 2009; Vanelslander et al., unpubl.). In that respect, it is well-known that many Antarctic algae have evolved special ecophysiological properties in response to the extreme climatological conditions (Kirst & Wiencke, 1995). For instance, several marine diatoms are obligately psychrophilic: optimum temperatures are at 3°-5° C and temperatures above 6°- 8° C are lethal (Fiala & Oriol, 1990). Cryptic lineages (or species, ŽȱžŽ’›˜£ǰȱŘŖŖŝǼȱŠ›Žȱ˜Ž—ȱ’Ž—’ęȱŽȱžœ’—ȱ–˜•ŽŒž•Š›ȱ™‘¢•˜Ž—’Žœȱ based on species-level molecular markers (e.g. De Vargas et al., 1999; Beszteri et al., 2007; Boo et al.ǰȱ ŘŖŗŖǼǯȱ ‘Ž—ȱ œžĜȱȱŒ’Ž—•¢ȱ ›Žœ˜•ŸŽǰȱ such phylogenies can be time-calibrated using the fossil record, feasible for diatoms given their resistant siliceous cell walls (Sims et al., 2006), and combined with geographical distributions and niche

152 Genetic divergence in P. borealis and H. amphioxys Œ‘Š›ŠŒŽ›’£Š’˜—ȱ˜ȱ˜‹Š’—ȱŠȱ‹ŽĴȱŽ›ȱž—Ž›œŠ—’—ȱ˜ȱ‘ŽȱŽŸ˜•ž’˜—Š›¢ȱ history of these (cryptic) lineages (see e.g. Darling et al., 2007; Verbruggen et al., 2009). The diatom morphospecies Pinnularia borealis Ehrenberg and Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ (Ehrenberg) Grunow are two common taxa in mainly terrestrial habitats on all continents, including Antarctica (Krammer & Lange-Bertalot, 1986, 1988). For both taxa, some morphological variants have been described as varieties, but there is morphological overlap and as a result their taxonomic status is uncertain (Cleve-Euler, 1952; Krammer & Lange-Bertalot, 1986; Krammer, 2000). In this study, we (1) test whether both taxa are species complexes with a distinct Antarctic lineage or not, (2) estimate divergence times for any such lineage(s) in P. borealis based on a time-calibrated Pinnulariaȱ ™‘¢•˜Ž—¢ȱ ǻ˜žěȱ›ŽŠžȱ et al.ǰȱ œž‹–’ĴȱŽǼǰȱ and (3) determine the temperature preferences of Antarctic strains in comparison to their more temperate counterparts. To this end, we isolated monoclonal strains of P. borealis and ǯȱŠ–™‘’˜¡¢œ from continental Antarctica and (cold) temperate regions in Europe, the Americas and Asia. These were used to construct molecular phylogenies based on ›‹ŒL and the D1-D2 region of 28S rDNA, calculate lineage divergence times using molecular-clock methods for P. borealis, and assess strain growth rates over a temperature gradient from 3°-32°C.

6.2 Materials & Methods Taxon sampling We used 52 monoclonal strains of Pinnularia borealis (Table 6.1) and 31 of Š—ĵȱœŒ‘’Š, including ǯȱŠ–™‘’˜¡¢œ, H. abundans and Š—ĵȱœŒ‘’Šȱ œ™ǯȱ ǻŠ‹•Žȱ ŜǯŘǼȱ ’œ˜•ŠŽȱ ›˜–ȱ ’ěȱŽ›Ž—ȱ Œ˜—’—Ž—œǰȱ ’—Œ•ž’—ȱ ‘Žȱ Schirmacher Oasis on continental Antarctica. Geographic origin of the strains is listed in Tables 6.1 and 6.2. In the future, more detailed information about sampling dates and localities will be available in the barcode database (www.boldsystems.org) in which all used strains will be included. Per location, multiple environmental samples were used. Environmental samples were taken by scraping the upper half cm of bare soil using a sterile falcon tube. For the non-Antarctic samples, a small amount of soil was incubated upon arrival in the lab in liquid WC medium (Guillard & Lorenzen, 1972, but without pH adjustment and vitamin addition) at standard culture conditions of 18°C, 25-30 μmol ph m-² s-1 light

Genetic divergence in P. borealis and H. amphioxys 153 exp. Temp. L LSU

rbc Striae density (#/10 μ m) μ m) Width ( Morphometric data (± stdv.) ( μ m) Length 33.0±1.733.0±1.7 8.1±0.3 7.9±0.4 5.3±0.4 5.2±0.3 x x x x x x 40.9±0.7 8.1±0.333.7±0.8 6.0±0.2 7.6±0.3 x 6.0±0.0 - x x x 34.9±0.8 7.4±0.4 6.6±0.5 x - 41.9±1.1 8.5±0.5 5.4±0.4 x x 31.6±0.831.1±1.0 7.1±0.332.6±1.1 8.2±0.335.4±1.4 6.5±0.7 7.5±0.332.0±1.2 5.7±0.5 8.0±0.328.3±1.2 x 6.0±0.0 7.9±0.3 x 5.5±0.5 8.4±0.3 x x 6.0±0.0 x x 5.6±0.5 x - x x x - - - x x 39.6±1.2 7.6±0.335.9±0.6 6.2±0.4 8.2±0.3 x 5.8±0.4 - x x - Origin Belgium - Gent Belgium - Gent Belgium - Gent Belgium - Gent Belgium - Gent Canada – Banff Canada – Banff Canada – Banff Canada – Banff Canada – Banff Canada – Banff France – Ailfroide France France – Ailfroide France – Ailfroide France rbc ȱŠ—ȱǯȱ’œœ’—ȱŽ—Ž’ŒȱŠŠȱŠ›Žȱ’—’ŒŠŽȱ‹¢ȱŠȱŠœ‘ǯȱ›Š’— œȱžœŽȱ˜›ȱŽ–™Ž›Šž›Žȱ Krammer Krammer Krammer Mongolia – Khangai-Nuruu Krammer Mongolia – Khangai-Nuruu 55.2±0.9 Mongolia – Khangai-Nuruu 56.8±1.0 Mongolia – Khangai-Nuruu 10.5±0.3 55.2±0.7 10.9±0.7 55.0±0.6 5.1±0.2 10.9±0.4 5.0±0.0 10.9±0.3 x 5.1±0.2 x 5.0±0.0 x x x x x x x x Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) FDWLRQ

borealis borealis borealis borealis borealis borealis borealis borealis borealis islandica islandica islandica islandica

scalaris scalaris scalaris scalaris scalaris var. var. var. var. var. var. var. var. var. var. var. var. var. var. var. ,GHQWL¿ var. var. var. var. var. var.

P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P.

P. borealis P. borealis P. borealis P. borealis P. borealis P. (E7)c (E7)a (E7)b (St1)i (St1)k (St1)d (St1)b (St1)g (Mo1)j (Mo1)f Strain (Mo1)c (Mo1)k (Ban2)c (Ban1)a (Ban2)a (Ban2)e (Ban1)g (Ban2)d Table 6.1 List of strains Pinnularia borealis ȱžœŽȱ’—ȱ‘’œȱœž¢ǰȱŠ•˜—ȱ ’‘ȱ‘Žȱ’Ž—’ęȱŒŠ’˜—ǰȱŽ˜›Š™‘’Œȱ˜›’’—ǰȱœ’–™•Žȱ–˜›™‘˜–Ž›’ŒœȱǻƹȱœŠ—Š›ȱ Table ŽŸ’Š’˜—ǼǰȱŠ—ȱŠŸŠ’•Š‹’•’¢ȱǻ¡Ǽȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱ–Š›”Ž›œȱ ™›ŽŽ›Ž—ŒŽȱŽ¡™Ž›’–Ž—œȱŠ›Žȱ’—’ŒŠŽȱ’—ȱ‘Žȱ•ŠœȱŒ˜•ž–—ǯ

154 Genetic divergence in P. borealis and H. amphioxys exp. Temp. L LSU xx x x xx xx x x x x x x

rbc Striae density (#/10 μ m) μ m) Width ( Morphometric data (± stdv.) ( μ m) Length 37.7±0.9 8.8±0.3 5.6±0.5 x x 37.1±0.8 8.7±0.5 6.3±0.4 x x 34.2±1.7 9.1±0.4 5.6±0.6 x - 34.6±0.7 7.2±0.4 6.7±0.5 x x 39.7±1.028.7±1.0 9.9±0.4 8.4±0.3 5.6±0.5 6.5±0.4 x x x - 34.4±2.4 9.0±0.6 6.3±0.5 x - 36.8±1.6 9.5±0.5 5.0±0.0 x x 38.6±1.142.3±0.6 7.4±0.3 8.9±0.4 6.2±0.4 5.0±0.0 x x x x x x Origin Belgium - Gent Belgium - Gent Belgium - Gent Belgium - Gent Chile – Seno Otway Chile – Seno Otway Chile – Seno Otway Chile – Seno Otway Chile – Seno Otway Chile – Seno Otway Chile – Torres del PaineChile – Torres 27.3±0.6 9.6±0.3 6.0±0.0 x x x Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Antarctica – Schirmacher Oasis Antarctica – Schirmacher Oasis (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) Rabenhorst (Ehr.) – Podkova republic Czech Rabenhorst (Ehr.) – Podkova republic Czech Rabenhorst (Ehr.) 37.4±1.3 – Podkova republic Czech 38.6±0.8 – Podkova republic Czech 8.2±0.6 37.4±1.0 8.2±0.2 38.1±1.3 5.7±0.4 8.1±0.3 5.4±0.5 8.2±0.4 x 5.8±0.3 x 5.2±0.4 x x x x x x x x FDWLRQ

borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis var. unknown var.

scalaris scalaris scalaris scalaris scalaris scalaris scalaris var. var. var. var. var. var. var. var. var. var. var. var. var. var. ,GHQWL¿ var. var. var. var. var. var. var. var. P. borealis

P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P.

P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. E1 D7 D6 D8 D14 D10 Alka2 Alka3 Alka4 Alka1 (St6)c (St6)a (St8)a (St8)d Strain (Tor3)a (Tor12)i (Tor12)f (Tor12)e (Tor12)g (Tor12)d (Tor12)h

Genetic divergence in P. borealis and H. amphioxys 155 exp. Temp. L LSU xx x x xx - x x x x xx xx x x x x x x x x xx xx x x x x

rbc Striae density (#/10 μ m) μ m) Width ( Morphometric data (± stdv.) ( μ m) Length Origin Ehrenberg Ehrenberg Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Ehrenberg Antarctica – Schirmacher Oasis Antarctica – Schirmacher Oasis Antarctica – Schirmacher Oasis FDWLRQ

borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis borealis var. var. var. var. var. var. var. var. var. var. var. var. var. var. ,GHQWL¿

P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. borealis P. P8 V2 V4 P10 P12 P14 P17 S18 E10 E13 V15 V18 V20 Strain

156 Genetic divergence in P. borealis and H. amphioxys exp. Temp. L LSU x -

rbc μ m) (#/10 Fibulae density μ m) Striae (#/10 density ( μ m) Width Morphometric data (± stdv) ( μ m) Length 37.7±0.7 6.3±1.0 21.9±0.6 7.9±0.7 x x 42.9±0.4 6.2±0.1 25.2±0.9 1.1±0.7 x42.8±0.6 x 6.4±0.236.0±0.6 24.7±1.1 6.0±0.438.1±0.8 x 7.7±0.7 25.8±0.4 6.0±0.3 8.0±0.9 24.1±0.9 x 9.3±0.7 x x x x x x x 48.3±0.9 9.0±0.436.8±1.8 21.6±0.7 8.7±0.3 6.9±0.9 21.2±0.936.8±0.5 6.9±0.7 6.6±0.5 x 23.7±1.0 x 9.2±0.7 x x x x x 39.2±1.1 7.5±0.4 21.7±0.738.1±1.1 8.3±0.9 7.9±0.643.6±0.8 21.4±0.7 7.7±0.440.4±0.5 x 6.8±1.2 21.1±0.9 7.8±0.3 7.9±0.4 x 21.0±1.1 x 7.2±0.9 x x x x x Origin Canada – Banff Canada – Banff Canada – Banff Canada – Banff Canada – Banff Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent rbc ȱŠ—ȱǯȱ’œœ’—ȱŽ—Ž’ŒȱŠŠȱŠ›Žȱ’—’ŒŠŽȱ‹¢ȱŠȱŠœ‘ǯȱ›Š’— œȱžœŽȱ˜›ȱŽ–™Ž›Šž›Žȱ Mongolia – Kangai-NuruuMongolia – Kangai-NuruuMongolia – Kangai-Nuruu 85.2±2.6Mongolia – Kangai-Nuruu 8.8±0.3 86.4±3.1Mongolia – Kangai-Nuruu 20.0±0.8 8.3±0.5 88.4±0.5 6.9±1.0 20.2±1.2 8.5±0.5 87.6±1.3 7.2±0.8 19.4±0.7 8.7±0.6 87.9±4.5 x 7.1±0.3 19.9±0.5 8.9±0.5 x 7.2±0.5 x 19.8±0.8 x 7.8±0.6 x x x x x x ǯȱžœŽȱ’—ȱ‘’œȱœž¢ǰȱŠ•˜—ȱ ’‘ȱ‘Žȱ’Ž—’ęȱŒŠ’˜—ǰȱŽ˜›Š™‘’Œȱ˜›’’—ǰȱœ’–™•Žȱ–˜›™‘˜–Ž›’ŒœȱǻƹȱœŠ—Š›ȱ ȱ œŒ‘’Šȱœ™ (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) FDWLRQ (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.)

H. sp. 1 H. sp. 1 H. sp. 1 H. sp. 1 H. sp. 1 H. sp. 2 H. sp. 2 H. sp. 2 H. sp. 2 H. sp. 2 H. sp. ,GHQWL¿ mphioxys

amphioxys cf. cf. a cf. H. amphioxys H. amphioxys H. amphioxys H. amphioxys H. amphioxys H. cf. amphioxys H. cf. H. H. (St1)f (St3)c (St3)a (St1)e (St4)a (St4)b (St2)d (St1)h (Mo1)l Strain (Mo1)e (Mo1)a (Mo1)h (Ban1)f (Mo1)m (Ban1)e (Ban1)d (Ban1)b (Ban1)h Table 6.2 List of strains Š—ĵ Table ŽŸ’Š’˜—ǼǰȱŠ—ȱŠŸŠ’•Š‹’•’¢ȱǻ¡Ǽȱ˜ȱ‘Žȱ–˜•ŽŒž•Š›ȱ–Š›”Ž›œȱ ™›ŽŽ›Ž—ŒŽȱŽ¡™Ž›’–Ž—œȱŠ›Žȱ’—’ŒŠŽȱ’—ȱ‘Žȱ•ŠœȱŒ˜•ž–—ǯ

Genetic divergence in P. borealis and H. amphioxys 157 exp. Temp. L LSU - - x x x x xx - xx x x x x x x x

rbc μ m) (#/10 Fibulae density μ m) Striae (#/10 density ( μ m) Width Morphometric data (± stdv) ( μ m) Length 46.8±0.7 8.2±0.3 20.3±1.3 7.6±0.7 x x 68.1±2.8 9.7±0.4 17.1±1.0 6.6±0.5 x x x 56.1±0.2 7.1±0.651.8±0.2 20.4±0.5 7.3±0.3 6.8±0.4 19.6±0.9 7.6±0.9 x x x x 52.3±0.5 7.2±0.452.3±0.4 19.7±0.7 7.3±0.4 6.8±1.0 18.8±1.0 7.9±1.0 x x x x Origin Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent Belgium – Gent Belgium – De Panne Belgium – De Panne Chile – Torres del PaineChile – Torres 68.1±0.9 8.1±0.5 18.8±1.4 7.2±1.2 x x (Ehr.) Grunow (Ehr.) FDWLRQ (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) – Schirmacher Oasis Antarctica Grunow (Ehr.) – Schirmacher Oasis Antarctica Grunow (Ehr.) – Schirmacher Oasis Antarctica – Schirmacher Oasis Antarctica – Schirmacher Oasis Antarctica Lange-Bertalot Lange-Bertalot Lange-Bertalot

H. sp. 3 H. sp. 3 H. sp. ,GHQWL¿

amphioxys cf. cf. H. amphioxys H. amphioxys H. abundans H. abundans H. abundans H. amphioxys H. amphioxys H. amphioxys H. amphioxys H. amphioxys H. S11 S13 S16 S15 S10 (St6)f (St8)c (St5)c (St6)e (St6)b Strain (Tor3)c (Wes3)b (Wes1)b

158 Genetic divergence in P. borealis and H. amphioxys intensity and a 12:12 hours light:dark period. Within the next week, cells resembling P. borealis and ǯȱŠ–™‘’˜¡¢œ were isolated under a ‹’—˜Œž•Š›ȱžœ’—ȱŠȱ—ŽŽ•ŽȱŠ—ȱ–’Œ›˜™’™ŽĴȱŽǯȱ˜—˜Œ•˜—Š•ȱœ›Š’—œȱ Ž›Žȱ maintained under standard culture conditions and re-inoculated when reaching late exponential phase. Antarctic samples were kept cold during transport and were incubated in WC medium at 5°C and low light intensities (ŒŠǯ 5 μmol ph m-² s-1) to prevent the death of possibly psychrophilic diatoms. Isolations of cells using needle and –’Œ›˜™’™ŽĴȱŽȱ Ž›Žȱ™›Ž˜›–Žȱ ’‘’—ȱ‘Žȱ—Ž¡ȱŗŖȱŠ¢œǯȱ˜—˜Œ•˜—Š•ȱ œ›Š’—œȱ Ž›Žȱęȱ›œȱ–Š’—Š’—ŽȱŠȱŞǚȱŠ—ȱ•ŠŽ›ȱŠȱŗśǚȱŠŽ›ȱ’—’’Š•ȱŽœœȱ demonstrated that the Antarctic cultures tolerated this temperature.

Morphological observations Cultures were harvested for morphological observations in late exponential phase, oxidized using hydrogen peroxide and embedded in Naphrax®. Pictures were taken using a Zeiss Axioplan 2 microscope equipped with an AxioCam Mrm camera. Valve length, width and stria density of 10 valves per strain were measured using –ŠŽ ȱ ŗǯřŝŸȱ œ˜ Š›Žǯȱ Ž—’ęȱŒŠ’˜—œȱ Ž›Žȱ ‹ŠœŽȱ ˜—ȱ ›Š––Ž›ȱ (2000) for Pinnularia borealis and Lange-Bertalot (1993) for Š—ĵȱœŒ‘’Š. Ž—’ęȱŒŠ’˜—œȱŠ—ȱ–˜›™‘˜–Ž›’ŒȱŠŠȱŠ›Žȱ•’œŽȱ’—ȱŠ‹•ŽœȱŜǯŗȱŠ—ȱ 6.2, respectively. Voucher material is kept in the Laboratory of Protistology & Aquatic Ecology (Gent University, Belgium) and is available upon request.

Molecular-genetic analyses Cultures were harvested for genetic analyses in exponential phase, and DNA was extracted from centrifuged diatom cultures following Zwart et al. (1998) using a bead-beating method with phenol extraction Š—ȱŽ‘Š—˜•ȱ™›ŽŒ’™’Š’˜—ǯȱŽ›ȱŽ¡›ŠŒ’˜—ǰȱȱ Šœȱ™ž›’ęȱŽȱ ’‘ȱŠȱ Wizard® DNA Clean-up system (Promega). Sequences of the D1-D2 region of the nuclear 28S rDNA and of the plastid gene ›‹ŒL were Š–™•’ęȱŽȱ˜••˜ ’—ȱœŠ—Š›ȱȱ™›’–Ž›œȱŠ—ȱ™›˜˜Œ˜•œȱǻŒ‘˜•’—ȱ et al., 1994; Daugbjerg & Andersen, 1997; Jones et al., 2005). Primer sequences, PCR conditions and sequencing protocol are described in ŽŠ’•ȱ’—ȱ˜žěȱ›ŽŠžȱet al. ǻœž‹–’ĴȱŽǼǯ Outgroups of P. borealis were based on a genus phylogeny of Pinnulariaȱǻ˜žěȱ›ŽŠžȱet al.ǰȱœž‹–’ĴȱŽǼȱŠ—ȱ’—Œ•žŽȱǯȱŒǯȱ–’Œ›˜œŠž›˜— (B2)c, ǯȱœ™ǯ (Wie)a, ǯȱœ™ǯȱPin873, ǯȱœž‹Œ˜––žŠŠ var. elongata Krammer Corsea10, ǯȱ ŠŒž–’—ŠŠ W. Smith Pin876, ǯȱ —Ž˜–Š“˜› Krammer

Genetic divergence in P. borealis and H. amphioxys 159 Corsea 2, ǯȱ —Ž•ŽŒ’˜›–’œ Krammer Pin706. For ǯȱ Š–™‘’˜¡¢œ, all available strains of Š—ĵȱœŒ‘’Šȱ’Ž—’ęȱŽȱŠœȱ—˜ȱ‹Ž’—ȱ ǯȱŠ–™‘’˜¡¢œ were used as outgroup (Table 6.2). Sequences were separately edited and automatically aligned using ClustalW (Thompson et al., 1994) implemented in BioEdit 7.0.3 (Hall, 1999). Plastid sequences aligned unambiguously without any gaps. The alignment of 28S was corrected manually using the secondary structure of ™Ž’—Ž••Šȱ radians (Ben Ali et al., 2001) after which ambiguously aligned regions were removed. For P. borealis, sequence lengths of 1,428 and 511 sites were used for ›‹ŒL and 28S rDNA, respectively. For Š—ĵȱœŒ‘’Š this was 1,457 and 525 sites, respectively. The ›‹ŒL alignement was ™Š›’’˜—Žȱ’—˜ȱ‘Žȱęȱ›œȱ ˜ǰȱœ•˜ Ž›ȱŽŸ˜•Ÿ’—ȱŒ˜˜—ȱ™˜œ’’˜—œȱŠ—ȱ a separate third codon position. The 28S was analyzed as a single partition. Datasets of Pinnularia borealis and Š—ĵȱœŒ‘’Š Š–™‘’˜¡¢œ were analyzed separately. Model selection was performed using TreeFinder (Jobb et al., 2004) on the concatenated dataset using a three-partition strategy (28S, and two codon positions of ›‹ŒL) and on the single genes, and based on the Bayesian Information Criterion (BIC, Schwarz, 1978) as a selection criterion. Individual genes and concatenated datasets were analysed by maximum likelihood phylogenetic inference using RAxML 7.2.6 ǻŠ–ŠŠ”’œǰȱŘŖŖŜǼȱž—Ž›ȱ‘Žȱ™›ŽŽ››Žȱ ƸɫŚȱ–˜Ž•ȱ ’‘ȱŗŖǰŖŖŖȱ independent tree searches from randomized MP starting trees. Maximum likelihood bootstrap analyses (Felsenstein, 1985) consisted of 1,000 replicates. Bayesian inference was applied using MrBayes v.3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) with the same models and partition schemes. Using default œŽĴȱ’—œǰȱ  ˜ȱ ’—Ž™Ž—Ž—ȱ ›ž—œȱ ’‘ȱ ˜ž›ȱ ’—Œ›Ž–Ž—Š••¢ȱ ‘ŽŠŽȱ Metropolis-coupled Monte-Carlo Markov Chains were run for ten million generations for the individual genes and 30 million generations for the concatenated datasets. Runs were sampled every 1,000th generation and convergence and stationarity of the log- likelihood and parameter values was assessed using Tracer v.1.5 ǻŠ–‹Šžȱ ǭȱ ›ž––˜—ǰȱ ŘŖŖŝǼǯȱ ‘Žȱ ęȱ›œȱ ŗŖƖȱ Ž—Ž›Š’˜—œȱ Ž›Žȱ discarded as burn-in for the individual gene and multi-gene analyses. ‘Žȱ ™˜œȬ‹ž›—Ȭ’—ȱ ›ŽŽœȱ ›˜–ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ ›ž—œȱ Ž›Žȱ œž––Š›’£Žȱ and posterior probabilities (PPs) were calculated in MrBayes using the sumt command. All analyses were performed using the publicly available computer resource Bioportal (Kumar et al., 2009).

160 Genetic divergence in P. borealis and H. amphioxys Molecular time-calibration Based on the molecular dataset, the phylogenetic relationships of P. borealis were placed in a time frame by constructing a time-calibrated phylogeny. Calibration of the molecular clock was based on the 95% highest posterior desities (HPD) resulting from the preferred time- calibration of the Pinnulariaȱ Ž—žœȱ ™‘¢•˜Ž—¢ȱ ’—ȱ ˜žěȱ›ŽŠžȱ et al. ǻœž‹–’ĴȱŽǼȱ ‘’Œ‘ȱ ŠœȱŒ˜—œ›Š’—Žȱ‹¢ȱ‘Žȱ˜œœ’•ȱ›ŽŒ˜›ǯȱ‘›ŽŽȱ—˜Žœȱ of the phylogeny of P. borealis were constrained (gray circles in Fig. 6.2) using each a uniform distribution of their recovered 95% HPD. ‹ŒL was partitioned into codon position (1st +2nd combined), LSU was used as a single partition. Metropolis-coupled Monte-Carlo Markov Chains were run by BEAST v1.5.4 (Drummond & Rambaut, ŘŖŖŝǼȱ ž—Ž›ȱ Šȱ ȱ Ƹȱ ̆Śȱ –˜Ž•ȱ ˜›ȱ ŽŠŒ‘ȱ ™Š›’’˜—ȱ Š—ȱ Šȱ ›Ž•Š¡Žǰȱ uncorrelated lognormal clock model and Yule tree prior. Three independent analyses, each started by a UPGMA tree, were run for 100 million generations and sampled every 1,000th generation. Burn- in values of 30 till 40% were assessed using Tracer v.1.5 (Rambaut & Drummond, 2007). All post-burn-in trees were combined after which the maximum clade credibility chronogram with mean node heights was calculated using TreeAnnotator v.1.5.4.

Temperature preference experiments For P. borealis, we selected per environmental sample two genetically characterized strains for the experiments, giving in total 22 strains (Table 6.1). The cells of the cultures from the Chilean samples Tor12 and Tor3 were too small to be used. For Š—ĵȱœŒ‘’Š, we selected ˜—•¢ȱ ‘Žȱ œ›Š’—œȱ ’Ž—’ęȱŽȱ Šœȱ ǯȱ Š–™‘’˜¡¢œ and their genetically nearest sister taxon (St3)a. All Antarctic strains and 1 or 2 strains per lineage were analyzed (depending on the availability), giving in total 11 strains (Table 6.2). Before experimental treatment, all strains were grown in standard culture conditions at 15°C during at least 2 months. The growth rate of the strains was assessed over a temperature range from +2.9°C to +32.4°C using a temperature ›Š’Ž—ȱŠ‹•ŽȱǻŠ‹’˜ǰȱǯǼȱŠ—ȱĚȱž˜›ŽœŒŽ—ŒŽȱ–ŽŠœž›Ž–Ž—œȱ˜ȱŠ›”Ȭ adapted cells (F0) as a proxy for density (Consalvey et al., 2005). Ž˜›ŽȱĚȱž˜›ŽœŒŽ—ŒŽȱ–ŽŠœž›Ž–Ž—œǰȱŒŽ••œȱ Ž›ŽȱŠ›”ȬŠŠ™Žȱž›’—ȱ 15 minutes at 18°C, and F0 was measured daily during 7 days by ž•œŽȱ –™•’žŽȱ ˜ž•ŠŽȱ ǻǼȱ Ěȱž˜›ŽœŒŽ—ŒŽȱ žœ’—ȱ Šȱ Š•ĵȱȱ  ȱ –Š’—Ȭȱ ǻȬœŽ›’ŽœǼȱ ’‘ȱ ŽŠž•ȱ œŽĴȱ’—œǰȱ ’—Ž—œ’¢ȱ ˜ȱ 12, gain of 8 and damping of 1. The experiments were carried out in

Genetic divergence in P. borealis and H. amphioxys 161 ›’™•’ŒŠŽȱžœ’—ȱ Ž••œȱ˜ȱŘŚȬ Ž••ȱ™•ŠŽœȱŠ—ȱ‘ŽȱŠ‹•Žȱ Šœȱęȱ••Žȱ ’‘ȱşȱ series of 4 plates. Each of the four rows of wells in a series of plates Œ˜››Žœ™˜—Žȱ˜ȱŠȱœ™ŽŒ’ęȱŒȱŽ–™Ž›Šž›Žǰȱ ‘’•ŽȱŠȱ˜Š•ȱ˜ȱŘŚȱ Ž••œȱǻŚȱ plates in a series, 6 wells per plate) were available per temperature in Šȱœ’—•ŽȱŽ¡™Ž›’–Ž—ǯȱ —ȱ˜Š•ȱŗŘȱ’ěȱŽ›Ž—ȱŽ¡™Ž›’–Ž—Š•ȱŽ–™Ž›Šž›Žœȱ were selected, spread over the 9 series of plates. Per temperature, strains were randomly inoculated in the wells. Replicates were œ™›ŽŠȱ˜ŸŽ›ȱ’ěȱŽ›Ž—ȱŽ¡™Ž›’–Ž—œȱ˜ȱŠŸ˜’ȱŠ—¢ȱ™˜œœ’‹•ŽȱŽěȱŽŒœȱ˜ȱ experiment. ˜ȱ Ž—œž›Žȱ ‘Šȱ Š••ȱ ’ěȱŽ›Ž—ŒŽœȱ Š–˜—ȱ œ›Š’—œȱ ˜ž•ȱ ‹Žȱ žŽȱ ˜ȱ Ž—Ž’Œȱ ŽěȱŽŒœȱ Š—ȱ —˜ȱ ˜ȱ –Ž›Žȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ ™‘¢œ’˜•˜’ŒŠ•ȱ condition, all strains were prior to the experiment inoculated at ‘Žȱ œŠ–Žȱ ŒŽ••ȱ Ž—œ’¢ȱ Œ˜››Žœ™˜—’—ȱ ’‘ȱ Šȱ Ŗȱ ȱ Ěȱž˜›ŽœŒŽ—ŒŽȱ ŸŠ•žŽȱ ˜ȱ ŖǯŖśŖȱ žœ’—ȱ ‘Žȱ Š‹˜ŸŽȬ–Ž—’˜—Žȱ œŽĴȱ’—œȱ Š—ȱ ›˜ —ȱ during 5 days in standard culture conditions in 6-well plates. Next, all strains were again re-inoculated at an F0-value of 0.050 and grown for 5 days during which the culture medium was refreshed daily to keep them in exponential phase. Together, this treatment ensures growth in early to mid-exponential phase for all strains for in total approximately 5 generations. The strains were harvested by –’Œ›˜™’™ŽĴȱŽȱŠ—ȱ’—˜Œž•ŠŽȱ’—ȱ‘Žȱ Ž••ȱ™•ŠŽœȱŠȱŠȱœŠ›’—ȱŽ—œ’¢ȱ˜ȱ 0.025 (F0-value), after which they were placed on the gradient table. ž•ž›Žȱ Ž—œ’’Žœȱ Ž›Žȱ –ŽŠœž›Žȱ Š’•¢ȱ ‹¢ȱ ȱ Ěȱž˜›ŽœŒŽ—ŒŽȱ Šœȱ ŽœŒ›’‹ŽȱŠ‹˜ŸŽǯȱŽ›ȱ–ŽŠœž›Ž–Ž—ǰȱ‘Žȱ’ěȱŽ›Ž—ȱ Ž••ȱ™•ŠŽœȱ›˜–ȱ each temperature series were placed back in random order at their appropriate temperature on the table. The temperature of each well was measured using a calibrated precision thermometer (Ebro) at the end of each experiment, and average temperature was calculated ˜›ȱŽŠŒ‘ȱŽ–™Ž›Šž›ŽȱœŽ›’ŽœȱŠ—ȱęȱ—Š••¢ȱŠŸŽ›ŠŽȱ˜ŸŽ›ȱŠ••ȱ›Ž™•’ŒŠŽȱ experiments per assessed temperature. To calculate the growth rate for each temperature per strain, F0-values were log 2 transformed, ‘Žȱ œŽŸŽ—ȱ ŠŠȱ ™˜’—œȱ ™Ž›ȱ ›Ž™•’ŒŠŽȱ Ž›Žȱ ™•˜ĴȱŽȱ ŠŠ’—œȱ ’–Žȱ ǻ’—ȱ hour), and the slope of the exponential growth curve was estimated žœ’—ȱ•’—ŽŠ›ȱ›Ž›Žœœ’˜—ȱ’—ȱ¡ŒŽ•ȱŘŖŖŝȱǻ’Œ›˜œ˜ȱĜȱȱŒŽǼǯ

6.3 Results Taxon sampling In total 52 strains of P. borealis were studied, including the morphological varieties borealis, ’œ•Š—’ŒŠ and œŒŠ•Š›’œ (Table 6.1). For Š—ĵȱœŒ‘’Š, from the 31 strains only 11 strains could be

162 Genetic divergence in P. borealis and H. amphioxys morphologically assigned to Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ (stria density of ŘŖȬŘşȦŗŖȱΐ–Ǽǰȱ ‘’•Žȱœ˜–Žȱ˜ȱ‘Žȱ˜‘Ž›ȱœ›Š’—œȱ Ž›Žȱ’Ž—’ęȱŽȱŠœȱH. abundansȱǻœ›’ŠȱŽ—œ’¢ȱ˜ȱŗśȬŘŖȦŗŖȱΐ–ǼȱǻŠ‹•ŽȱŜǯŘǼǯȱŽŸŽ›Š•ȱœ›Š’—œȱ Œ˜ž•ȱ—˜ȱ‹Žȱ’Ž—’ęȱŽȱ˜ȱŠȱ”—˜ —ȱ–˜›™‘˜•˜’ŒŠ•ȱœ™ŽŒ’ŽœǰȱŠ—ȱ Ž›Žȱ reported as Š—ĵȱœŒ‘’Šȱœ™ǯŗ, œ™ǯȱŘ and œ™ǯȱř or ǯȱŒǯȱŠ–™‘’˜¡¢œ.

Molecular-phylogenetic analyses of P. borealis Analyses using ML and BI gave identical results based on the individual genes and concatenated dataset. Therefore only the ML phylogeny of the concatenated analysis is shown in Fig. 6.1. œȱ œ‘˜ —ȱ ™›ŽŸ’˜žœ•¢ȱ ǻ˜žěȱ›ŽŠžȱ et al.ǰȱ œž‹–’ĴȱŽǼǰȱ P. borealis was recovered as monophyletic. Within the P. borealis lineage, eight highly supported lineages can be clearly delineated (indicated by grey boxes in Fig. 6.1). These same lineages were all resolved with high support in the individual gene phylogenies, enhancing the ™›˜‹Š‹’•’¢ȱ‘Šȱ‘ŽœŽȱ•’—ŽŠŽœȱŒ˜››Žœ™˜—ȱ˜ȱ’ěȱŽ›Ž—ȱœ™ŽŒ’Žœǯȱ‘›ŽŽȱ ˜ȱ‘ŽœŽȱ•’—ŽŠŽœȱŒ˜—Š’—Žȱœ›Š’—œȱ›˜–ȱ’ěȱŽ›Ž—ȱ•˜ŒŠ’˜—œȱǽŽ•’ž–ȱ + French Alps; Czech Republic + Canada (1); Belgium + Canada (2)]. There appears to be some (phylo)geographic signal within these •’—ŽŠŽœȱœ’—ŒŽȱœ›Š’—œȱ›˜–ȱ’ěȱŽ›Ž—ȱ•˜ŒŠ’˜—œȱǻŠ—ŠŠȱvs. Europe, and Belgium vs.ȱ›Ž—Œ‘ȱ•™œǼȱ‘Šȱ’ěȱŽ›Ž—ȱœŽšžŽ—ŒŽœǯȱȱŠȱœ’—•Žȱ œ’Žȱ ’—ȱ Ž•’ž–ȱ ǻȱ ƽȱ Ž—ǰȱ Ž››ŽǼȱ ‘›ŽŽȱ ’ěȱŽ›Ž—ȱ •’—ŽŠŽœȱ Ž›Žȱ detected and a single sediment sample (St6) contained two lineages, showing that at least some of the lineages occur sympatrically. Only a single morphological variety, var. ’œ•Š—’ŒŠ, is restricted to a single •’—ŽŠŽȱǻ’ǯȱŜǯŗǼǰȱ‘Žȱ ˜ȱ˜‘Ž›ȱŸŠ›’Ž’ŽœȱŠ›ŽȱœŒŠĴȱŽ›Žȱ‘›˜ž‘˜žȱ ‘Žȱ ™‘¢•˜Ž—¢ȱ ’—’ŒŠ’—ȱ ‘Šȱ ‘ŽœŽȱ ŸŠ›’Ž’Žœȱ Šœȱ Œž››Ž—•¢ȱ Žęȱ—Žȱ have no evolutionary meaning. Based on our taxon sampling, the P. borealisȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡ȱœŠ›Žȱ˜ȱ’ŸŽ›œ’¢ȱŘŘȱŠȱŠ˜ȱǽŗśǯśȬŘŝǯŘȱ ŠȱşśƖȱ‘’‘Žœȱ™˜œŽ›’˜›ȱŽ—œ’’Žœȱǻ ǼǾȱǻ’ǯȱŜǯŘǼǯȱ‘Žȱ’ěȱŽ›Ž—ȱ lineages diverged on average between 11.9 and 5.0 Ma ago, with a minimum and maximum 95% HPD of 0.45 and 17.91 Ma over all lineages.

Molecular-phylogenetic analyses of H. amphioxys Again, we only show the ML phylogeny based on the concatenated dataset since both ML and BI and the two individual genes gave

Genetic divergence in P. borealis and H. amphioxys 163 Fig. 6.1ȱŠ¡’–ž–ȱ•’”Ž•’‘˜˜ȱ™‘¢•˜Ž—¢ȱ‹ŠœŽȱ˜—ȱrbcȱŠ—ȱ‘ŽȱŗȬŘȱ›Ž’˜—ȱ˜ȱŘŞȱ›ȱ for P. borealisȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ‹˜˜œ›Š™ȱŸŠ•žŽœȱȬȱ™˜œŽ›’˜›ȱ™›˜‹Š‹’•’’Žœǯȱ’—ŽŠŽœȱŠ›Žȱ ’—’ŒŠŽȱ‹¢ȱ›Ž¢ȱ‹˜¡Žœǰȱ ’‘ȱŠ›”ȱ›Ž¢ȱ‹˜¡ŽœȱŒ˜—Š’—’—ȱ•’—ŽŠŽœȱ‘ŠȱŒ˜ž•ȱ™˜Ž—’Š••¢ȱ‹Žȱ ž›‘Ž›ȱ’Ÿ’Žǯ

164 Genetic divergence in P. borealis and H. amphioxys identical results (Fig. 6.3). All Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œ strains were recovered as a monophyletic clade. In total 5 ǯȱŠ–™‘’˜¡¢œ lineages can be delineated (indicated by grey boxes in Fig. 6.3), of which 4 were isolated from a single site in Belgium (St = Gent, Sterre). Compared to the P. borealis phylogeny, the branch lengths between these lineages are much shorter. Outside the ǯȱ Š–™‘’˜¡¢œ clade, ‘›ŽŽȱ •’—ŽŠŽœȱ Œ˜—Š’—Žȱ œ›Š’—œȱ ‘’Œ‘ȱ œž™Ž›ęȱŒ’Š••¢ȱ ›ŽœŽ–‹•Žȱ H. Š–™‘’˜¡¢œ (H. Œǯȱ Š–™‘’˜¡¢œ), two of which were placed in a large clade containing most other Š—ĵȱœŒ‘’Š strains, another one as sister to the ǯȱŠ–™‘’˜¡¢œ clade (Fig. 6.3). Also for other strains, e.g. those ’Ž—’ęȱŽȱ Šœȱ H. abundans or ǯȱ œ™ǯȱ ŗǰȱ ‘Žȱ ’Ž—’ęȱŒŠ’˜—œȱ ‹ŠœŽȱ ˜—ȱ morphology in LM often didn’t match the separation in lineages in the phylogeny.

Thermal adaptation in P. borealis Average growth rate per lineage versus temperature is shown in Fig. 6.4 The optimal growth temperature (i.e. the temperature at which the highest growth rate is observed) of the Antarctic lineage lays around 15°C, while for most other lineages this is situated around 20-24°C. The Antarctic lineage is thus clearly adapted to colder temperatures. Note however that the lineage containing the Mongolian strains œ‘˜ œȱŠȱœ’–’•Š›ȱ›˜ ‘ȱ›ŠŽȱ™›˜ęȱ•ŽȱŠœȱ‘Žȱ—Š›Œ’Œȱœ›Š’—œǯȱ•œ˜ȱ‘Žȱ upper lethal temperature is situated around 24°C for the Antarctic and Mongolian strains, while this lies between 25 and 29°C for the other lineages, indicating that the Antarctic strains have lost the capacity to survive at higher temperatures. The lineage Canada(1)- Czech Republic and the lineage from the French Alps are intermediate concerning their upper lethal temperature. Meanwhile, because the strains of the French Alps underwent cell size enlargement in culture (the mechanism was not observed), these results should be interpreted with caution. Despite this, the two colder-adapted •’—ŽŠŽœȱǻ˜—˜•’ŠȱŠ—ȱ—Š›Œ’ŒŠǼȱ‹Ž•˜—ȱ˜ȱŠȱęȱ›œȱ•Š›Žȱœž‹Œ•ŠŽȱ of P. borealis (Fig. 6.1, upper clade), while the higher temperature tolerant lineages all form a second subclade (Fig. 6.1, lower clade).

Thermal adaptation in H. amphioxys Similar to the P. borealis species complex, the optimal and upper lethal temperatures of the Antarctic lineage are lower compared to the other lineages (Fig. 6.5), but to a lesser extent than in the P. borealis species complex (Fig. 6.4). The optimal temperature lays

Genetic divergence in P. borealis and H. amphioxys 165 Fig. 6.2ȱ’–ŽȱŒŠ•’‹›ŠŽȱ–˜•ŽŒž•Š›ȱ™‘¢•˜Ž—¢ȱ˜ȱP. borealis based on rbcȱŠ—ȱ‘ŽȱŗȬŘȱ ›Ž’˜—ȱ˜ȱŘŞȱ›ǰȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ–ŽŠ—ȱŠŽœȱ’—ȱ‹•ŠŒ”ȱŠ—ȱ™˜œŽ›’˜›ȱ™›˜‹Š‹’•’’Žœȱ’—ȱ ›Ž¢ǯȱ‘Žȱ‘›ŽŽȱ›Ž¢ȱŒ’›Œ•Žœȱ’—’ŒŠŽȱ‘ŽȱŒ˜—œ›Š’—Žȱ—˜Žœȱžœ’—ȱ‘ŽȱşśƖȱ ȱ›Žœž•œȱ˜ȱ ‘Žȱ’–ŽȬŒŠ•’‹›ŠŽȱ™‘¢•˜Ž—¢ȱ˜ȱ‘ŽȱŽ—žœȱPinnulariaȱ’—ȱ˜žěȱ›ŽŠžȱet al. ǻœž‹–’ĴȱŽǼȱ‹ŠœŽȱ ˜—ȱ˜œœ’•ȱŒ˜—œ›Š’—œǯȱ ›Ž¢ȱ‹Š›œȱ›Ž™›ŽœŽ—ȱ‘ŽȱşśƖȱ ȱ’—Ž›ŸŠ•œǯȱ‘Žȱ—ž–‹Ž›ȱ˜ȱœŽšžŽ—ŒŽȱ œ›Š’—œȱ™Ž›ȱ•’—ŽŠŽȱ’œȱ’ŸŽ—ȱ‹Ž ŽŽ—ȱ‹›ŠŒ”Žœǯ

166 Genetic divergence in P. borealis and H. amphioxys around 20°C for the Antarctic lineage, and around 23°C for the other lineages. The temperature preference of the single ǯȱŒǯȱŠ–™‘’˜¡¢œ strain (St3)a sister to the ǯȱŠ–™‘’˜¡¢œ clade was similar to that of the temperate ǯȱŠ–™‘’˜¡¢œ strains.

6.4 Discussion Based on the molecular phylogenies, P. borealis and ǯȱ Š–™‘’˜¡¢œ consist of multiple genetically diverged lineages, including a distinct Antarctic lineage. Based on a molecular clock estimate, the species complex P. borealis originated between 30 and 47 Ma ago, while the Antarctic lineage of P. borealis is estimated to have diverged around 7.7 Ma ago from its sister lineage. In addition, the Antarctic lineages of both P. borealis and ǯȱŠ–™‘’˜¡¢œ diverged in optimal temperature and in upper lethal temperature from the lineages from more temperate regions. Taken together, despite our doubtlessly non- exhaustive taxon sampling, this indicates that the high percentage of endemics found on the Antarctic continent as reported by Verleyen et al.ȱǻœž‹–’ĴȱŽǼȱ’œȱŠ—ȱž—Ž›Žœ’–Š’˜—ȱŠ—ȱ›Š’œŽœȱšžŽœ’˜—œȱŠ‹˜žȱ‘Žȱ reality of the other presumed cosmopolitan species in the Antarctic. (Pseudo)cryptic speciation has been reported in a variety of diatom genera (Sarno et al., 2005; Mann & Evans, 2007; Vanormelingen et al., 2008; Trobajo et al., 2009; Vanelslander et al., 2009) and we gathered genetic indications that Pinnularia borealis and Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱ ŒŠ—ȱ ‹Žȱ ŠŽȱ ˜ȱ ‘’œȱ •’œǯȱ ‘Žȱ ‹›Š—Œ‘’—ȱ ™ŠĴȱŽ›—ȱ ’—ȱ ‘Žȱ molecular phylogenies is composed of groups of strains with few nucleotide substitutions (i.e. lineages) compared to the large number of substitutions separating them, which is typical for the species level (e.g. Jargeat et al., 2010; Tronholm et al., 2010). The fact that identical •’—ŽŠŽœȱ Ž›Žȱ›ŽŒ˜ŸŽ›Žȱ‹¢ȱ ˜ȱ’ěȱŽ›Ž—ǰȱ’—Ž™Ž—Ž—ȱ–Š›”Ž›œȱǻin ŒŠœž ›‹ŒL and 28S rDNA), even when it concerned sympatric strains, ›Ž’—˜›ŒŽœȱ‘’œȱŒ˜—Œ•žœ’˜—ǯȱ —ȱ‹˜‘ȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡Žœǰȱ‘Žȱ’ěȱŽ›Ž—ȱ lineages have no clearly distinct morphologies, and only correspond ™Š›’Š••¢ȱ ˜ȱ ‘Žȱ ’Ž—’ęȱŒŠ’˜—œȱ ‹ŠœŽȱ ˜—ȱ ŸŠ•ŸŽȱ –˜›™‘˜•˜¢ǯȱ Žȱ doubt whether further morphological examination could reveal ǻŠȱ Œ˜–‹’—Š’˜—ȱ ˜Ǽȱ Œ‘Š›ŠŒŽ›œȱ Š••˜ ’—ȱ ˜ȱ Œ˜—ęȱŽ—•¢ȱ ’Ž—’¢’—ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ •’—ŽŠŽœǯȱ •ŠŽŠœŽȱ ǻ ž’›¢ȱ ǭȱ ž’›¢ǰȱ ŘŖŗŗǼȱ Œ’Žœȱ Śśȱ varieties of P. borealis, while the 7 varieties mentioned in Krammer (2000) already overlap in described morphological characteristics. Concerning ǯȱŠ–™‘’˜¡¢œ, 25 varieties are mentioned in AlgaeBase (Guiry & Guiry, 2011), and Cleve-Euler (1952) characterized ŒŠǯ 30

Genetic divergence in P. borealis and H. amphioxys 167 Fig. 6.3ȱŠ¡’–ž–ȱ•’”Ž•’‘˜˜ȱ™‘¢•˜Ž—¢ȱ‹ŠœŽȱ˜—ȱrbcȱŠ—ȱ‘ŽȱŗȬŘȱ›Ž’˜—ȱ˜ȱŘŞȱ›ȱ for H. amphioxysȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ‹˜˜œ›Š™ȱŸŠ•žŽœȱȬȱ™˜œŽ›’˜›ȱ™›˜‹Š‹’•’’Žœǯȱ’—ŽŠŽœȱŠ›Žȱ ’—’ŒŠŽȱ‹¢ȱ›Ž¢ȱ‹˜¡Žœǯ

168 Genetic divergence in P. borealis and H. amphioxys ’—›Šœ™ŽŒ’ęȱŒȱŠ¡Šȱ ’‘’—ȱŒŠ—’—ŠŸ’Š—ȱ ǯȱŠ–™‘’˜¡¢œ, while Krammer & Lange-Bertalot (1988) recognized the extreme morphological diversity in ǯȱŠ–™‘’˜¡¢œ but estimated the disentanglement of this complex beyond reach. On the other hand, advanced morphometrics has been useful for separating pseudocryptic species in a few of the more diverse diatom species complexes (Droop et al., 2000; Mann et al.ǰȱ ŘŖŖŚǼǯȱ Žœ™’Žȱ ‘’œǰȱ ›˜ž’—Žȱ ’Ž—’ęȱŒŠ’˜—œȱ ‹ŠœŽȱ ˜—ȱ ŸŠ•ŸŽȱ –˜›™‘˜•˜¢ȱŠ•˜—Žȱ™›˜‹Š‹•¢ȱ ’••ȱŠ• Š¢œȱ‹Žȱ’ĜȱȱŒž•ȱ˜ȱ’–™˜œœ’‹•Žǯȱ DNA barcoding, a diagnostic technique in which short characteristic ȱœŽšžŽ—ŒŽǻœǼȱŠ›ŽȱžœŽȱ˜›ȱœ™ŽŒ’Žœȱ’Ž—’ęȱŒŠ’˜—ȱǻ Ž‹Ž›ȱet al., 2003; Savolainen et al.ǰȱ ŘŖŖśǼǰȱ Œ˜ž•ȱ ˜ěȱŽ›ȱ Šȱ œ˜•ž’˜—ȱ ǻŠ——ȱ et al., 2010). The genetic divergence between the Antarctic and other P. borealis and ǯȱ Š–™‘’˜¡¢œ lineages indicates that dispersal is limited enough to allow lineage divergence or speciation on the Antarctic continent, even for such abundant terrestrial diatoms. While the sampling of strains from the non-Antarctic locations ’œȱ •Žœœȱ Ž¡‘Šžœ’ŸŽǰȱ Žȱ œ’–’•Š›•¢ȱ ŽŽŒȱ Ž—Ž’ŒŠ••¢ȱ ’ěȱŽ›Ž—’ŠŽȱ lineages in P. borealisȱœŠ–™•Žȱ›˜–ȱ’ěȱŽ›Ž—ȱ›Ž’˜—œȱœžŒ‘ȱŠœȱ‘’•Žǰȱ ˜—˜•’Šȱ Š—ȱ Ž•’ž–ǯȱ Ž˜›Š™‘’ŒŠ••¢ȱ •’–’Žȱ Ž—Žȱ Ěȱ˜ ȱ ’œȱ Š•œ˜ȱ suggested by the observation that strains within the same lineage ‹žȱ›˜–ȱ’ěȱŽ›Ž—ȱŽ˜›Š™‘’Œȱ•˜ŒŠ’˜—œȱ™˜œœŽœœȱœ˜–ŽȱŸŠ›’Š‹•Žȱ™˜’—ȱ mutations, indicating that there is phylogeographic structure within lineages between and perhaps even within continents. However, this should be investigated in more detail by increasing the number of sampled locations and by increasing the number of individual strains sampled per population. Furthermore, a high number of sequenced individuals per meta-population (i.e. per species) is —ŽŒŽœœŠ›¢ȱ˜ȱŠœœŽœœȱ‘ŽȱŽ—Ž’ŒȱŸŠ›’Š‹’•’¢ȱ ’‘’—ȱŠȱœ™ŽŒ’ęȱŒȱ•’—ŽŠŽǯȱ That way, algorithmic sequence-based species delimitation which determines the boundary between species and populations can be performed (Pons et al., 2006; Monaghan et al., 2009). On a chronogram, the transition from the species-level processes (speciation and extinction) to population-level processes (coalescence) is association with a sudden increase in branching rate (i.e. a sudden increase in —ž–‹Ž›ȱ˜ȱ’ěȱŽ›Ž—’ŠŽȱŽ—˜¢™ŽœǼǯ Compared with freshwater habitats, soils are characterized by a higher spatial availability and continuity, while the dryer sediment is more susceptible to be picked up by air currents (Chepil, 1956). Combined with the relatively high tolerance of soil-inhabiting diatoms, including P. borealis and ǯȱŠ–™‘’˜¡¢œ, compared to their

Genetic divergence in P. borealis and H. amphioxys 169 Fig. 6.4ȱ Ž–™Ž›Šž›ŽȬŽ™Ž—Ž—ȱ ›˜ ‘ȱ ›ŠŽȱ ˜ȱ P. borealisǯȱ ‘Žȱ ›Š™‘ȱ ›Ž™›ŽœŽ—œȱ ‘Žȱ ›˜ ‘ȱ›ŠŽȱ™Ž›ȱŠœœŽœœŽȱŽ–™Ž›Šž›Žȱ‹ŠœŽȱ˜—ȱŠȱ˜Š•ȱ˜ȱŘŘȱP. borealisȱœ›Š’—œǰȱŠŸŽ›ŠŽȱ™Ž›ȱ •’—ŽŠŽȱ ’‘ȱœŠ—Š›ȱŽŸ’Š’˜—œǯ

Fig. 6.5ȱ Ž–™Ž›Šž›ŽȬŽ™Ž—Ž—ȱ ›˜ ‘ȱ ›ŠŽȱ ˜ȱ H. amphioxysǯȱ ‘Žȱ ›Š™‘ȱ ›Ž™›ŽœŽ—œȱ ‘Žȱ›˜ ‘ȱ›ŠŽœȱ™Ž›ȱŠœœŽœœŽȱŽ–™Ž›Šž›Žȱ‹ŠœŽȱ˜—ȱŠȱ˜Š•ȱ˜ȱŗŗȱH. amphioxys œ›Š’—œǰȱ ŠŸŽ›ŠŽȱ™Ž›ȱŽ—Ž’Œȱ•’—ŽŠŽȱ ’‘ȱœŠ—Š›ȱŽŸ’Š’˜—œǯ

170 Genetic divergence in P. borealis and H. amphioxys ŠšžŠ’ŒȱŒ˜ž—Ž›™Š›œȱ˜ȱŽ–™Ž›Šž›ŽȱŽ¡›Ž–Žœȱǻ˜žěȱ›ŽŠžȱet al., 2010) Š—ȱŽŸŽ—ȱŽœ’ŒŒŠ’˜—ȱǻ˜žěȱ›ŽŠžȱet al., unpubl. b), this will enhance the dispersal potential and thus colonization chances of these diatoms. Living cells of Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ have been encountered ’—ȱŠ’›ȱ›Š™œȱŠȱž—”—˜ —ȱ‘Ž’‘ȱǻ Ž’œœ•Ž›ȱǭȱ Ž›•˜ěȱǰȱŗşŜŜǼȱŠ—ȱž›’—ȱ a colonization experiment on the roof of a university building (C. ˜žěȱ›ŽŠžǰȱž—™ž‹•ǯȱŠŠǼǯȱ’Ĵȱ•Žȱ’œȱ”—˜ —ȱŠ‹˜žȱǻ ’—Ǽȱ’œ™Ž›œŠ•ȱ›ŠŽœȱ ŠŒ›˜œœȱ ’ěȱŽ›Ž—ȱ œ™Š’Š•ȱ œŒŠ•Žœǰȱ ‹žȱ •’Ÿ’—ȱ ’Š˜–œȱ ŒŽ••œȱ Š›Žȱ –˜œ•¢ȱ encountered at low heights, close to the soil (Van Overeem, 1937; Schlichting, 1961; Brown et al., 1964), suggesting that short distance ’œ™Ž›œŠ•ȱ˜ŸŽ›ȱŠȱŽ ȱ–Ž›Žœȱ’œȱŽęȱ—’Ž•¢ȱ™˜œœ’‹•Žȱ ‘’•Žȱ•˜—Ȭ’œŠ—ŒŽȱ dispersal might be associated with much higher mortalities. In any case, if any diatom species had a high chance of being cosmopolitan, it would have been P. borealis and ǯȱŠ–™‘’˜¡¢œ, making it likely that many of the other so-called cosmopolitan species on (sub-)Antarctica are also species complexes with a distinct (sub-)Antarctic lineage. The Antarctic continent is highly isolated, and we can realistically assume that the surrounding oceans are a relatively strong dispersal barrier for diatom cells. The age of the species complex P. borealis, being between 30 and 47 Ma, has allowed it to colonize all continents, including the Antarctic. Based on our taxon sampling the current Antarctic lineage of P. borealis present in the Schirmacher Oasis is estimated to have diverged between 15 and 2 Ma ago from its sister lineage, which is fairly recent compared to the ŠŽȱ˜ȱ‘Žȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡ǰȱ‹žȱ–˜œȱ•’”Ž•¢ȱœ’žŠŽȱŠŽ›ȱ‘Žȱęȱ—Š•ȱ opening of the Drake Passage between the Antarctic Peninsula and South America around 14 Ma (Lagabrielle et al., 2009) and after the start of the Mid-Miocene cooling event of the Antarctic continent, which resulted in the increase of the East Antarctic ice sheet and ‘ŽȱŽœŠ‹•’œ‘–Ž—ȱ˜ȱž••ȱ™˜•Š›ȱŒ•’–ŠŽȱŒ˜—’’˜—œȱǻ•˜ Ž›ȱǭȱ Ž——ŽĴȱǰȱ 1994). This corresponds to divergent dates of Antarctic mites and springtails from the sub-Antarctic lineages (Stevens et al., 2006; Mortimer et al., 2011). These time estimates indicate the establishment of P. borealis on the geographically isolated continent through long- distance dispersal, and subsequent lineage divergence. It is yet unclear whether any P. borealis inhabiting the continent before the Mid-Miocene cooling went extinct, or if there still is a second more ancient P. borealis lineage on the continent, which started diverging after opening of the Drake passage but is currently regionally absent from the Schirmacher Oasis. Alternatively, for P. borealis, the upper limit of divergence for the Antarctic lineage (15 Ma) is correct and

Genetic divergence in P. borealis and H. amphioxys 171 ‘Žȱœ™ŽŒ’Š’˜—ȱŽŸŽ—ȱ˜ȱ‘Žȱ—Š›Œ’ŒȱŒ•ŠŽȱ’œȱŠœœ˜Œ’ŠŽȱ ’‘ȱ‘Žȱęȱ—Š•ȱ opening of the Drake passage or the Mid Miocene cooling event triggering allopatric speciation. The growth rate experiments show that the Antarctic lineages of P. borealis and ǯȱŠ–™‘’˜¡¢œ have a relatively low optimal growth temperature and low upper temperature limit compared to lineages from more temperate areas. However, they are not psychrophilic, in contrast to a range of marine planktonic diatoms which die at temperatures no higher than 12-15°C (Bunt et al., 1966; Van Baalen & Odonnell, 1983; Fiala & Oriol, 1990; Thomas et al., 1992; Smith et al., 1994). This might be related to the fact that their habitat is less ‹žěȱŽ›Žȱ ŠŠ’—œȱ Ž–™Ž›Šž›Žȱ Œ‘Š—Žœǯȱ —ȱ œ‘Ž•Ž›Žȱ œž—ȬŽ¡™˜œŽȱ shallow water and wet soils or seepages, temperatures can be as high as 15°C even on continental Antarctica. In the Antarctic H. Š–™‘’˜¡¢œ, there is a modest shift in temperature preference with the most closely related temperate lineages, implying the loss of the ability to grow well at temperatures well above 20°C. For Antarctic P. borealis, the most closely related lineages from the French Alps and the Mongolian Khangai mountain range have quite similar Ž–™Ž›Šž›Žȱ™›˜ęȱ•Žœǯȱ‘Žȱ•’—ŽŠŽœȱ›˜ ’—ȱ Ž••ȱŠȱŽ–™Ž›Šž›Žœȱ Ž••ȱ above 20°C group into another lineage suggesting that there might be some phylogenetic signal in temperature preference in P. borealis. Species from one clade might be adapted to warmer climates, while species from the other clade, including the Antarctic lineage, might inhabit colder climates. Thermal adaptation related to climatic zones ‘Šœȱ Š•œ˜ȱ ‹ŽŽ—ȱ œ‘˜ —ȱ ˜›ȱ ‘Žȱ ‘ŽŽ›˜ĚȱŠŽ••ŠŽȱ ™ž–Ž••Š (Boenigk et al., 2007) and the marine diatom ¢•’—›˜‘ŽŒŠ (Vanelslander et al., unpubl.), and our results contribute to the idea that protist species Š›Žȱ—˜ȱŽ–™Ž›Šž›ŽȱŽ—Ž›Š•’œœȱ‹žȱ’—œŽŠȱ’—‘Š‹’ȱœ™ŽŒ’ęȱŒȱŒ•’–Š’Œȱ zones. Here, we have shown for two cosmopolitan diatom –˜›™‘˜œ™ŽŒ’Žœȱ‘Šȱ‘Ž¢ȱŒ˜—œ’œȱ˜ȱ’ěȱŽ›Ž—ȱ•’—ŽŠŽœȱ ’‘ȱŠȱ’œ’—Œȱ continental Antarctic lineage which has diverged in its temperature preference from more temperate counterparts. However, many šžŽœ’˜—œȱ ›Ž–Š’—ȱ Š‹˜žȱ ‘Ž’›ȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱ Š—ȱ ‹’˜Ž˜›Š™‘¢ǯȱ Further research should therefore focus on assessing the geographic distribution of P. borealis and ǯȱ Š–™‘’˜¡¢œ lineages, especially in the (sub-)Antarctic and Arctic, to further unravel the evolutionary history of (polar) diatom lineages. More complete molecular phylogenies through more extensive taxon sampling, in combination with niche modelling, should also allow determining phylogenetic

172 Genetic divergence in P. borealis and H. amphioxys signals in temperature preference. Shorter-term regional extinction- colonization dynamics due to climate change in the Antarctic should be investigated using phylogeographic markers such as SNPs, or with –’Œ›˜œŠŽ••’Žœǯȱ ‘Žȱ •ŠĴȱŽ›ȱ ŒŠ—ȱ Š•œ˜ȱ ’ŸŽȱ ’—œ’‘ȱ ’—˜ȱ Œ˜—Ž–™˜›Š›¢ȱ ™ŠĴȱŽ›—œȱ˜ȱŽ—ŽȱĚȱ˜ ȱŠ–˜—ȱ™˜™ž•Š’˜—œȱŠ—ȱ‘žœȱ˜ȱ‘Žȱ’œ™Ž›œŠ•ȱ rates and distances. However, the correct interpretation of such studies requires a decent knowledge on species boundaries, and by doing so, this study lays a basis for future molecular research on the biogeography of polar diatoms.

Acknowledgments Žȱ ‘Š—”ȱ •˜’œ’Žȱ ˜ž•Ç²”˜Ÿ¤ȱ ˜›ȱ ™›˜Ÿ’’—ȱ Œž•ž›Žœȱ ˜ȱ Pinnularia borealis from Czech Republic. We are grateful to Tine Verstraete for performing the DNA extractions and PCR reactions of the Antarctic strains, and Andy Vierstraete for the sequencing. This research was ęȱ—Š—Œ’Š••¢ȱœž™™˜›Žȱ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱŽœŽŠ›Œ‘ȱȮȱ•Š—Ž›œȱ (FWO-Flanders, Belgium, funding of CS, PV and EV), the FWO- project 3G-0533-07 on taxonomic turnover in terrestrial and aquatic diatom communities, and the FWO-project 3G-0419-08 on thermal ŠŠ™Š’˜—ǯȱŠ–™•’—ȱ’—ȱ‘Žȱ—Š›Œ’Œȱ Šœȱęȱ—Š—Œ’Š••¢ȱœž™™˜›Žȱ‹¢ȱ the InBev-Baillet-Latour Fund project DELAQUA and the BelSPO Project Beldiva.

Genetic divergence in P. borealis and H. amphioxys 173

Part 3. Tolerance levels for dispersal- related stresses

Part 3: Tolerance levels for dispersal-related stresses 175

7. Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress

Š›˜•’—Žȱ ˜žěȱ›ŽŠžǰȱ ’ŽŽ›ȱ Š—˜›–Ž•’—Ž—ǰȱ •’Žȱ Ž›•Ž¢Ž—ǰȱ ˜Ž—ȱ Š‹‹ŽȱŠ—ȱ’–ȱ¢ŸŽ›–Š—

ǐȱȱŠ‹˜›Š˜›¢ȱ˜ȱ›˜’œ˜•˜¢ȱŠ—ȱšžŠ’ŒȱŒ˜•˜¢ǰȱ ‘Ž—ȱ —’ŸŽ›œ’¢ǰȱ ›’“œ•ŠŠ—ȱŘŞŗȱȬȱŞǰȱȬşŖŖŖȱ Ž—ǰȱŽ•’ž–

˜’ęȱŽȱ›˜–ȱ™ž‹•’œ‘ŽȱŠ›’Œ•Žȱ’—ȱPhycologiaȱǻŘŖŗŖǼȱŚşDZȱřŖşȬřŘŚ

Stress tolerance of vegetative diatom cells 177 Abstract ˜’•œȱ’ěȱŽ›ȱ›˜–ȱŠšžŠ’ŒȱœŽ’–Ž—œȱ’—ȱŽ—Ÿ’›˜—–Ž—Š•ȱŒ‘Š›ŠŒŽ›’œ’Œœȱ œžŒ‘ȱ Šœȱ –˜’œž›Žȱ ŠŸŠ’•Š‹’•’¢ȱ Š—ȱ Ž–™Ž›Šž›Žȱ ĚȱžŒžŠ’˜—œǰȱ Š—ȱ ’ȱ ’œȱ ‘Ž›Ž˜›Žȱ ‹Ž•’ŽŸŽȱ ‘Šȱ œ˜’•Ȭ’—‘Š‹’’—ȱ ’Š˜–œȱ ‘ŠŸŽȱ Šȱ ‹›˜ŠŽ›ȱ ˜•Ž›Š—ŒŽȱ›Š—Žȱ˜ȱ‘ŽœŽȱœ›ŽœœŽœȱ‘Š—ȱŠšžŠ’Œȱ’Š˜–œǯȱ˜ȱŽœȱ‘’œȱ ‘¢™˜‘Žœ’œǰȱ Žȱ ŠœœŽœœŽȱ ‘Žȱ œž›Ÿ’ŸŠ•ȱ ŒŠ™ŠŒ’’Žœȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ řŚȱ ‹Ž—‘’Œȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ ›˜–ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ ‘Š‹’Šœȱ ’—ȱ Ž•’ž–ȱ ‘Ž—ȱ Ž¡™˜œŽȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ Ž–™Ž›Šž›Žȱ œ›Žœœǯȱ ’¡ȱ’ěȱŽ›Ž—ȱœ›ŽœœȱŒ˜—’’˜—œȱ Ž›Žȱœž’ŽDZȱ›ŠžŠ•ȱ‘ŽŠ’—ȱž™ȱ˜ȱ ƸřŖǚȱ Š—ȱ ƸŚŖǚǰȱ Š‹›ž™ȱ ‘ŽŠ’—ȱ ˜ȱ ƸŚŖǚǰȱ ›ŽŽ£’—ȱ ˜ȱ ȬŘŖǚǰȱ Š—ȱ Žœ’ŒŒŠ’˜—ȱ ’‘ȱ Š—ȱ ’‘˜žȱ ™›ŽŒ˜—’’˜—’—ȱ Šȱ ƸřŖǚǯȱ ••ȱ œ’¡ȱ Œ˜—’’˜—œȱ ›Žœž•Žȱ ’—ȱ Šȱ œ’—’ęȱŒŠ—•¢ȱ ŽŒ›ŽŠœŽȱ œž›Ÿ’ŸŠ•ȱ ˜ȱ ŒŽ••œȱ Œ˜–™Š›Žȱ˜ȱŒ˜—›˜•ȱŒ˜—’’˜—œǯȱŽœ’ŒŒŠ’˜—ȱ”’••ŽȱŠ••ȱŽœŽȱœ›Š’—œǰȱ ›ŽŽ£’—ȱ Šœȱœž›Ÿ’ŸŽȱ‹¢ȱ˜—•¢ȱ‘›ŽŽȱœ™ŽŒ’ŽœǰȱŠ—ȱŠ‹›ž™ȱ‘ŽŠ’—ȱ Šœȱ œ’—’ęȱŒŠ—•¢ȱ–˜›Žȱ•Ž‘Š•ȱ‘Š—ȱ›ŠžŠ•ȱ‘ŽŠ’—ǰȱœžŽœ’—ȱŠȱŽ—Ž›Š••¢ȱ ‘’‘ȱœŽ—œ’’Ÿ’¢ȱ˜ȱŸŽŽŠ’ŸŽȱ’Š˜–ȱŒŽ••œȱ˜ȱ‘ŽœŽȱ‘›ŽŽȱœ›ŽœœȱŠŒ˜›œǯȱ ‘’•Žȱ˜•Ž›Š—ŒŽȱ˜ȱŽ–™Ž›Šž›ŽȱŽ¡›Ž–ŽœȱǻƸŚŖǚȱŠ—ȱȬŘŖǚǼȱ Šœȱ˜ȱŠȱ •Š›ŽȱŽ¡Ž—ȱœ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒǰȱ‘Š‹’ŠȬœ™ŽŒ’ęȱŒȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱœž›Ÿ’ŸŠ•ȱ Ž›Žȱ Š•œ˜ȱ ŽŽŒŽǯȱ —•¢ȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱ Š—ȱ ŠšžŠ’Œȱ’Š˜–œȱ Ž›Žȱ•Žœœȱ˜•Ž›Š—ȱ˜ȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸŚŖǚǰȱ‹˜‘ȱ ™˜’—’—ȱŠȱŠȱ‘’‘Ž›ȱ˜•Ž›Š—ŒŽȱ˜ȱŽ››Žœ›’Š•ȱ’Š˜–œȱ˜ȱŽ–™Ž›Šž›Žȱ Ž¡›Ž–Žœǯȱ˜›Ž˜ŸŽ›ǰȱ’—ȱ ˜ȱœ™ŽŒ’Žœȱ ’‘ȱ‹˜‘ȱŠšžŠ’ŒȱŠ—ȱŽ››Žœ›’Š•ȱ ’œ˜•ŠŽœȱ ˜—•¢ȱ ‘Žȱ Ž››Žœ›’Š•ȱ œ›Š’—œȱ œž›Ÿ’ŸŽȱ ƸŚŖǚǯȱ Žȱ Œ˜—Œ•žŽȱ ‘Šȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ ‹Ž—‘’Œȱ ’Š˜–œȱ ǻŗǼȱ Š›Žȱ ŸŽ›¢ȱ œŽ—œ’’ŸŽȱ˜ȱ Žœ’ŒŒŠ’˜—ǰȱ ›ŽŽ£’—ȱ Š—ȱ Š‹›ž™ȱ ‘ŽŠ’—ǰȱ Š—ȱ ǻŘǼȱ ‘ŠŸŽȱ Šȱ ‘Š‹’ŠȬ Ž™Ž—Ž—ȱ˜•Ž›Š—ŒŽȱ˜ȱŽ–™Ž›Šž›ŽȱŽ¡›Ž–Žœǯȱ‘ŽȱŒ˜—œŽšžŽ—ŒŽœȱ˜ȱ ‘ŽœŽȱ˜‹œŽ›ŸŠ’˜—œȱ˜›ȱ‘Žȱ’œ™Ž›œŠ•ȱŒŠ™ŠŒ’’ŽœȱŠ—ȱ‘Žȱœž‹œŽšžŽ—ȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œȱ˜ȱ’Š˜–œȱŠ›Žȱ’œŒžœœŽǯ

Key wordsDZȱŠšžŠ’Œǰȱ‹Ž—‘’Œȱ’Š˜–œǰȱŽœ’ŒŒŠ’˜—ǰȱ’œ™Ž›œŠ•ȱ ŒŠ™ŠŒ’¢ǰȱœ›Žœœȱ˜•Ž›Š—ŒŽǰȱŽ–™Ž›Šž›ŽȱŽ¡›Ž–ŽœǰȱŽ››Žœ›’Š•

178 Stress tolerance of vegetative diatom cells 7.1 Introduction ‘Žȱ–Š“˜›’¢ȱ˜ȱ’Š˜–ȱœ™ŽŒ’ŽœȱŠ›ŽȱŒ˜—ęȱ—Žȱ˜ȱŠšžŠ’ŒȱŽ—Ÿ’›˜—–Ž—œȱ ǻŠ›’Œ”ǰȱ ŗşŝŝǼǯȱ ˜ ŽŸŽ›ǰȱ ŸŠ›’˜žœȱ œ™ŽŒ’Žœȱ ‹Ž•˜—’—ȱ ˜ȱ œŽŸŽ›Š•ȱ Ž—Ž›ŠȱŒŠ—ȱ‹Žȱ˜ž—ȱ’—ȱŽ››Žœ›’Š•ȱ‘Š‹’ŠœȱœžŒ‘ȱŠœȱœ˜’•œȱŠ—ȱ‘ž–’ȱ ›˜Œ”œȱǻŠ›’Œ”ǰȱŗşŝŝǼǰȱ ‘Ž›Žȱ‘Ž¢ȱ›˜ ȱ˜Ž‘Ž›ȱ ’‘ȱŒ¢Š—˜‹ŠŒŽ›’Šȱ Š—ȱ ›ŽŽ—ȱ Š•ŠŽȱ ǻĴȱ•ȱ ǭȱ §›—Ž›ǰȱ ŗşşśǼǯȱ Ž››Žœ›’Š•ȱ –’Œ›˜Š•Š•ȱ ŠœœŽ–‹•ŠŽœȱŠ›ŽȱŒ‘Š›ŠŒŽ›’£Žȱ‹¢ȱœ™ŽŒ’Š•’£Žȱœ™ŽŒ’ŽœȱǻĴȱ•ȱǭȱ §›—Ž›ǰȱ ŗşşśDzȱ ˜‘Š—œŽ—ǰȱ ŗşşşDzȱ Š—ȱ Ž›Œ”Ÿ˜˜›Ž et al.ǰȱ ŘŖŖŖDzȱ Š—ȱŽȱ ’“ŸŽ›ȱ et al.ǰȱ ŘŖŖŚǼǯȱ —ȱ ž—’ŒŽ••ž•Š›ȱ ›ŽŽ—ȱ Š•ŠŽǰȱ ™‘¢•˜Ž—Ž’Œȱ œž’Žœȱ ‘ŠŸŽȱ œ‘˜ —ȱ ‘Žȱ œŽ™Š›ŠŽȱ ŽŸ˜•ž’˜—ȱ ˜ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ •’—ŽŠŽœȱ ǻŽ ’œȱǭȱ•ŽŒ‘—Ž›ǰȱŘŖŖŚDzȱ˜Žȱet alǯǰȱŘŖŖŞǼǯȱ‘Žȱ–Š’—ȱ›ŽŠœ˜—œȱ˜›ȱ‘’œȱ •’—ŽŠŽȱ’ŸŽ›Ž—ŒŽȱŠ›Žȱ™›˜‹Š‹•¢ȱ‘Žȱœ™ŽŒ’ęȱŒȱŠŠ™Š’˜—œȱ›Žšž’›Žȱ’—ȱ Ž››Žœ›’Š•ȱŽ—Ÿ’›˜—–Ž—œȱǻ˜Žȱet al.ǰȱŘŖŖŞǼǯȱ’Š˜–œȱ’—‘Š‹’’—ȱœ˜’•œǰȱ ˜›ȱ’—œŠ—ŒŽǰȱ–žœȱ¢™’ŒŠ••¢ȱ ’‘œŠ—ȱ•Š›Žȱ’ž›—Š•ȱĚȱžŒžŠ’˜—œȱ’—ȱ Ž–™Ž›Šž›Žǰȱ™ ȱŠ—ȱ–˜’œž›ŽȱŠŸŠ’•Š‹’•’¢ȱ’—ȱ‘Žȱ—ŽŠ›Ȭœž›ŠŒŽȱ•Š¢Ž›ȱ ǻŠ›”œȱet al.ǰȱŗşŞŗDzȱ Š˜ȱet al.ǰȱŘŖŖŞǼǯ —ȱ˜›Ž›ȱ˜ȱœž›Ÿ’ŸŽȱ•˜ŒŠ••¢ǰȱŽ››Žœ›’Š•ȱŠ•ŠŽȱ‘ŠŸŽȱ˜ȱ‹ŽȱŠŠ™Žȱ ˜ȱ ‘ŽœŽȱ Ž¡›Ž–Žȱ ĚȱžŒžŠ’˜—œȱ ’—ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ Œ˜—’’˜—œǯȱ ˜–Žȱ Ž››Žœ›’Š•ȱ Œ¢Š—˜‹ŠŒŽ›’Šȱ Š—ȱ ›ŽŽ—ȱ Š•ŠŽȱ Š›Žȱ ”—˜ —ȱ ˜›ȱ ‘Ž’›ȱ Ž—‘Š—ŒŽȱ˜•Ž›Š—ŒŽȱ˜ȱŸŠ›’˜žœȱ‘Š‹’ŠȬ›Ž•ŠŽȱœ›ŽœœȱŒ˜—’’˜—œȱœžŒ‘ȱ Šœȱ Žœ’ŒŒŠ’˜—ȱ ǻ˜œȱ et al.ǰȱ ŗşşśDzȱ ˜Ĵȱœǰȱ ŗşşşDzȱ Š‹ŠŒ”Šȱ ǭȱ •œŽ›ǰȱ ŘŖŖŜDzȱ ›Š¢ȱet al.ǰȱŘŖŖŝǼǰȱ˜œ–˜’Œȱœ›ŽœœȱǻŠ–Š›žȱet al.ǰȱŘŖŖśǼǰȱ›ŽŽ£’—ȱ ǻŠ‹ŠŒ”Šȱǭȱ•œŽ›ǰȱŘŖŖŜǼȱŠ—ȱ‘ŽŠ’—ȱǻŽ—Šžȱet al.ǰȱŘŖŖŘǼǯȱ‘’œȱ’œȱ ŠŒ‘’ŽŸŽȱ‹¢ȱ’ŸŽ›œŽȱ™›˜ŽŒ’˜—ȱ–ŽŒ‘Š—’œ–œȱ’—Œ•ž’—ȱŽ¡›ŠŒŽ••ž•Š›ȱ ™˜•¢œŠŒŒ‘Š›’Žȱ •Š¢Ž›œȱ ǻ˜Ĵȱœǰȱ ŗşşşDzȱ Š–Š›žȱ et al.ǰȱ ŘŖŖśǼǰȱ ‘’Œ”ȱ ŒŽ••ȱ Š••œȱǻŸŠ—œǰȱŗşśŞǰȱŗşśşǼȱŠ—ȱ–˜›™‘˜•˜’ŒŠ••¢ȱ’œ’—Œȱ›Žœ’—ȱœŠŽœȱ ǻŸŠ—œǰȱ ŗşśŞǰȱ ŗşśşDzȱ ŠŽ›•ǰȱ ŗşŞŞDzȱ ˜ěȱ–Š——ǰȱ ŗşşŜǼǯȱ ˜›ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ‘˜ ŽŸŽ›ǰȱŠŠȱ˜—ȱ‘Ž’›ȱ˜•Ž›Š—ŒŽȱ˜ȱŽ–™Ž›Šž›ŽȱŽ¡›Ž–Žœȱ Š—ȱ ›˜ž‘ȱ Š›Žȱ œŒŠ›ŒŽǯȱ ›ŽŽ£’—ȱ ˜•Ž›Š—ŒŽȱ ‘Šœȱ ‹ŽŽ—ȱ ›Ž™˜›Žȱ ˜›ȱ Šȱ œ’—•Žȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ ǻ ˜œŽĴȱŽ›ȱ ǭȱ ˜œ‘Š ǰȱ ŗşŝŖǼǰȱ Š—ȱ  ˜ȱ Žœ’ŒŒŠ’˜—ȱŽ¡™Ž›’–Ž—œȱ˜—ȱœ˜’•ȱœŠ–™•Žœȱ›˜–ȱŽ–™˜›Š›¢ȱ™˜—œȱ‹˜‘ȱ ›ŽŸŽŠ•Žȱœ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒȱœž›Ÿ’ŸŠ•ȱŠ—ȱŠȱŽŒ›ŽŠœŽȱ’—ȱ‘Žȱ—ž–‹Ž›ȱ˜ȱ œž›Ÿ’Ÿ’—ȱ’Š˜–ȱœ™ŽŒ’Žœȱ ’‘ȱŽŒ›ŽŠœ’—ȱ–˜’œž›ŽȱŒ˜—Ž—ȱǻŸŠ—œǰȱ ŗşśŞǰȱ ŗşśşDzȱ ˜œŽĴȱŽ›ȱ ǭȱ ˜œ‘Š ǰȱ ŗşŝŖǼǯȱ —ȱ ™•Š—”˜—’Œȱ ›Žœ‘ ŠŽ›ȱ ’Š˜–œȱ›˜–ȱŽ–™Ž›ŠŽȱŒ•’–ŠŽœǰȱ•Ž‘Š•ȱ‘ŽŠ’—ȱŽ–™Ž›Šž›Žœȱ›Š—Žȱ ›˜–ȱƸřŖǚȱ˜ȱƸŚŖǚȱǻž£ž”’ȱǭȱŠ”Š‘Šœ‘’ǰȱŗşşśDzȱžĴȱŽ› ’Œ”ȱet al.ǰȱ ŘŖŖśǼǯȱ ›Žœœȱ™›˜ŽŒ’˜—ȱ–ŽŒ‘Š—’œ–œȱ’—ȱŽ››Žœ›’Š•ȱ’Š˜–œȱŠ›Žȱ™˜˜›•¢ȱ ”—˜ —ǯȱ˜‘ȱ‘ŽȱŠŒŒž–ž•Š’˜—ȱ˜ȱ˜’•ȱ’—ȱ‘ŽȱŒ¢˜™•Šœ–ȱŠ—ȱŸŽ›’ŒŠ•ȱ –˜ŸŽ–Ž—œȱ’—ȱ‘ŽȱœŽ’–Ž—ȱ•Š¢Ž›ȱ Ž›Žȱ˜‹œŽ›ŸŽȱ’—ȱ‹Ž—‘’Œȱ’Š˜–œȱ ›˜–ȱ›¢’—ȱ™˜—œȱǻŸŠ—œǰȱŗşśŞǰȱŗşśşǼǯȱ˜›™‘˜•˜’ŒŠ••¢ȱ’œŒŽ›—Š‹•Žȱ

Stress tolerance of vegetative diatom cells 179 ›Žœ’—ȱœ™˜›ŽœȱŠ›ŽȱŒ˜––˜—•¢ȱ˜›–Žȱ’—ȱ–Š›’—ŽȱŒŽ—›’Œȱœ™ŽŒ’Žœȱž›’—ȱ —ž›’Ž—ȱ Ž™•Ž’˜—ȱ Š—ȱ Š›Žȱ –ŠŽȱ ˜ȱ œž›Ÿ’ŸŽȱ Œ˜•ȱ Š—ȱ Š›”ȱ ’—Ž›ȱ Œ˜—’’˜—œȱǽ›ŽŸ’Ž Žȱ’—ȱ Š››ŠŸŽœȱǭȱ›Ž—Œ‘ȱǻŗşŞřǼȱŠ—ȱŒž˜’ȱ ǭȱ ˜‹œ˜—ȱǻŗşşŜǼǾǰȱ‹žȱ˜—•¢ȱŠȱœ’—•ŽȱŽ¡™Ž›’–Ž—ȱŠŸŽȱŽŸ’Ž—ŒŽȱ˜›ȱ Šȱ ™Š›•¢ȱ Ž—‘Š—ŒŽȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ Žœ’ŒŒŠ’˜—ȱ ǻ Š››ŠŸŽœȱ ǭȱ ›Ž—Œ‘ǰȱ ŗşŝśǼǯȱ —ȱ ‹Ž—‘’Œȱ ›Žœ‘ ŠŽ›ȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ ›Žœ’—ȱ œ™˜›Žœȱ ‘ŠŸŽȱ ‘žœȱŠ›ȱ˜—•¢ȱ‹ŽŽ—ȱ˜‹œŽ›ŸŽȱ’—ȱœŽŸŽ—ȱœ™ŽŒ’ŽœȱŠ—ȱŠ›ŽȱŠ••ȱŠœœ˜Œ’ŠŽȱ ’‘ȱ‘Žȱ˜›–Š’˜—ȱ˜ȱ’—Ž›—Š•ȱŸŠ•ŸŽœȱǻ Ž’•Ž›ǰȱŗşśřǰȱŗşŝŗDzȱŒ‘–’ǰȱ ŗşŝşDzȱ˜—ȱ˜œŒ‘ȱǭȱŽŒ‘Ž›ǰȱŗşŝşǼǯȱ —Ž›Žœ’—•¢ȱ˜—Žȱ˜ȱ‘ŽœŽȱœ™ŽŒ’Žœǰȱ Craticula cuspidataȱǻ ûĵȱ ’—Ǽȱ ǯ ǯȱ Š——ǰȱ ˜›–œȱ ›Žœ’—ȱ œŠŽœȱ ’—ȱ ŒŠœŽȱ˜ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŒ˜ŸŽ›œȱŠŽ›ȱ›Ž‘¢›Š’˜—ȱǻŒ‘–’ǰȱŘŖŖşǼǯȱ ˜ ŽŸŽ›ǰȱ –˜œȱ ›Žœ‘ ŠŽ›ȱ œ™ŽŒ’Žœȱ Š›Žȱ —˜ȱ ”—˜ —ȱ ˜ȱ ˜›–ȱ œ’–’•Š›ȱ –˜›™‘˜•˜’ŒŠ••¢ȱ’œ’—Œȱœ™˜›ŽœȱŠ—ȱ‘Ž›Žȱ’œȱ—˜ȱŽŸ’Ž—ŒŽȱ¢Žȱ‘Šȱœ˜’•ȱ ’Š˜–ȱŒ˜––ž—’’Žœȱ‹›’Žȱ‘Š›œ‘ȱŽ—Ÿ’›˜—–Ž—Š•ȱŒ˜—’’˜—œȱ’—ȱ‘’œȱ Š¢ǯȱ—˜‘Ž›ȱ ™˜œœ’‹’•’¢ȱ ’œȱ ‘Žȱ ˜›–Š’˜—ȱ ˜ȱ ™‘¢œ’˜•˜’ŒŠ•ȱ ›Žœ’—ȱ ŒŽ••œȱǻŒž˜’ȱǭȱ ˜‹œ˜—ǰȱŗşşŜǼǰȱ‹žȱ—˜ȱ’—˜›–Š’˜—ȱ˜—ȱ‘Ž’›ȱœ›Žœœȱ ˜•Ž›Š—ŒŽȱ’œȱŠŸŠ’•Š‹•Žǯȱ ™Š›ȱ ›˜–ȱ ‘Žȱ ’–™˜›Š—ŒŽȱ ˜ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ •˜ŒŠ•ȱ ™˜™ž•Š’˜—ȱ ™Ž›œ’œŽ—ŒŽǰȱ ŠŽ›’Š•ȱ ’œ™Ž›œŠ•ȱ œžŒŒŽœœȱ Š•œ˜ȱ Ž™Ž—œȱ ˜—ȱ ˜•Ž›Š—ŒŽȱ˜›ȱœ›ŽœœȱŠŒ˜›œȱœžŒ‘ȱŠœȱŽœ’ŒŒŠ’˜—ǰȱȬ’››Š’Š—ŒŽȱŠ—ȱ Š‹›ž™ȱ Ž–™Ž›Šž›Žȱ Œ‘Š—Žœȱ ǻ œŠ›ȱ ǭȱ ŠŽǰȱ ŘŖŖŗDzȱ ’žŽ›˜•Šȱ ǭȱ ›ŽŽ—ǰȱŘŖŖŘDzȱ‘Š›–Šȱet al.ǰȱŘŖŖŝǼǯȱȱŸŠ›’˜žœȱ’œ™Ž›œŠ•ȱ–ŽŒ‘Š—’œ–œȱ ǻ›ŽŸ’Ž Žȱ‹¢ȱ ›’œ’Š—œŽ—ǰȱŗşşŜǼǰȱ ŠŽ›˜ •ȱ’œȱŒ˜—œ’Ž›Žȱ˜ȱ‹Žȱ‘Žȱ –˜œȱ ’–™˜›Š—ȱ ŸŽŒ˜›ȱ ˜›ȱ ŠšžŠ’Œȱ –’Œ›˜Š•ŠŽȱ ǻŒ‘•’Œ‘’—ǰȱ ŗşŜŖDzȱ ›’œ’Š—œŽ—ǰȱŗşşŜDzȱ’žŽ›˜•Šȱǭȱ ›ŽŽ—ǰȱŘŖŖŘǼǯȱž›Ÿ’ŸŠ•ȱ˜ȱ‘ŽȱŠĴȱŠŒ‘Žȱ ŒŽ••œȱ’œȱ–Š’—•¢ȱ•’–’Žȱ‹¢ȱŽœ’ŒŒŠ’˜—ȱǻ’žŽ›˜•Šȱǭȱ ›ŽŽ—ǰȱŘŖŖŘǼȱ’ŸŽ—ȱ ‘Šȱ–˜œȱ˜ȱ‘Žȱ›ŽŽ—ȱŠ•ŠŽȱŽ¡Ž›—Š••¢ȱ›Š—œ™˜›Žȱ˜—ȱ‹’›œȱ˜›–Žȱ ™›˜ŽŒ’˜—ȱ–ŽŒ‘Š—’œ–œȱœžŒ‘ȱŠœȱœ•’–Žȱœ‘ŽŽœǰȱ›Žœ’—ȱœ™˜›Žœȱ˜›ȱŒ¢œœǯȱ ‘Žȱ˜–’—Š—ŒŽȱ˜ȱŽ››Žœ›’Š•ȱŒ¢Š—˜‹ŠŒŽ›’ŠȱŠ—ȱ›ŽŽ—ȱŠ•ŠŽȱ˜ž—ȱ’—ȱ Š’›ȱ›Š™œȱǻŠ—ȱŸŽ›ŽŽ–ǰȱŗşřŝDzȱŒ‘•’Œ‘’—ǰȱŗşŜŗDzȱ›˜ —ȱet al.ǰȱŗşŜŚDzȱ Œ‘•’Œ‘’—ǰȱŗşŜŚDzȱ˜¢ȬŒ˜•ŠȱǭȱŠ››Ž›ŠǰȱŗşşřDzȱŠ›œ‘Š••ȱǭȱ‘Š•–Ž›œǰȱ ŗşşŝǼȱœžŽœœȱ‘ŠȱŽ››Žœ›’Š•ȱ–’Œ›˜Š•ŠŽȱŠ›Žȱ–˜›ŽȱŽŠœ’•¢ȱ›Š—œ™˜›Žȱ ‹¢ȱ Š’›ȱ Œž››Ž—œȱ ǻ›˜ —ȱ et al.ǰȱ ŗşŜŚDzȱ Œ‘•’Œ‘’—ǰȱ ŗşŜŚDzȱ Š›œ‘Š••ȱ ǭȱ ‘Š•–Ž›œǰȱŗşşŝǼǯȱ —ȱ‹˜‘ȱ ŠŽ›˜ •ȬȱŠ—ȱ ’—Ȭ–Ž’ŠŽȱ’œ™Ž›œŠ•ȱ ™Š‘ Š¢œǰȱ •’Ÿ’—ȱ ’Š˜–œȱ Š›Žȱ ›Š›Ž•¢ȱ Ž—Œ˜ž—Ž›Žǯȱ •‘˜ž‘ȱ ‘’œȱ –Š¢ȱ‹ŽȱŽ¡™•Š’—Žȱ‹¢ȱ‘Ž’›ȱ•˜ Ž›ȱŠ‹ž—Š—ŒŽȱ’—ȱŽ››Žœ›’Š•ȱ‘Š‹’Šœȱ Œ˜–™Š›Žȱ˜ȱŒ¢Š—˜‹ŠŒŽ›’ŠȱŠ—ȱ›ŽŽ—ȱŠ•ŠŽȱǻŠŸŽ¢ǰȱŗşşŗDzȱŠ—ŒŠ—ȱet al.ǰȱŘŖŖŜǼǰȱ‘’œȱŒ˜ž•ȱŠ•œ˜ȱ‹ŽȱžŽȱ˜ȱŠȱ•˜ Ž›ȱ˜•Ž›Š—ŒŽȱ˜ȱ’Š˜–œȱ˜›ȱ ‘ŽȱŠŸŽ›œŽȱŽ—Ÿ’›˜—–Ž—Š•ȱŒ˜—’’˜—œȱŽ—Œ˜ž—Ž›Žȱž›’—ȱ›Š—œ™˜›ǯȱ ŽŠ›•Žœœǰȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ‹Ž ŽŽ—ȱŠ•Š•ȱ›˜ž™œȱ˜›ȱ ‹Ž ŽŽ—ȱŠ•ŠŽȱ›˜–ȱ’ěȱŽ›Ž—ȱ‘Š‹’Šœȱǽe.g.ȱŠšžŠ’ŒȱŸŽ›œžœȱŽ››Žœ›’Š•ȱ

180 Stress tolerance of vegetative diatom cells ‘Š‹’Šœǰȱ Šœȱ œŽŽ—ȱ ’—ȱ ›ŽŽ—ȱ Š•ŠŽȱ ǻ ›Š¢ȱ et al.ǰȱ ŘŖŖŝǼǾȱ –Š¢ȱ ›Žœž•ȱ ’—ȱ ’ěȱŽ›Ž—’Š•ȱ’œ™Ž›œŠ•ȱ›ŠŽœǰȱŠ—ȱ‘Ž›Ž˜›Žȱ™›˜—˜ž—ŒŽȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ ™˜™ž•Š’˜—ȱœ›žŒž›ŽȱŠ—ȱ‘ŽȱŽ˜›Š™‘’ŒŠ•ȱ’œ›’‹ž’˜—ȱ˜ȱœ™ŽŒ’Žœǯ ȱ‹ŽĴȱŽ›ȱž—Ž›œŠ—’—ȱ˜ȱ‘Žȱœ›Žœœȱ˜•Ž›Š—ŒŽȱŠ—ȱŠœœ˜Œ’ŠŽȱ ’œ™Ž›œŠ•ȱ Š‹’•’’Žœȱ ˜ȱ ’Š˜–œȱ Œ˜ž•ȱ ‘žœȱ ™›˜Ÿ’Žȱ ’—œ’‘ȱ ˜—ȱ ‘Ž’›ȱ ‹’˜Ž˜›Š™‘¢ǯȱ žŽȱ ˜ȱ ž—Ž›œŠ–™•’—ȱ Š—ȱ Œ˜—›˜ŸŽ›œ¢ȱ ›ŽŠ›’—ȱ Š¡˜—˜–’Œȱ›Žœ˜•ž’˜—ȱŠ—ȱœ™ŽŒ’ŽœȱŽ•’—ŽŠ’˜—ǰȱ‘Žȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ ’œ›’‹ž’˜—ȱ ™ŠĴȱŽ›—œȱ ˜ȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ ›Ž–Š’—ȱ ™˜˜›•¢ȱ ”—˜ —ȱ ǻŠ—˜›–Ž•’—Ž—ȱ et al.ǰȱ ŘŖŖŞ‹Ǽǯȱ —ȱ Œ˜—›Šœȱ ˜ȱ ‘Žȱ ‘¢™˜‘Žœ’œȱ ‘Šȱ ’Š˜–œȱŠ›Žȱ’œ™Ž›œŽȱ˜—ȱŠȱ‹›˜Šȱœ™Š’Š•ȱœŒŠ•Žȱǻ’—•Š¢ȱet al.ǰȱŘŖŖŘǼǰȱ ›ŽŒŽ—ȱ Š—Š•¢œŽœȱ ˜—ȱ •ŠŒžœ›’—Žȱ ’Š˜–œȱ ‘ŠŸŽȱ Ž–˜—œ›ŠŽȱ ‘Žȱ ’–™˜›Š—ŒŽȱ˜ȱ‘’œ˜›’ŒŠ•ȱŠŒ˜›œȱœžŒ‘ȱŠœȱ’œ˜•Š’˜—ȱǻŠ—ȱ‘žœȱ’œ™Ž›œŠ•ȱ •’–’Š’˜—Ǽȱ˜›ȱ’ŸŽ›œ’¢ȱ™ŠĴȱŽ›—œȱǻŽ•˜›ȱet al.ǰȱŘŖŖŜDzȱ¢ŸŽ›–Š— et al.ǰȱ ŘŖŖŝǼǯȱ‘’œȱ’œȱŠ•œ˜ȱœž™™˜›Žȱ‹¢ȱ›Ž™˜›œȱ˜ȱŽ—Ž–’œ–ȱ’—ȱœ˜–Žȱ›Ž’˜—œȱ ǻŠ—˜›–Ž•’—Ž—ȱet al.ǰȱŘŖŖŞ‹Ǽǯȱ—Žȱ˜ȱ‘Žȱ™˜œœ’‹•Žȱ–ŽŒ‘Š—’œ–œȱ‹Ž‘’—ȱ ‘ŽœŽȱ›Žœ›’ŒŽȱ’œ›’‹ž’˜—ȱ™ŠĴȱŽ›—œȱ’œȱ‘Žȱœž™™˜œŽȱœŽ—œ’’Ÿ’¢ȱ˜ȱ ’Š˜–œȱ ˜ȱ œ›Žœœȱ ŠŒ˜›œȱ Šœœ˜Œ’ŠŽȱ ’‘ȱ ’œ™Ž›œŠ•ǯȱ ž›‘Ž›–˜›Žǰȱ Šȱ’ěȱŽ›Ž—ȱ˜•Ž›Š—ŒŽȱ•ŽŸŽ•ȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ’Š˜–œȱ –’‘ȱ‘ŠŸŽȱ›Ž™Ž›Œžœœ’˜—œȱ˜›ȱ‘Ž’›ȱ’œ›’‹ž’˜—ȱ™ŠĴȱŽ›—œǯ —ȱ‘’œȱŽ¡™Ž›’–Ž—Š•ȱœž¢ǰȱ Žȱ‹›˜ŠŽ—ȱ‘Žȱ”—˜ •ŽŽȱ˜—ȱ‘Žȱ œ›Žœœȱ˜•Ž›Š—ŒŽȱ˜ȱ’Š˜–œȱ‹¢ȱ’—ŸŽœ’Š’—ȱ’—ȱŒž•ž›ŽȱŽ¡™Ž›’–Ž—œȱ ǻŗǼȱ˜ȱ ‘ŠȱŽ¡Ž—ȱŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱŽ››Žœ›’Š•ȱŠ—ȱ‹Ž—‘’Œȱ›Žœ‘ ŠŽ›ȱ ’Š˜–œȱ ˜•Ž›ŠŽȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ Ž¡›Ž–Žȱ Ž–™Ž›Šž›Žœǰȱ Š—ȱ ǻŘǼȱ ‘Ž‘Ž›ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ œž›Ÿ’ŸŽȱ ‘ŽœŽȱ ‘Š›œ‘ȱ Œ˜—’’˜—œȱ ‹ŽĴȱŽ›ȱ ‘Š—ȱŠšžŠ’ŒȱŠ¡Šǯ

7.2 Materials & Methods Sampling Š–™•Žœȱ ˜ȱ ›¢ǰȱ –˜’œȱ Š—ȱ ŠšžŠ’Œȱ œŽ’–Ž—œȱ Ž›Žȱ Š”Ž—ȱ Šȱ ęȱŸŽȱ ’ěȱŽ›Ž—ȱ•˜ŒŠ’˜—œȱ’—ȱŽ•’ž–DZȱȃŠ–™žœȱŽ››ŽȄȱǻǼȱ’—ȱ Ž—ǰȱ—Šž›Žȱ ›ŽœŽ›ŸŽȱȃŽȱŽœ‘˜Ž”ȄȱǻŽœǼȱ’—ȱŽȱŠ——Žǰȱ—Šž›Žȱ›ŽœŽ›ŸŽȱȃŽ›ȱŽȄȱ ǻŽǼȱ ’—ȱ ˜œž’—”Ž›”Žǰȱ —Šž›Žȱ ›ŽœŽ›ŸŽȱ ȃŽȱ ˜—Ž’—“ŽœȄȱ ǻ˜—Ǽȱ ’—ȱ •Š—”Ž—‹Ž›ŽǰȱŠ—ȱ•Š”Žȱȃ ›ŠŽ—Ž™˜Ž•Ȅȱǻ ›ŠǼȱ’—ȱŠ•Ž›ǯȱȱ’œȱœ’žŠŽȱ ’—ȱ‘ŽȱŒŽ—›Žȱ˜ȱŽ•’ž–ȱ ‘Ž›Žȱ‘Žȱœ˜’•ȱŒ˜—œ’œœȱ˜ȱœŠ—¢ȱ•˜Š–DzȱŽœǰȱ Žȱ Š—ȱ ˜—ȱ Š›Žȱ œ’žŠŽȱ Šȱ ‘Žȱ Ž•’Š—ȱ Œ˜Šœȱ Š—ȱ ‘ŠŸŽȱ Šȱ œŠ—¢ȱ œ˜’•Dzȱ ›Šȱ ’œȱ •˜ŒŠŽȱ œ•’‘•¢ȱ ž›‘Ž›ȱ ’—•Š—ȱ Š—ȱ ’œȱ Œ‘Š›ŠŒŽ›’£Žȱ ‹¢ȱ Šȱ ‘ž–žœȬ›’Œ‘ȱ œŠ—¢ȱ œ˜’•ȱ ǻ Ž˜Ȭ•ŠŠ—Ž›Ž—ǰȱ ŘŖŖŗǼǯȱ Š‹•Žȱ ŝǯŗȱ ’ŸŽœȱ Š—ȱ ˜ŸŽ›Ÿ’Ž ȱ ˜ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ œŠ–™•Žœȱ ›˜–ȱ ŽŠŒ‘ȱ •˜ŒŠ’˜—ȱ ’‘ȱ ‘Žȱ Ž˜›Š™‘’ŒŠ•ȱŒ˜˜›’—ŠŽœȱŠ”Ž—ȱ‹¢ȱ ǰȱŠ—ȱ‘Š‹’ŠǰȱœŽ’–Ž—ȱŠ—ȱ

Stress tolerance of vegetative diatom cells 181 ŸŽŽŠ’˜—ȱŒ‘Š›ŠŒŽ›’œ’Œœǯȱ‘ŽȱȬœŠ–™•Žœȱ Ž›ŽȱŠ”Ž—ȱ’—ȱŠžž–—ȱ˜—ȱ Řŗȱ˜ŸŽ–‹Ž›ȱŘŖŖŝDzȱŠ••ȱ˜‘Ž›ȱœŠ–™•Žœȱ˜—ȱřȱŠ›Œ‘ȱŘŖŖŞǯȱ Cultures ȱ˜Š•ȱ˜ȱŘŖȱœŠ–™•Žœȱ›˜–ȱœ˜’•œȱǻŗśǼȱŠ—ȱ™˜—œȱǻśǼȱ Šœȱ’—Œž‹ŠŽȱ˜—ȱ ‘ŽȱŠ¢ȱ˜ȱœŠ–™•’—ȱ’—ȱ•’šž’ȱȬ–Ž’ž–ȱǻ ž’••Š›ȱǭȱ˜›Ž—£Ž—ǰȱ ŗşŝŘǼȱ’—ȱœŠ—Š›ȱŒ˜—’’˜—œȱ˜ȱŗŞǚȱƹȱŘǚǰȱŘśȬřŖȱΐ–˜•ȱ™‘ȱ–ȬŶȱœȬŗȱ •’‘ȱ’—Ž—œ’¢ȱŠ—ȱŠȱŗŘDZŗŘȱ‘˜ž›œȱ•’‘DZŠ›”ȱ™Ž›’˜ǯȱŽ›ȱ˜—Žȱ ŽŽ”ȱ ˜ȱ’—Œž‹Š’˜—ǰȱœ’—•Žȱ’Š˜–ȱŒŽ••œȱ Ž›Žȱ’œ˜•ŠŽȱ‹¢ȱ–’Œ›˜™’™ŽĴȱŽȱŠ—ȱ ›˜ —ȱŠœȱ–˜—˜Œ•˜—Š•ȱŒž•ž›Žœȱǻœ›Š’—œǼȱŠȱ‘ŽȱŠ‹˜ŸŽȱŒ˜—’’˜—œǯȱŽȱ ’œ˜•ŠŽȱ’Š˜–ȱŒŽ••œȱ›˜–ȱŠ••ȱ’ěȱŽ›Ž—ȱœ’£ŽœȱŠ—ȱœ‘Š™Žœȱ™›ŽœŽ—ȱ’—ȱ‘Žȱ œŠ–™•Žǰȱ’—ȱŠ—ȱŠĴȱŽ–™ȱ˜ȱŒž•ž›ŽȱŠ••ȱœ™ŽŒ’Žœȱ™›ŽœŽ—ǰȱ ’‘˜žȱa priori œ™ŽŒ’ŽœȱœŽ•ŽŒ’˜—ǯȱ‘Ž›ŽȱŽŠœ’‹•ŽǰȱŠȱ•ŽŠœȱ ˜ȱŒ•˜—Žœȱ Ž›Žȱ’œ˜•ŠŽȱ ™Ž›ȱœ™ŽŒ’Žœǯȱž•ž›Žœȱ Ž›Žȱ›ŽȬ’—˜Œž•ŠŽȱ’—ȱ›Žœ‘ȱ–Ž’ž–ȱ ‘Ž—ȱ‘Ž¢ȱ ›ŽŠŒ‘Žȱ•ŠŽȱŽ¡™˜—Ž—’Š•ȱ™‘ŠœŽǯȱ˜›ȱ–˜›™‘˜•˜’ŒŠ•ȱŠ—Š•¢œ’œǰȱŒž•ž›Žœȱ Ž›Žȱ˜¡’’£Žȱ’—ȱ‘¢›˜Ž—ȱ™Ž›˜¡’ŽȱŠ—ȱŽ–‹ŽŽȱ’—ȱŠ™‘›Š¡țǯȱ ’Œž›Žœȱ Ž›ŽȱŠ”Ž—ȱžœ’—ȱŠȱŽ’œœȱ¡’˜™•Š—ȱŘȱ–’Œ›˜œŒ˜™ŽȱŽšž’™™Žȱ ’‘ȱ Š—ȱ ¡’˜Š–ȱ ›–ȱ ŒŠ–Ž›Šǯȱ Š•ŸŽȱ •Ž—‘ǰȱ ’‘ȱ Š—ȱ œ›’Šȱ Ž—œ’¢ȱ˜ȱŗŖȱŸŠ•ŸŽœȱ™Ž›ȱœ›Š’—ȱ Ž›Žȱ–ŽŠœž›Žȱžœ’—ȱ –ŠŽ ȱŗǯřŝŸȱ œ˜ Š›Žǯȱ Ž—’ęȱŒŠ’˜—œȱ Ž›Žȱ‹ŠœŽȱ˜—ȱ ›Š––Ž›ȱǭȱŠ—ŽȬŽ›Š•˜ȱ ǻŗşŞŜǰȱŗşŞŞǰȱŗşşŗŠǰȱ‹ǼȱŠ—ȱ ›Š––Ž›ȱǻŘŖŖŖǼȱ˜›ȱ‘ŽȱŽ—žœȱPinnularia ‘›Ž—‹Ž›ǯȱ˜›ȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œȱǻ‘›Ž—‹Ž›Ǽȱ ›ž—˜ ǰȱRhopalodia gibbaȱǻ‘›Ž—‹Ž›Ǽȱǯȱû••Ž›ȱŠ—ȱ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œȱ ›ž—˜ ǰȱŒ•ŽŠ›ȱ ’œŒ˜—’—ž’’Žœȱ’—ȱŸŠ•ŸŽȱ–˜›™‘˜•˜¢ȱǻ ’‘ǰȱœ›’ŠŽȱŽ—œ’¢ǰȱ˜ŸŽ›Š••ȱ œ‘Š™ŽǼȱ Ž›Žȱ˜‹œŽ›ŸŽȱ‹Ž ŽŽ—ȱ‘Žȱ’œ˜•ŠŽœǯȱœȱ’ȱ‘Šœȱ‹ŽŒ˜–ŽȱŒ•ŽŠ›ȱ ›ŽŒŽ—•¢ȱ ‘Šȱ œž‹•Žǰȱ ’œŒ˜—’—ž˜žœȱ ŸŠ›’Š’˜—œȱ ’—ȱ –˜›™‘˜•˜¢ȱ ’—ȱ ’Š˜–ȱ–˜›™‘˜œ™ŽŒ’ŽœȱŠ›ŽȱŽ—Ž›Š••¢ȱŒ˜››Ž•ŠŽȱ ’‘ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ ›Ž™›˜žŒ’ŸŽǰȱ–˜•ŽŒž•Š›ǰȱ™‘¢œ’˜•˜’ŒŠ•ȱŠ—ȱŽŒ˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›œȱǻe.g. Š——ǰȱŗşşşDzȱŽ‘—”Žȱet al.ǰȱŘŖŖŚDzȱž—‘˜•–ȱet al.ǰȱŘŖŖŜDzȱŠ—˜›–Ž•’—Ž—ȱ et al.ǰȱŘŖŖŞŠǼǰȱ‘ŽœŽȱ’œ˜•ŠŽœȱ Ž›Žȱ’Ÿ’Žȱ’—ȱ’ěȱŽ›Ž—ȱ–˜›™‘˜¢™Žœȱ ǻŠ‹•ŽȱŝǯŘǼȱŠ—ȱ›ŽŠŽȱŠœȱœŽ™Š›ŠŽȱœ™ŽŒ’Žœǯȱ‘Ž’›ȱŠ¡˜—˜–¢ȱ—ŽŽœȱ ž›‘Ž›ȱœž¢ǰȱ‘˜ ŽŸŽ›ǯȱ˜žŒ‘Ž›ȱœ•’Žœȱ˜ȱŠ••ȱ—Šž›Š•ȱœŠ–™•ŽœȱŠ—ȱ Œž•ž›ŽœȱŠ›Žȱ”Ž™ȱ’—ȱ‘ŽȱŠ‹˜›Š˜›¢ȱ˜ȱ›˜’œ˜•˜¢ȱǭȱšžŠ’ŒȱŒ˜•˜¢ȱ Š—ȱŠ›ŽȱŠŸŠ’•Š‹•Žȱž™˜—ȱ›ŽšžŽœǯȱ’¡¢Ȭ—’—Žȱœ›Š’—œȱ›˜–ȱŠšžŠ’Œȱ˜›ȱ Ž››Žœ›’Š•ȱ‘Š‹’Šȱ Ž›ŽȱœŽ•ŽŒŽȱ˜›ȱ‘Žȱœ›Žœœȱ˜•Ž›Š—ŒŽȱŽ¡™Ž›’–Ž—œǯȱ ’Œž›Žœȱ˜ȱ˜¡’’£Žȱ–ŠŽ›’Š•ȱ›˜–ȱ‘Žȱ’ěȱŽ›Ž—ȱœ™ŽŒ’ŽœȱŠ”Ž—ȱžœ’—ȱ •’‘ȱ–’Œ›˜œŒ˜™¢ȱŠ›Žȱ™›ŽœŽ—Žȱ’—ȱ’œȱŝǯŗȬřśǯ

182 Stress tolerance of vegetative diatom cells Carex Carex 10% 75% OP 10% 5% OPPRVV none moss 5% moss 5% moss 5% &KDUD

arenaria PLFURELDOELR¿

Claytonia perfoliata Claytonia 3KUDJPLWHVDXVWUDOLV PLFURELDOELR¿ Vegetation type & cover PLFURELDOELR¿OPPRVV OP QHRUJDQLF silt sand sandy material sandy-silt moss 5% VDQGELR¿ Sediment type KXPXVULFKVDQG VDQG¿ VDQG\VLOWZLWKKXPXV PRLVW VDQG\VLOWZLWKKXPXV ) OPPRLVW VDQG\VLOWZLWKKXPXV PRLVW LQPHDGRZPRLVW VDQG\VLOWZLWKKXPXV Taxus moist Betulus &KDPDHF\SDUHV

Quercus aquatic 200 m² VODFNDTXDWLFPð Habitat description +LSSRSKDHDUKDPQRLGHV VVXUHEHWZHHQWZRFRQFUHWHVODEV ( EDUHVRLOXQGHU ZHWVDQGZLWKELR¿OPLQGXQHVODFN KXPXVULFKPRLVWVRLOLQGXQHVKUXE OOHG¿ EDUHVRLOXQGHU FRQFUHWHSDYHPHQWZLWKELR¿ JURRYHVEHWZHHQSDYHPHQWWLOHVPRLVW ZHWFDUWUDFNLQPHDGRZZLWKJUDVVHVDQG EDUHVRLOXQGHU sandy sediment of temporary puddle in dune sandy sediment of temporary VRLO¿ VDQG\VHGLPHQWRIVKDOORZODNHLQGXQHVODFN 1 T TT dry sand and moss on dune sand moss 100% T T T T T T dry sand and moss on dune sand moss 30% T T A A Type 02°34’57.3”E 02°34’37.5”E 02°34’43.4”E 03°42’45.2”E 02°34’26.7”E 03°43’04.6”E 02°34’65.3”E 03°43’06.2”E 03°42’50.2”E 03°42’52.8”E 03°42’55.2”E 03°42’58.4”E 02°34’59.2”E 51°05’27.2”N 51°05’27.2”N 51°01’44.5”N 51°01’44.5”N 51°05’49.9”N 51°05’49.9”N 51°01’40.3”N 51°01’40.3”N 51°05’43.9”N 51°05’43.9”N 51°05’33.7”N 51°05’33.7”N 51°01’26.9”N 51°04’96.8”N 51°01’33.3”N 51°01’30.8”N 51°01’28.0”N 51°01’38.6”N 51°05’28.6”N coordinates Geographical Wes1 Wes2 Wes3 Wes4 Wes5 Wes6 Sterre St8 Sterre St2 Sterre St4 Sterre St6 Sterre St1 Sterre St3 Sterre St5 Location Sample :HVWKRHN :HVWKRHN :HVWKRHN :HVWKRHN :HVWKRHN :HVWKRHN ȱȱœŠ—œȱ˜›ȱŽ››Žœ›’Š•ȱœŠ–™•Žœǰȱȱ˜›ȱŠšžŠ’ŒȱœŠ–™•Žœǯ Table 7.1 ȱ‘Š›ŠŒŽ›’œ’Œœȱ˜ȱ‘ŽȱŽ—Ÿ’›˜—–Ž—Š•ȱœŠ–™•Žœȱ›˜–ȱ ‘’Œ‘ȱ‘ŽȱŽ œŽȱ’Š˜–ȱœ›Š’—œȱ Ž›Žȱ’œ˜•ŠŽǯ Table 1

Stress tolerance of vegetative diatom cells 183 ; 10% ; total 75% VXEPHUVHG total 20% moss 100% PDFURSK\WHV

&DUH[/X]XOD Carex arenaria Carex Vegetation type & cover

PRVV 3KUDJPLWHV/X]XOD

&KDUD3KUDJPLWHV&HUDWRSK\OOXP sand sand sand moss 50% sand moss 30% (none in depression) sand) Sediment type RUJDQLFPDWHULDOOLWWOH none (small amount of sand + organic material sand + organic sand + organic material sand + organic OP VKSRQGDTXDWLFPð 5m² LQGXQHVODFN SODLQLQGXQHVODFN Habitat description FRYHUHGSODLQLQGXQHVODFN VHGLPHQWVDPSOHRIODNHDTXDWLF ZHWVDQGLQGXQHVODFNZLWKELR¿ ZHWVDPSOHRIZHWVDQGIURPPRVVFRYHUHG VHGLPHQWVDPSOHRI¿ moist sample of moss from moss-covered plain moss-covered moist sample of moss from VHGLPHQWVDPSOHRISXGGOHLQPHDGRZDTXDWLF PRLVWWLOOZHWVDPSOHRIKXPLGVDQGIURPPRVV 1 T T T T A A A Type 03°09’38.7”E 03°09’93.4”E 03°28’93.9”E 02°34’38.3”E 02°41’86.1”E 02°41’86.1”E 02°41’86.1”E 51°05’44.4”N 51°05’44.4”N 51°19’31.7”N 51°19’31.7”N 51°08’18.4”N 51°19’50.1”N 51°04’53.8”N 51°08’18.4”N 51°08’18.4”N coordinates Geographical Wes7 Ter YdeTer Yde1 Ter YdeTer Yde2 Ter YdeTer Yde3 Location Sample :HVWKRHN Fonteintjes Fon3 Fonteintjes Fon1 Kraenepoel Kra1

184 Stress tolerance of vegetative diatom cells 4 + 30°C + desic. desic. 10 min. 00 0 00 0 00 0 00 0 - 20°C 100 0 abrupt 79 – 86 72 – 87 0 0 0 + 40°C 2 – 7 0 0 0 0 65 – 70 60 – 74 0 0 0 39 – 48 0 0 0 0 83 – 91 65 – 69 64 – 72 0 0 0 + 40°C gradual 65 – 79 65 – 79 54 – 71 72 – 87 0 0 0 Minimal – maximal % of viable cells after treatment 98 – 99 94 – 98 89 – 93 80 – 90 91 – 95 94 – 98 98 – 99 9987 – 94 86 – 91 85 – 88 89 – 9398 – 99 91 – 97 85 – 90 98 98 – 9993 – 96 91 – 95 82 – 92 94 – 95 84 – 93 88 – 94 97 – 99 96 – 99 Control 30°C + / 3 μ m 10 # striae

3 ( μ m) Width

3 ( μ m) Length 35.5 ± 0.7 8.2 ± 0.4 18.0 ± 0.0 38.1 ± 0.8 6.0 ± 0.3 ± 0.9 24.1 35.0 ± 0.8 ± 0.2 7.5 21.2 ± 0.4 (St3)c 42.8 ± 0.6 6.4 ± 0.2 ± 1.1 24.7 (St1)e 42.9 ± 0.4 6.2 ± 0.1(St3)a 25.2 ± 0.9 36.8 ± 0.5 6.6 ± 0.5 ± 1.0 23.7 (St4)a 36.0 ± 0.6 6.0 ± 0.4 25.8 ± 0.4 71 – 76 74 – 82 73 – 77 6W E Origin (Yde2)a 36.0 ± 0.6 ± 0.2 7.3 20.4 ± 0.5 (Yde2)e ± 1.2 24.9 ± 0.3 7.8 13.4 ± 0.9 (Yde2)d 10.4 ± 0.3 3.0 ± 0.0 28.0 ± 1.2 (Wes3)f ± 1.2 28.7 ± 0.5 7.0 16.4 ± 1.1 :HV E  .W]LQJ &]DUQHFNL 2 *UXQRZPRUSK  %UpELVVRQ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  *UXQRZLQ9DQ+HXUFN   *UXQRZ .UDPPHU  *UXQRZ .UDPPHU

Caloneis molaris Caloneis molaris &\PEHOODVXEDHTXDOLV $FKQDQWKHVFRDUFWDWD +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V

&UDWLFXODFIKDORSKLOD $FKQDQWKLGLXPPLQXWLVVLPXP 1 T T T T T T T T T T T ȱ˜›™‘ǯȱ–ŽŠ—œȱ–˜›™‘˜¢™Žǯ ȱŠ•žŽœȱŠ›Žȱ’ŸŽ—ȱŠœȱŠŸŽ›ŠŽȱƹȱœŠ—Š›ȱŽŸ’Š’˜—ǰȱƽŗŖǯ ȱ‘Žȱ›Š—Žȱ˜ȱƖȱ’œȱ’ŸŽ—ȱ‹ŠœŽȱ˜—ȱ›’™•’ŒŠŽȱ›ŽŠ–Ž—œǯȱŠœŽœȱŠ›Žȱœ‘ŠŽȱ’—ȱž—Œ’˜—ȱ˜ȱ‘Žȱ–’—’–ž–ȱƖDZȱ–’—’–ž–ȱŖƖȱǻ—˜ȱœ‘Š’—ǼǰȱŗȬŘŚƖȱǻŗŖƖȱ Invisible in LM. ȱ ›˜ ‘ȱ˜‹œŽ›ŸŽȱ’—ȱŠȱœ’—•Žȱ›Ž™•’ŒŠŽǯ ȱž–‹Ž›ȱ˜ȱęȱ‹ž•ŠŽǯ ȱ‘’œȱ–’‘ȱ‹ŽȱŠ—˜‘Ž›ȱœ™ŽŒ’Žœȱ‘Š—ȱŠŸ’Œž•Šȱ›Š’˜œŠǯ Habitat œ‘Š’—ǼǰȱŘśȬŚşƖȱǻŘśƖȱœ‘Š’—ǼǰȱśŖȬŝŚƖȱǻśŖƖȱœ‘Š’—ǼȱŠ—ȱŝśȬŗŖŖ ƖȱǻŝśƖȱœ‘Š’—ǼǯȱŽœ’Œǯȱ–ŽŠ—œȱŽœ’ŒŒŠ’˜—ǯȱ Table 7.2 ȱȱŸŽ›Ÿ’Ž ȱ˜ȱ‘ŽȱŽ¡Š–’—Žȱ’Š˜–ȱœ›Š’—œȱ ’‘ȱ–˜›™‘˜–Ž›’ŒȱŽŠž›ŽœȱŠ—ȱ›Žœž•œȱ˜ȱ‘Žȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ›ŽŠ–Ž—œǯ Table ȱœŠ—œȱ˜›ȱŠšžŠ’Œǰȱȱ˜›ȱŽ››Žœ›’Š•ȱ‘Š‹’Šȱ˜ȱ˜›’’—ǯ 2 3 4 ś 6 ŝ 8

Stress tolerance of vegetative diatom cells 185 4 0 + 30°C + desic. 6 00 00 desic. 10 min. 6 6 00 0 00 0 00 0 0 – 1 - 20°C 11 – 64 0 – 5 6 – 25 0 0 0 abrupt 74 – 80 0 0 0 30 – 49 0 – 3 0 0 85 – 90 16 – 40 0 0 0 20 – 46 0 – 2 + 40°C 00000 00000 5 – 44 1 – 3 0 0 0 85 – 88 93 – 96 47 – 64 41 – 45 0 0 0 49 – 85 51 – 76 2 – 3931 – 43 19 – 54 0 10 – 18 0 0 0 + 40°C gradual Minimal – maximal % of viable cells after treatment 100100 100 100 100 99 – 100 98 – 99 96 – 97 82 – 87 77 – 81 75 – 80 97 – 98 92 – 93 89 – 91 88 – 92 98 – 99 98 – 99 9996 – 98 97 – 98 96 – 97 96 – 98 91 – 95 85 – 89 81 – 88 80 – 88 89 – 92 81 – 83 97 – 98 91 – 96 98 – 99 100 98 – 99 76 – 78 97 – 98 97 – 98 Control 30°C + 99 – 100 93 – 98 97 – 99 99 – 100 97 – 99 88 – 98 / 3 μ m 10 # striae

3 ( μ m) Width

3 ( μ m) Length 40.4 ± 0.9 6.2 ± 0.2 ± 0.9 24.6 56.1 ± 0.2 ± 0.6 7.1 20.4 ± 0.5 51.8 ± 0.2 ± 0.3 7.3 19.6 ± 0.9 (St1)f 48.3 ± 0.9 9.0 ± 0.4 21.6 ± 0.7 (St6)f 52.3 ± 0.4 ± 0.4 7.3 18.8 ± 1.0 (St8)c 46.8 ± 0.7 8.2 ± 0.3 20.3 ± 1.3 62 – 80 55 – 62 (St5)a 40.5 ± 0.5 5.6 ± 0.2 ± 0.0 24.0 (St6)e 52.3 ± 0.5 ± 0.4 7.2 ± 0.7 19.7 Origin (Wes2)f ± 0.1 8.7 3.9 ± 0.2 22.4 ± 1.9 (Wes5)c 22.6 ± 0.4 5.4 ± 0.2 15.0 ± 0.7 (Wes5)a 41.5 ± 1.5 ± 0.2 9.7 12.0 ± 0.0 (Wes3)e 32.3 ± 0.4 6.6 ± 0.2 13.0 ± 0.0 (Wes2)a 39.5 ± 0.7 6.0 ± 0.3 ± 0.7 24.0 73 – 79 66 – 72 43 – 72 66 – 68 0 0(Wes1)a 0 56.6 ± 0.8 ± 0.4 7.2 20.0 ± 0.0 (Wes3)a 52.6 ± 0.7 ± 0.4 7.3 20.0 ± 0.0 (Wes2)e 8.6 ± 0.3 3.8 ± 0.2 20.4 ± 0.9 :HV E :HV E :HV E (Wes3)d 45.0 ± 1.1 9.6 ± 0.2 11.3 ± 0.4 6FKRHPDQ /DQJH%HUWDORW .XW]LQJ .W]LQJ 2  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ  (KUHQEHUJ *UXQRZ Taxon PRUSK PRUSK PRUSK PRUSK PRUSK PRUSK PRUSK PRUSK PRUSK PRUSK PRUSK  .W]LQJ /DQJH%HUWDORWYDU  .W]LQJ /DQJH%HUWDORWYDU  +XVWHGW /DQJH%HUWDORW  +XVWHGW /DQJH%HUWDORW

Navicula radiosa Navicula radiosa Navicula

1DYLFXODOLERQHQVLV

permitis permitis

Navicula cryptotenella Navicula

+DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V +DQW]VFKLDDPSKLR[\V

0D\DPDHDDWRPXV 0D\DPDHDDWRPXV 1 T T T T T T T T T T T T T T T T T Habitat

186 Stress tolerance of vegetative diatom cells 6 6 4 0 + 30°C + desic. 6 desic. 10 min. 00 0 00 0 00 0 00 0 00 0 00 0 3 – 12 0 0 - 20°C abrupt 79 – 85 68 – 82 15 – 2167 – 71 22 – 47 0 0 0 – 10 0 62 – 70 0 0 0 78 – 83 86 – 88 76 – 80 44 – 60 0 0 0 + 40°C 00000 0 0 0 0 0 – 84 53 – 66 5 – 32 0 0 0 63 – 94 31 – 59 6 – 24 0 0 0 62 – 70 62 – 70 2 – 5 0 0 71 – 82 15 – 38 3 – 16 0 0 0 21 – 33 34 – 61 0 0 0 + 40°C gradual 100 80 – 86 89 – 91 62 – 81 1 – 3 0 – 1 6 0 0 0 77 – 82 71 – 85 69 – 88 Minimal – maximal % of viable cells after treatment 94 – 98 91 – 98 93 – 97 96 – 81 – 85 85 – 8880 – 85 91 – 93 85 – 92 86 – 90 81 – 87 87 – 90 84 – 88 81 – 82 97 – 98 98 – 99 89 – 93 90 – 92 81 – 96 95 – 98 96 – 99 91 – 95 92 – 94 79 – 80 90 – 92 88 – 89 85 – 94 89 – 91 97 – 98 98 – 99 94 – 98 98 – 99 96 – 98 96 – 97 95 – 97 87 – 92 90 – 92 Control 30°C + / 3 μ m 10 LQYLVLEOH # striae

3 ( μ m) Width

3 ( μ m) Length 23.0 ± 0.7 3.6 ± 0.2 ± 0.7 14.1 33.7 ± 0.833.7 ± 0.3 7.6 6.0 ± 0.0 46 – 55 26 – 28 1 – 20 2 – 8 0 0 – 10 39.6 ± 1.2 ± 0.3 7.6 6.2 ± 0.4 65 – 82 74 – 77 48 – 63 63 – 73 14 – 23 0 0 16.2 ± 0.4 ± 0.1 4.9 13.0 ± 0.7 43.0 ± 1.6 9.8 ± 0.2 ± 0.4 11.7 (St1)i 35.9 ± 0.6 8.2 ± 0.3 5.8 ± 0.4 45 – 52 20 – 37 1 – 8 1 – 12 0 0 0 (St6)c ± 0.8 37.1 ± 0.5 8.7 6.3 ± 0.4 67 – 75 (St5)c ± 0.6 40.7 ± 0.5 7.9 6.0 ± 0.0 65 – 84 56 – 68 64 – 74 47 – 65 0 0 0 6W N (St2)a 29.0 ± 0.6 5.4 ± 0.3 ± 0.5 14.5 (St8)a 38.6 ± 1.1 ± 0.3 7.4 6.2 ± 0.4 (St6)a ± 0.7 34.6 ± 0.4 7.2 ± 0.5 6.7 (St8)e ± 0.7 32.7 2.9 ± 0.2 ± 0.5 29.7 74 – 85 64 – 74 62 – 86 66 – 80 0 0 0 (St2)d ± 1.7 27.1 ± 0.4 7.1 12.8 ± 0.4 6W E (St6)g 28.5 ± 1.4 6.9 ± 0.3 6.6 ± 0.6 (St8)d 42.4 ± 0.6(St1)d 8.9 ± 0.4 40.9 ± 0.6 5.0 ± 0.0 8.1 ± 0.3 6.0 ± 0.2 76 – 86 56 – 75 45 – 48 22 – 31 33 – 47 0 0 0 Origin (Yde3)f 22.2 ± 0.2 22.2 ± 0.2 15.6 ± 0.5 (Yde1)f 65.8 ± 0.7 10.9 ± 0.3 10.3 ± 0.3 (Yde1)c 18.0 ± 0.5 2.9 ± 0.1 28.0 ± 0.7 64 – 73 73 – 78 72 – 78 (Yde1)a 62.3 ± 2.0 11.4 ± 0.4 10.1 ± 0.2 (Yde1)e 42.2 ± 0.8 8.4 ± 0.5 ± 0.5 7 7.6 (Fon1)d 16.4 ± 1.7 3.3 ± 0.2 20.2 ± 0.4 (Yde1)d 41.4 ± 0.7 8.1 ± 0.6 7 ± 0.7 7.5 (Wes2)c 18.0 ± 0.4 ± 0.3 4.5 13.2 ± 0.8 46 – 63 (Wes7)e ± 0.4 44.0 ± 0.5 4.3 :HV E Krammer var. var. Krammer var. Krammer .UDVVNH  *UXQRZ &OHYH 6W E Hustedt Krammer (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ (KUHQEHUJ .W]LQJ .W]LQJ 2 /DQJH%HUWDORW

nonfasciata nonfasciata

Navicula veneta Navicula Navicula radiosa Navicula 3LQQXODULDREVFXUD 1LW]VFKLDDXVWULDFD Pinnularia isselana 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV 3LQQXODULDERUHDOLV

1LW]VFKLDSDOHD Navicula 3LQQXODULDPDUFKLFD $PSKRUDSHGLFXOXV 3LQQXODULDVXEFRPPXWDWD 3LQQXODULDVXEFRPPXWDWD Pinnularia divergentissima 1LW]VFKLDSHUPLQXWXP 5KRSDORGLDJLEED 5KRSDORGLDJLEED 1 T T T T T T T T T T T T T T T T T T T T T T T T A Habitat

Stress tolerance of vegetative diatom cells 187 4 0 + 30°C + desic. 6 desic. 10 min. 00 0 00 0 - 20°C abrupt 46 – 67 0 0 0 58 – 65 0 0 0 59 – 80 0 0 0 + 40°C 00000 00000 00000 000000 0 0 0 – 74 00000 00000 81 – 90 + 40°C gradual 65 – 74 45 – 66 40 – 61 30 – 45 0 0 0 Minimal – maximal % of viable cells after treatment 99 99 98 97 – 85 – 91 86 – 91 88 – 91 80 – 90 96 – 97 89 – 97 87 – 90 96 – 98 90 – 95 86 – 95 88 – 91 84 – 91 84 – 90 86 – 92 92 – 96 85 – 91 91 – 93 85 – 91 77 – 84 79 – 82 90 – 92 85 – 93 94 – 95 92 – 98 Control 30°C + 99 – 100 98 / 3 μ m 10 # striae

3 ( μ m) Width

3 ( μ m) Length 26.7 ± 0.626.7 ± 0.2 4.4 ± 0.9 14.4 52.0 ± 1.6 9.1 ± 0.4 8.6 ± 0.5 7 Origin (Fon3)i 56.3 ± 1.4 ± 0.3 4.5 16.0 ± 1.6 (Kra1)c 25.5 ± 0.9 ± 0.3 4.2 15.0 ± 1.0 (Fon3)f 66.1 ± 1.0 10.3 ± 0.3 10.9 ± 0.7 (Kra1)a 50.3 ± 0.9 10.3 ± 0.1 11.0 ± 0.0 .UD E (Fon1)a 53.9 ± 0.9 9.1 ± 0.3 8.8 ± 0.8 7 71 – 77 69 – 80 0 0 0 0 0 (Fon3)e ± 1.4 64.3 10.3 ± 0.4 11.0 ± 0.6 (Fon3)g 56.3 ± 1.6 ± 0.5 4.3 15.4 ± 0.9 70 – 75 28 – 42 49 – 63 15 – 40 0 0 0 (Wes6)c ± 0.9 24.3 6.4 ± 0.2 ± 0.4 13.7 (Wes4)a 68.9 ± 0.5 10.9 ± 0.2 11.1 ± 0.2 (Wes4)e 32.1 ± 0.1 6.6 ± 0.1 13.0 ± 0.0 (Wes6)d 21.5 ± 0.4 ± 0.1 5.7 16.0 ± 0.0 (Wes4)d ± 0.7 44.4 9.5 ± 0.1 11.8 ± 0.4 Krammer (Fon3)a 86.4 ± 2.1 18.6 ± 0.7 8.9 ± 0.2 .W]LQJ .W]LQJ .W]LQJ .W]LQJ .W]LQJ 6FKRHPDQ .W]LQJ 2 1|USHOHWDO 1|USHOHWDO *UXQRZPRUSK

radiosa radiosa

Taxon  (KUHQEHUJ 6FKDDUVFKPLGW  (KUHQEHUJ 6FKDDUVFKPLGW (KUHQEHUJ 20OOHUPRUSK  (KUHQEHUJ 20OOHUPRUSK )RQ E

Navicula radiosa Navicula radiosa Navicula Navicula Navicula radiosa Navicula veneta Navicula

Eunotia implicata Eunotia implicata 1DYLFXODOLERQHQVLV viridiformis Pinnulara

&\PEHOODVXEDHTXDOLV

(XQRWLDELOXQDULV (XQRWLDELOXQDULV

5KRSDORGLDJLEED 5KRSDORGLDJLEED 1 A A A A A A A A A A A A A A A Habitat

188 Stress tolerance of vegetative diatom cells Experimental set-up ŽŸŽ—ȱ ’ěȱŽ›Ž—ȱ ›ŽŠ–Ž—œȱ Ž›Žȱ ŒŠ››’Žȱ ˜žȱ ’—ȱ ›’™•’ŒŠŽȱ ˜›ȱ ŽŠŒ‘ȱ œ›Š’—DZȱǻŗǼȱŒ˜—›˜•ȱǻœŠ—Š›ȱ›˜ ‘ȱŒ˜—’’˜—œǼDzȱǻŘǼȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ ˜ȱƸřŖǚDzȱǻřǼȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸŚŖǚDzȱǻŚǼȱŠ‹›ž™ȱ‘ŽŠ’—ȱ˜ȱƸŚŖǚDzȱ ǻśǼȱ ›ŽŽ£’—ȱ Šȱ ȬŘŖǚDzȱ ǻŜǼȱ Žœ’ŒŒŠ’˜—ȱ ž›’—ȱ ŗŖȱ –’—žŽœDzȱ Š—ȱ ǻŝǼȱ ™›ŽŒ˜—’’˜—’—ȱ‹¢ȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸřŖǚȱ˜••˜ Žȱ‹¢ȱŽœ’ŒŒŠ’˜—ȱ ž›’—ȱŗŖȱ–’—žŽœȱǻŠ‹•ŽȱŝǯřǼǯȱ‘ŽȱŽ–™Ž›Šž›ŽœȱřŖǚȱŠ—ȱŚŖǚȱ Ž›Žȱ Œ‘˜œŽ—ȱ‹ŽŒŠžœŽȱ‘Žȱ•Ž‘Š•ȱŽ–™Ž›Šž›Žȱ˜›ȱ–˜œȱ’Š˜–œȱ’œȱœ’žŠŽȱ ‹Ž ŽŽ—ȱ ‘ŽœŽȱ  ˜ȱ ŸŠ•žŽœȱ ǻž£ž”’ȱ ǭȱ Š”Š‘Šœ‘’ǰȱ ŗşşśDzȱ žĴȱŽ› ’Œ”ȱ et al.ǰȱ ŘŖŖśǼǯȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ Š—ȱ ™›ŽŒ˜—’’˜—’—ȱ Ž›Žȱ Š™™•’Žȱ ‹ŽŒŠžœŽȱ ŠŒŒ•’–Š’£Š’˜—ȱ ’—Œ›ŽŠœŽœȱ ‘Žȱ ˜•Ž›Š—ŒŽȱ ˜ȱ ž—ŠŸ˜ž›Š‹•Žȱ Œ˜—’’˜—œȱ’—ȱŸŠ›’˜žœȱ˜›Š—’œ–œȱǻe.g.ȱ’Ž›”Ž—œȱet al.ǰȱŗşşŞDzȱŠ¢•Ž¢ȱet al.ǰȱ ŘŖŖŗDzȱ ž—ȱ et al.ǰȱ ŘŖŖřDzȱ ž—•Š™ȱ et al.ǰȱ ŘŖŖŝǼǰȱ ’—Œ•ž’—ȱ ’Š˜–œȱ ǻŠŽ›ȱŞ‘ǰȱ˜žœŒ‘ȱet al.ǰȱŘŖŖŚǼǯȱŽŒŠžœŽȱ™Ž›’˜œȱ˜ȱ›¢—ŽœœȱŒ˜’—Œ’Žȱ ’‘ȱ Ž•ŽŸŠŽȱ Ž–™Ž›Šž›Žœǰȱ Žȱ Œ‘˜œŽȱ ˜ȱ ™›ŽŒ˜—’’˜—ȱ ‘Žȱ ŒŽ••œȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ‹¢ȱ›ŠžŠ•ȱ‘ŽŠ’—ǯ ‘ŽȱŽ¡™Ž›’–Ž—œȱ Ž›ŽȱŒ˜—žŒŽȱ’—ȱŘŚȬ Ž••ȱ™•ŠŽœǯȱȱœŽ™Š›ŠŽȱ Ž••ȱ™•ŠŽȱ ŠœȱžœŽȱ˜›ȱŽŠŒ‘ȱ˜ȱ‘ŽȱœŽŸŽ—ȱ›ŽŠ–Ž—œǰȱŠ—ȱ˜›ȱŽŸŽ›¢ȱ ›ŽŠ–Ž—ȱ ‘›ŽŽȱ Ž••œȱ ™Ž›ȱ œ›Š’—ȱ Ž›Žȱ žœŽȱ Šœȱ ›Ž™•’ŒŠŽœǯȱ ˜ȱ Š••ȱ œ›Š’—œȱŒ˜ž•ȱ‹ŽȱŽœŽȱŠȱ‘ŽȱœŠ–Žȱ–˜–Ž—ǯȱŸŽ›¢ȱŠ¢ȱœ’¡ȱ˜›ȱœŽŸŽ—ȱ ›Š—˜–•¢ȱ Œ‘˜œŽ—ȱ œ›Š’—œȱ Ž›Žȱ œž‹“ŽŒŽȱ ˜ȱ ‘Žȱ œŽŸŽ—ȱ ›ŽŠ–Ž—œǯȱ ŠŒ‘ȱ Ž••ȱ Šœȱęȱ••Žȱ ’‘ȱŗǯśȱ–•ȱ˜ȱ›Žœ‘ȱȱ–Ž’ž–ȱŠ—ȱŒŽ••œȱ›˜–ȱ Ž¡™˜—Ž—’Š••¢ȱ›˜ ’—ȱŒž•ž›Žœȱ Ž›Žȱ’—˜Œž•ŠŽȱ’—ȱ‘ŽȱŽ¡™Ž›’–Ž—Š•ȱ Ž••œȱ ‘›ŽŽȱ Š¢œȱ ‹Ž˜›Žȱ ‘Žȱ ›ŽŠ–Ž—ǯȱ Žȱ žœŽȱ ’ěȱŽ›Ž—ȱ œŠ›’—ȱ Ž—œ’’Žœȱ ˜›ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ œ™ŽŒ’Žœȱ ǻ›Š—’—ȱ ›˜–ȱ Š›˜ž—ȱ ŗŘŖȱ ˜ȱ ŗŞśǰŖŖŖȱŒŽ••œȱ™Ž›ȱ Ž••Ǽȱ‹ŽŒŠžœŽȱŒŽ••ȱŽ—œ’’ŽœȱŸŠ›’Žȱ ’Ž•¢ȱ‹Ž ŽŽ—ȱ œ™ŽŒ’ŽœȱžŽȱ˜ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ›˜ ‘ȱ›ŠŽœǯ Š‹•Žȱ ŝǯřȱ ŸŽ›Ÿ’Ž ȱ ˜ȱ ‘Žȱ ™›˜˜Œ˜•œȱ ˜ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ›ŽŠ–Ž—œǯȱ Š›”ȱ Œ˜—’’˜—œȱ ˜ŒŒž››Žȱ Šȱ ‘Žȱ œŠ–Žȱ Ž–™Ž›Šž›Žœȱ Šœȱ œŠŽȱ ’—ȱ ‘Žȱ –’•Žȱ Œ˜•ž–—ǰȱ Ž¡ŒŽ™ȱ ’ȱ ž›‘Ž›ȱœ™ŽŒ’ęȱŽȱ‹Ž ŽŽ—ȱ‹›ŠŒ”Žœǯ Temperature treatment Treatment Duration of dark condition (duration) control 18°C KK ƒ& K ƒ& KPLQ  +30°C gradual KKPLQK ƒ& K ƒ& K ƒ& KPLQ  +40°C gradual KKPLQKKPLQ ƒ& K ƒ& K ƒ&DEUXSW ƒ& KPLQ K ƒ& KPLQ ƒ& IUHH]LQJƒ& ƒ& KPLQ K ƒ& KPLQ ƒ& K ƒ& K ƒ&  desiccation 10 minutes air-dry desiccation (10min) 10min ƒ& K ƒ& KPLQ  +30°C + desiccation 10 minutes ƒ& K GHVLFFDWLRQ KKPLQKPLQ KPLQ

Stress tolerance of vegetative diatom cells 189 ‘Žȱ Œ˜—›˜•ȱ ›ŽŠ–Ž—ȱ Šœȱ ™•ŠŒŽȱ ’—ȱ ‘Žȱ Š›”ȱ Šȱ ŗŞǚȱ ˜›ȱ ŗś‘ȱ˜ŸŽ›—’‘ȱ™•žœȱŠ—ȱŠ’’˜—Š•ȱř‘ȱ˜ȱŠ™™›˜¡’–ŠŽȱ‘Žȱ•Ž—‘ȱ˜ȱ œ›Žœœȱ ›ŽŠ–Ž—œǯȱ ‘Žȱ ˜ž›ȱ ‘ŽŠ’—ȱ ›ŽŠ–Ž—œȱ Ž›Žȱ Œ˜—žŒŽȱ ’—ȱ Šȱ Ž–™Ž›Šž›ŽȬŒ˜—›˜••Žȱ ’—Œž‹Š˜›ǰȱ Š—ȱ Š’›ȱ Ž–™Ž›Šž›Žȱ Šœȱ ŸŽ›’ęȱŽȱ ’‘ȱŠȱ–Ž›Œž›¢ȱ‘Ž›–˜–ŽŽ›ǯȱŽŠ’•œȱ˜ȱŽ¡™˜œž›Žȱ’–Žȱ˜ȱ ‘Žȱ’ěȱŽ›Ž—ȱŽ–™Ž›Šž›ŽœȱŠ›Žȱ•’œŽȱ’—ȱŠ‹•Žȱŝǯřǯȱ˜›ȱ‘Žȱ›ŽŽ£’—ȱ ›ŽŠ–Ž—ǰȱ‘Žȱ™•ŠŽœȱ Ž›Žȱ™•ŠŒŽȱ’—ȱŠȱ›ŽŽ£Ž›ȱŠȱȬŘŖǚȱ˜›ȱŚ‘Śś–’—ǯȱ ˜›ȱ ‘Žȱ Žœ’ŒŒŠ’˜—ȱ ›ŽŠ–Ž—ǰȱ ‘Žȱ Œž•ž›Žȱ –Ž’ž–ȱ Šœȱ ›Ž–˜ŸŽȱ ’‘ȱŠȱŠœŽž›ȱ™’™ŽĴȱŽǰȱŠŽ›ȱ ‘’Œ‘ȱŽŠŒ‘ȱ Ž••ȱ ŠœȱŒŠ›Žž••¢ȱ˜‹œŽ›ŸŽȱ ’‘ȱŠȱ‹’—˜Œž•Š›ȱž—’•ȱ‘Žȱ ‘˜•Žȱęȱ•–ȱ˜ȱ ŠŽ›ȱœž››˜ž—’—ȱ‘ŽȱŒŽ••œȱ Š—ȱ’—ȱ‘ŽȱŽŽȱ˜ȱ‘Žȱ Ž••ȱ‘ŠȱŽŸŠ™˜›ŠŽǯȱŽ›ȱŠ—ȱŠ’’˜—Š•ȱŗŖȱ –’—žŽœǰȱŗǯśȱ–•ȱ˜ȱ›Žœ‘ȱȬ–Ž’ž–ȱ ŠœȱŠŽǯȱ›ŽŒ˜—’’˜—’—ȱ ‹Ž˜›ŽȱŽœ’ŒŒŠ’˜—ȱ ŠœȱŠŒ‘’ŽŸŽȱ‹¢ȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱ‘Žȱ™•ŠŽœȱ˜ȱ ƸřŖǚȱ ˜›ȱ ŗŞ‘řŖ–’—ȱ ǻŠ‹•ŽȱŝǯřǼǯȱ••ȱ ›ŽŠ–Ž—œȱ Ž›Žȱ Œ˜—žŒŽȱ’—ȱ ‘ŽȱŠ›”ȱ˜ȱŠŸ˜’ȱ™‘˜˜Ȭ˜¡’Š’ŸŽȱœ›ŽœœǯȱŽ›ȱ›ŽŠ–Ž—ǰȱ‘Žȱ™•ŠŽœȱ Ž›Žȱ›Žž›—Žȱ˜ȱœŠ—Š›ȱŒ˜—’’˜—œǯ ––Ž’ŠŽ•¢ȱ ŠŽ›ȱ ›ŽŠ–Ž—ȱ ǻŖǼȱ Š—ȱ ŠŸŽ›ŠŽȱ ˜ȱ ŘŖŖȱ ŒŽ••œȱ ™Ž›ȱ Ž••ȱ ŠœȱŒ˜ž—Žȱžœ’—ȱŠȱŽ’œœȱ¡’˜ŸŽ›ȱ’—ŸŽ›Žȱ–’Œ›˜œŒ˜™ŽȱŠ—ȱ Ž—œ’’Žœȱǻ—ž–‹Ž›ȱ˜ȱŒŽ••œȱ™Ž›ȱ––ŶǼȱ Ž›ŽȱŒŠ•Œž•ŠŽǯȱȱŖȱ˜Š•ȱŒŽ••ȱ Ž—œ’’Žœȱ Ž›ŽȱŽŽ›–’—ŽǯȱŽ›ȱŗŚȱŠ¢œȱǻŗŚǼȱœŽ™Š›ŠŽȱŒŽ••ȱŒ˜ž—œȱ Ž›Žȱ ™Ž›˜›–Žȱ ˜ȱ ’Ǽȱ ŽŠȱ ŒŽ••œȱ ǻœ‘›’ŸŽ••Žȱ Š—ȱ Œ˜•˜ž›•Žœœȱ ŒŽ••ȱ Œ˜—Ž—ȱ˜›ȱŽ–™¢ȱ›žœž•ŽǼȱŠ—ȱ’’ǼȱŠ••ȱŒŽ••œȱǻŽŠȱŠ—ȱŠ•’ŸŽȱ˜Ž‘Ž›Ǽǯȱ Š’—ǰȱ ŽȱŒ˜ž—ŽȱŠ—ȱŠŸŽ›ŠŽȱ˜ȱŘŖŖȱŒŽ••œȱ™Ž›ȱ Ž••ȱ’—ȱ‹˜‘ȱŗŚȱŒŽ••ȱ Œ˜ž—œǯȱ ˜ ŽŸŽ›ǰȱ’ȱ‘Žȱ—ž–‹Ž›ȱ˜ȱŽŠȱŒŽ••œȱ Šœȱ˜˜ȱ•˜ ȱ˜›ȱ‘’œǰȱ Žȱ Œ˜ž—Žȱ ‘Žȱ Ž¡ŠŒȱ —ž–‹Ž›ȱ ˜ȱ ŽŠȱ ŒŽ••œȱ ™›ŽœŽ—ȱ ’—ȱ ‘Žȱ Ž—’›Žȱ Ž••ǯȱ—ȱ’—Œ›ŽŠœŽȱ’—ȱ‘Žȱ˜Š•ȱŒŽ••ȱŽ—œ’¢ȱ’—ȱŠȱ Ž••ȱ‹Ž ŽŽ—ȱŖȱŠ—ȱ ŗŚȱŸŠ•’ŠŽȱȃ›˜ ‘ȄȱŠ—ȱ‘žœȱœž›Ÿ’ŸŠ•ȱ˜ȱ‘Žȱ›Ž™•’ŒŠŽǯȱȱœ›Š’—ȱ ŠœȱŒ˜—œ’Ž›Žȱȃ˜•Ž›Š—Ȅȱ˜›ȱŠȱ›ŽŠ–Ž—ȱ’ȱŠȱ•ŽŠœȱ ˜ȱ˜žȱ˜ȱ‘›ŽŽȱ ›Ž™•’ŒŠŽœȱ œ‘˜ Žȱ ™˜œ’’ŸŽȱ ›˜ ‘ǯȱ ȱ œ™ŽŒ’Žœȱ Šœȱ Žœ’—ŠŽȱ Šœȱ ȃ˜•Ž›Š—Ȅȱ˜›ȱŠȱ›ŽŠ–Ž—ȱ’ȱŠȱ•ŽŠœȱ˜—Žȱ˜ȱ’œȱœ›Š’—œȱ ŠœȱŒ˜—œ’Ž›Žȱ ˜•Ž›Š—ǯȱ‘Žȱ™Ž›ŒŽ—ŠŽȱ˜ȱŸ’Š‹•ŽȱŒŽ••œȱǻž—Œ˜››ŽŒŽȱƖǼȱŽšžŠ••Žȱ ŗŖŖȱ¡ȱǽŗȱȬȱǻ—ž–‹Ž›ȱ˜ȱŽŠȱŒŽ••œȱ™Ž›ȱ––ŶȱŠȱŗŚȱȦȱ˜Š•ȱ—ž–‹Ž›ȱ˜ȱ ŒŽ••œȱ™Ž›ȱ––ŶȱŠȱŖǼǾǯȱ —ȱŠ—ȱŠĴȱŽ–™ȱ˜ȱŒ˜››ŽŒȱ˜›ȱ™˜œœ’‹•ŽȱŽěȱŽŒœȱ˜ȱ ’ěȱŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱœ›Š’—œȱ’—ȱȃ‹ŠŒ”›˜ž—ȱ–˜›Š•’¢Ȅȱǻi.e.ȱƖȱ˜ȱŽŠȱ ŒŽ••œȱ’—ȱŒ˜—›˜•ȱŒ˜—’’˜—œǼȱ˜—ȱ‘Žȱœ›Žœœȱ›ŽŠ–Ž—ȱ–˜›Š•’¢ȱǻ ‘’Œ‘ȱ ’œȱŠȱŒ˜–‹’—Š’˜—ȱ˜ȱ‹ŠŒ”›˜ž—ȱ–˜›Š•’¢ȱŠ—ȱ‘Žȱœ›Žœœȱ–˜›Š•’¢Ǽǰȱ Žȱ ŒŠ•Œž•ŠŽȱ ˜›ȱ ŽŠŒ‘ȱ œ›Š’—ȱ Šȱ ȃŒ˜››ŽŒŽȱ ƖȄȱ ‹¢ȱ Š’—ȱ ‘Žȱ ŠŸŽ›ŠŽȱ ‹ŠŒ”›˜ž—ȱ –˜›Š•’¢ȱ ˜ȱ ‘Žȱ ŠŸŽ›ŠŽȱ ž—Œ˜››ŽŒŽȱ Ɩȱ ȱ ŠŽ›ȱ›ŽŠ–Ž—ǯȱ˜‘ȱž—Œ˜››ŽŒŽȱŠ—ȱŒ˜››ŽŒŽȱƖȱ Ž›Žȱž›‘Ž›ȱ Š—Š•¢£Žǯ

190 Stress tolerance of vegetative diatom cells Statistical analysis ˜›ȱ ŽŠŒ‘ȱ ›ŽŠ–Ž—ǰȱ œŠ’œ’ŒŠ•ȱ Š—Š•¢œŽœȱ Ž›Žȱ ™Ž›˜›–Žȱ ˜—ȱ  ˜ȱ –ŽŠœž›ŽȱŸŠ›’Š‹•ŽœDZȱǻ’Ǽȱ‘Žȱ˜•Ž›Š—ŒŽȱ˜ȱŠȱœ™ŽŒ’Žœȱǻ™›ŽœŽ—ŒŽȦŠ‹œŽ—ŒŽȱ˜ȱ ›˜ ‘ǼǰȱŠ—ȱǻ’’Ǽȱ‘Žȱœž›Ÿ’ŸŠ•ȱ›ŠŽǰȱ–ŽŠœž›ŽȱŠœȱ‘ŽȱŠŸŽ›ŠŽȱ™Ž›ŒŽ—ŠŽȱ ˜ȱŸ’Š‹•ŽȱŒŽ••œȱ˜ȱŠȱœ™ŽŒ’ŽœȱǻƖǼǯȱŽȱ™Ž›˜›–Žȱ‘ŽȱŠ—Š•¢œŽœȱ˜—ȱ‹˜‘ȱ ‘Žȱž—Œ˜››ŽŒŽȱŠ—ȱŒ˜››ŽŒŽȱƖǯȱœȱ˜ž›ȱŠŠȱ Ž›Žȱ—˜ȱ—˜›–Š••¢ȱ ’œ›’‹žŽǰȱ ŽȱžœŽȱ—˜—Ȭ™Š›Š–Ž›’ŒȱœŠ’œ’ŒŠ•ȱŽœœǯȱ Š‹’Šȱ¢™Žœȱ Ž›Žȱœž‹’Ÿ’Žȱ’—ȱ ˜ȱŒŠŽ˜›’ŽœȱǻŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’ŒǼǯȱ›Š’—œȱ ˜ȱ‘ŽȱœŠ–Žȱœ™ŽŒ’Žœȱ˜ŒŒž››’—ȱ’—ȱ’ěȱŽ›Ž—ȱ‘Š‹’Šȱ¢™Žœȱ Ž›ŽȱœŽŽ—ȱ Šœȱ’ěȱŽ›Ž—ȱ ŽŒ˜•˜’ŒŠ•ȱŽ—’’Žœȱ Š—ȱ›ŽŠŽȱ ŠœȱœŽ™Š›ŠŽȱ œ™ŽŒ’Žœǯȱ••ȱ œŠ’œ’ŒŠ•ȱŠ—Š•¢œŽœȱ Ž›Žȱ™Ž›˜›–Žȱ ’‘ȱŠ’œ’ŒŠȱŝǯŖȱǻŠ˜ǰȱ —Œǯǰȱ ž•œŠǰȱ”•Š‘˜–ŠǰȱǼǰȱŠ—ȱ‘Žȱœ’—’ęȱŒŠ—ŒŽȱ•ŽŸŽ•ȱ ŠœȱœŽȱŠȱpȱƽȱŖǯŖśǯ ’›œǰȱ ŽȱŽœŽȱ˜›ȱŽŠŒ‘ȱ˜ȱ‘Žȱœ’¡ȱœ›Žœœȱ›ŽŠ–Ž—œȱ ‘Ž‘Ž›ȱ‘Žȱ ›ŽŠ–Ž—ȱ›Žœž•Žȱ’—ȱŠȱ•˜ Ž›ȱŠŸŽ›ŠŽȱƖȱ˜ȱ‘Žȱ’ěȱŽ›Ž—ȱœ™ŽŒ’Žœȱ Œ˜–™Š›Žȱ˜ȱ‘ŽȱŒ˜—›˜•ȱ›ŽŠ–Ž—ȱžœ’—ȱ—˜—Ȭ™Š›Š–Ž›’Œȱ’•Œ˜¡˜—ȱ –ŠŒ‘Žȱ ™Š’›œȱ Žœœȱ ǻ˜”Š•ȱ ǭȱ ˜‘•ǰȱ ŘŖŖŖǼǯȱ ’”Ž ’œŽǰȱ ’•Œ˜¡˜—ȱ –ŠŒ‘Žȱ™Š’›œȱŽœœȱ Ž›ŽȱžœŽȱ˜ȱŽœȱ˜›ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱƖȱ‹Ž ŽŽ—ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ œ›Žœœȱ ›ŽŠ–Ž—œǯȱ ŠœŽȱ ˜—ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ œŠ–™•Žœǰȱ ’ȱ ‘Šœȱ ‹ŽŽ—ȱ —˜Žȱ ‘Šȱ ‘Žȱ ŠŸŽ›ŠŽȱ ŸŠ•ŸŽȱ •Ž—‘ȱ ˜ȱ ™˜™ž•Š’˜—œȱ ˜ȱ ‘Žȱ Ž››Žœ›’Š•ȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ Pinnularia borealisȱ ‘›Ž—‹Ž›ȱ Š—ȱ Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱ ŽŒ›ŽŠœŽœȱ ’‘ȱ Šȱ ŽŒ›ŽŠœ’—ȱ œ˜’•ȱ –˜’œž›Žȱ Œ˜—Ž—ȱǻŠ—ȱŽȱ’“ŸŽ›ȱǭȱŽ¢Ž—œǰȱŗşşŝDzȱŠ—ȱ Ž›Œ”Ÿ˜˜›Žȱet al.ǰȱŘŖŖŖǼǯȱ ‘Ž›Ž˜›Žǰȱ ŽȱŠ’’˜—Š••¢ȱŒŠ•Œž•ŠŽȱ‘ŽȱŽŠ›œ˜—ȱ›˜žŒȬ˜–Ž—ȱ Œ˜››Ž•Š’˜—œȱ‹Ž ŽŽ—ȱ•Ž—‘ȱŠ—ȱƖȱ˜›ȱŽŠŒ‘ȱ›ŽŠ–Ž—ǯȱ‘’œȱ Šœȱ ˜—Žȱ˜›ȱŠ••ȱœ™ŽŒ’Žœȱ˜Ž‘Ž›ȱŠ—ȱ˜›ȱ‘Žȱœ›Š’—œȱ˜ȱPinnularia borealis and Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œȱœŽ™Š›ŠŽ•¢ǯ ŽŒ˜—•¢ǰȱ Žȱ ŽŽ›–’—Žȱ ˜›ȱ ŽŠŒ‘ȱ œ›Žœœȱ ›ŽŠ–Ž—ȱ ‘Ž‘Ž›ȱ ‘Žȱ ˜•Ž›Š—ŒŽȱ ǻ™›ŽœŽ—ŒŽȦŠ‹œŽ—ŒŽȱ ˜ȱ ›˜ ‘Ǽȱ ˜ȱ œ™ŽŒ’Žœȱ ’ěȱŽ›Žȱ œ’—’ęȱŒŠ—•¢ȱ‹Ž ŽŽ—ȱ‘Š‹’Šȱ¢™Žœǯȱ˜›ȱŽŠŒ‘ȱ›ŽŠ–Ž—ǰȱŠȱŒ˜—’—Ž—Œ¢ȱ Š‹•Žȱ ’‘ȱ‘Žȱ—ž–‹Ž›œȱ˜ȱ˜•Ž›Š—ȱŠ—ȱ’—˜•Ž›Š—ȱœ™ŽŒ’Žœȱ™Ž›ȱ‘Š‹’Šȱ ¢™Žȱ Šœȱ–ŠŽȱŠ—ȱŠ—Š•¢£Žȱ ’‘ȱ‘Žȱ—˜—Ȭ™Š›Š–Ž›’ŒȱŽŠ›œ˜—ȂœȱŒ‘’ȱ œšžŠ›ŽȱŽœȱǻ˜”Š•ȱǭȱ˜‘•ǰȱŘŖŖŖǼȱ˜ȱŽœȱ˜›ȱŽěȱŽŒœȱ˜ȱ‘Š‹’Šȱ¢™Žǯȱ ‘’œȱŽœȱ ˜›”œȱ ’‘ȱ˜‹œŽ›ŸŽȱ›ŽšžŽ—Œ’ŽœȱŠ—ȱŠ”Žœȱ’—˜ȱŠŒŒ˜ž—ȱ ‘ŽȱŠœ¢––Ž›’ŒŠ•ȱœŽȬž™ǯ ’—Š••¢ǰȱ˜›ȱŽŠŒ‘ȱ›ŽŠ–Ž—ȱ ŽȱŽœŽȱ ‘Ž‘Ž›ȱ‘ŽȱŠŸŽ›ŠŽȱƖȱ ˜ȱ œ™ŽŒ’Žœȱ ŸŠ›’Žȱ ‹Ž ŽŽ—ȱ ‘Š‹’Šȱ ¢™Žœȱ žœ’—ȱ ‘Žȱ —˜—Ȭ™Š›Š–Ž›’Œȱ Š——Ȭ‘’—Ž¢ȱȱŽœȱǻ˜”Š•ȱǭȱ˜‘•ǰȱŘŖŖŖǼǯ

Stress tolerance of vegetative diatom cells 191 7.3 Results Diatom strains —ȱ˜Š•ȱŜşȱœ›Š’—œȱ˜ȱřŚȱœ™ŽŒ’ŽœȱǻŘśȱŽ››Žœ›’Š•ȱŠ—ȱşȱŠšžŠ’ŒǼȱ Ž›ŽȱžœŽǰȱ ‹Ž•˜—’—ȱ ˜ȱ ŗřȱ Ž—Ž›Šȱ ǻŠ‹•Žȱ ŝǯŘȱ Š—ȱ ’œȱ ŝǯŗȬřśǼǯȱ ‘Žȱ Ž››Žœ›’Š•ȱ œŠ–™•Žœȱ ›ŽŸŽŠ•Žȱ Š¡Šȱ ‘Šȱ Š›Žȱ ˜Ž—ȱ Ž—Œ˜ž—Ž›Žȱ ’—ȱ Ž››Žœ›’Š•ȱ ‘Š‹’ŠœǰȱœžŒ‘ȱŠœȱPinnularia borealisǰȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œǰȱ’ĵȱœŒ‘’Šȱ austriacaȱ žœŽǰȱ ǯȱ ™Ž›–’—žž–ȱ ǻ ›ž—˜ Ǽȱ ǯȱ Ž›ŠŠ••˜ǰȱ ǯȱ ™Š•ŽŠ ǻ ûĵȱ’—Ǽȱǯȱ–’‘ǰȱŠ—ȱŠ¢Š–ŠŽŠȱŠ˜–žœȱǻ ûĵȱ ’—Ǽȱ ›ž—˜ ȱŸŠ›ǯȱ ™Ž›–’’œȱ ǻ žœŽǼȱ Š—ŽȬŽ›Š•˜ȱ ǻ˜›–Ž›•¢ȱ ”—˜ —ȱ Šœȱ ŠŸ’Œž•Šȱ Š˜–žœǼȱ ǻĴȱ•ȱ ǭȱ §›—Ž›ǰȱ ŗşşśǼǯȱ œ™ŽŒ’Š••¢ȱ ‘Žȱ ęȱ›œȱ  ˜ȱ œ™ŽŒ’Žœȱ Š›Žȱ Š–˜—ȱ ‘Žȱ –˜œȱ ›ŽšžŽ—•¢ȱ ›Ž™˜›Žȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ ǻŠ›’Œ”ǰȱ ŗşŝŝDzȱ •ŽŒ‘—Ž›ȱ et alǯǰȱ ŗşşŞDzȱ Š—ȱ Ž›Œ”Ÿ˜˜›Žȱ et al.ǰȱ ŘŖŖŖDzȱ Š—ȱ Žȱ ’“ŸŽ›ȱet al.ǰȱŘŖŖŚǼǯȱ‘ŽȱŠšžŠ’Œȱœ›Š’—œȱ‹Ž•˜—Žȱ˜ȱŠšžŠ’Œȱœ™ŽŒ’Žœȱ œžŒ‘ȱŠœȱ–™‘˜›Šȱ™Ž’Œž•žœȱǻ ûĵȱ ’—Ǽȱ ›ž—˜ ȱŠ—ȱž—˜’Šȱ’–™•’ŒŠŠ 㛙Ž•ȱet al.ȱ›Š’—œȱ˜ȱęȱŸŽȱœ™ŽŒ’Žœȱ Ž›Žȱ’œ˜•ŠŽȱ›˜–ȱ‹˜‘ȱ‘Š‹’Šœǯȱ ‘Žȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ ’œ˜•ŠŽœȱ ›˜–ȱ ŠŸ’Œž•Šȱ ›Š’˜œŠȱ ûĵȱ ’—ȱ ǻ’œȱ ŝǯŗśȬŗŝǼǰȱ ǯȱ •’‹˜—Ž—œ’œȱ Œ‘˜Ž–Š—ȱ ǻ’œȱ ŝǯŗŘȬŗřǼȱ Š—ȱ ǯȱ ŸŽ—ŽŠ ûĵȱ ’—ȱǻ’œȱŝǯşǰȱŝǯŗŗǼȱ Ž›Žȱ–˜›™‘˜•˜’ŒŠ••¢ȱ’Ž—’ŒŠ•ǰȱ ‘’•Žȱ‘˜œŽȱ ›˜–ȱ ¢–‹Ž••Šȱ œž‹ŠŽšžŠ•’œȱ ǻ’œȱ ŝǯřŗȬřŘǼȱ Š—ȱ Rhopalodia gibbaȱǻ’œȱ ŝǯŘŞȬŘşǼȱ’ěȱŽ›Žȱ’—ȱŸŠ•ŸŽȱ ’‘ǰȱŠ—ȱ’—ȱ˜ž•’—ŽȱŠ—ȱęȱ‹ž•ŠȱŽ—œ’¢ǰȱ ›Žœ™ŽŒ’ŸŽ•¢ȱǻŠ‹•ŽȱŝǯŘǼǯ

Survival in control conditions ˜œȱ˜ȱ˜ž›ȱŽœŽȱœ›Š’—œȱ‘ŠȱŠȱƖȱ˜ȱ–˜›Žȱ‘Š—ȱşŖƖȱ’—ȱ‘ŽȱŒ˜—›˜•ȱ Œ˜—’’˜—œǯȱ ˜ ŽŸŽ›ǰȱ œ˜–Žȱ œ›Š’—œȱ Ȯȱ ˜›ȱ Ž¡Š–™•Žȱ ‘›ŽŽȱ œ›Š’—œȱ ˜ȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œǰȱœ’¡ȱœ›Š’—œȱ˜ȱP. borealisǰȱP. obscura and ’ĵȱœŒ‘’Šȱ austriacaȱ ‘Šȱ Ɩȱ ˜ȱ •Žœœȱ ‘Š—ȱ ŝŖƖǯȱ ‘ŽœŽȱ œ›Š’—œȱ Ž›Žȱ ™›˜‹Š‹•¢ȱ ’—ȱ ™˜˜›ȱ ‘ŽŠ•‘ǯȱ —ȱ ‘Žȱ ŒŠœŽȱ ˜ȱ ǯȱ Šžœ›’ŠŒŠǰȱ P. obscuraȱ ›Šœœ”Žǰȱ ˜—Žȱ œ›Š’—ȱ˜ P. borealisǰȱŠ—ȱ˜—Žȱœ›Š’—ȱ˜ȱ ǯȱŠ–™‘’˜¡¢œȱ–˜›™‘˜¢™Žœȱŗȱ Š—ȱŘǰȱ‘ŽŠ’—ȱ’–™›˜ŸŽȱ‘Žȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ Œ˜—›˜•ȱœž›Ÿ’ŸŠ•ǯȱ‘Žȱž—Œ˜››ŽŒŽȱŠ—ȱŒ˜››ŽŒŽȱƖȱ’—ȱ‘ŽȱŒ˜—›˜•ȱ Œ˜—’’˜—ȱ Šœȱ —˜ȱ œ’—’ęȱŒŠ—•¢ȱ ’ěȱŽ›Ž—ȱ ‹Ž ŽŽ—ȱ ‘Š‹’Šȱ ¢™Žœȱ (pƽŖǯŝŞȱ˜›ȱ‹˜‘ȱ‘Žȱž—Œ˜››ŽŒŽȱŠ—ȱŒ˜››ŽŒŽȱŠŠœŽǼǯȱ

7ROHUDQFHWRKHDWLQJ ŽŠ’—ȱ Šœȱ ˜•Ž›ŠŽȱ ‹¢ȱ ‘Žȱ –Š“˜›’¢ȱ ˜ȱ ‘Žȱ œ™ŽŒ’Žœȱ ǻŠ‹•Žȱ ŝǯŘǼǰȱ ‹žȱ Š••ȱ ˜ž›ȱ Ž–™Ž›Šž›Žȱ ›ŽŠ–Ž—œȱ ‘Šȱ Šȱ œ’—’ęȱŒŠ—•¢ȱ •˜ Ž›ȱ Ɩȱ Œ˜–™Š›Žȱ ˜ȱ ‘Žȱ Œ˜—›˜•ȱ Œ˜—’’˜—œȱ ǻpȱ ǀȱ ŖǯŖŖŗǼȱ ǻ’ǯȱ ŝǯřŜǼǯȱ ‘Ž›Žȱ Ž›ŽȱŠ•œ˜ȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱƖȱ‹Ž ŽŽ—ȱ‘Žȱ’ěȱŽ›Ž—ȱ‘ŽŠ’—ȱ

192 Stress tolerance of vegetative diatom cells Figs 7.1-17ȱȱ™’Œž›Žœȱ›˜–ȱ˜¡’’£ŽȱŒž•ž›Žȱ–ŠŽ›’Š•ȱ˜ȱŠȱœŽ•ŽŒ’˜—ȱ˜ȱ‘Žȱœ›Š’—œȱžœŽȱ’—ȱ ‘ŽȱŽ¡™Ž›’–Ž—œȱ ’‘ȱ‘ŽȱŒ˜››Žœ™˜—’—ȱŸ˜žŒ‘Ž›ȱœ•’Žȱ’Ž—’ęȱŒŠ’˜—ȱŠ—ȱ‘Š‹’Šȱ¢™ŽǯȱŒŠ•Žȱ ‹Š›ȱƽȱŗŖȱΐ–ǯȱȱŽœ’—ŠŽœȱŠšžŠ’Œȱ‘Š‹’Šȱ¢™Žœȱ˜ȱ˜›’’—ǰȱȱŽ››Žœ›’Š•ȱ‘Š‹’Šȱ¢™Žœǯ ’ǯȱŝǯŗȱ’——ž•Š›’ŠȱŸ’›’’˜›–’œȱǻ˜—řǼŠDzȱǯȱ’ǯȱŝǯŘȱ’——ž•Š›’Šȱœž‹Œ˜––žŠŠ var. —˜—ŠœŒ’ŠŠȱǻŽŗǼŠDzȱǯȱ’ǯȱŝǯřȱ’——ž•Š›’Šȱ‹˜›ŽŠ•’œȱǻŗǼ‹Dzȱǯȱ’ǯȱŝǯŚȱŠ•˜—Ž’œȱ–˜•Š›’œ ǻŽŘǼŠDzȱǯȱ’ǯȱŝǯśȱ’——ž•Š›’Šȱ’œœŽ•Š—ŠȱǻŘǼDzȱǯȱ’ǯȱŝǯŜȱ’——ž•Š›’Šȱ–Š›Œ‘’ŒŠȱǻŘǼŠDzȱ ǯȱ’ǯȱŝǯŝȱ’——ž•Š›’Šȱ’ŸŽ›Ž—’œœ’–ŠȱǻśǼ‹Dzȱǯȱ’ǯȱŝǯŞȱ’——ž•Š›’Šȱ˜‹œŒž›ŠȱǻŽœŘǼŒDzȱ ǯȱ’ǯȱŝǯşȱŠŸ’Œž•ŠȱŸŽ—ŽŠȱǻŽœŜǼŒDzȱǯȱ’ǯȱŝǯŗŖȱȱŠŸ’Œž•ŠȱŒ›¢™˜Ž—Ž••ŠȱǻŽœśǼŒDzȱǯȱ ’ǯȱŝǯŗŗȱŠŸ’Œž•ŠȱŸŽ—ŽŠȱǻŽřǼDzȱǯȱ’ǯȱŝǯŗŘȱŠŸ’Œž•Šȱ•’‹˜—Ž—œ’œȱǻŽœřǼŽDzȱǯȱ’ǯȱŝǯŗřȱ ŠŸ’Œž•Šȱ•’‹˜—Ž—œ’œȱǻŽœŚǼŽDzȱǯȱ’ǯȱŝǯŗŚȱ›Š’Œž•ŠȱŒǯȱ‘Š•˜™‘’•ŠȱǻŽœŝǼ‹Dzȱǯȱ’ǯȱŝǯŗśȱ ŠŸ’Œž•Šȱ›Š’˜œŠȱǻŽœśǼŠDzȱǯȱ’ǯȱŝǯŗŜȱŠŸ’Œž•Šȱ›Š’˜œŠȱǻŽœřǼDzȱǯȱ’ǯȱŝǯŗŝȱŠŸ’Œž•Šȱ ›Š’˜œŠȱǻŽœŚǼŠDzȱǯ

Stress tolerance of vegetative diatom cells 193 Figs 7.18-35ȱȱ™’Œž›Žœȱ›˜–ȱ˜¡’’£ŽȱŒž•ž›Žȱ–ŠŽ›’Š•ȱ˜ȱŠȱœŽ•ŽŒ’˜—ȱ˜ȱ‘Žȱœ›Š’—œȱžœŽȱ’—ȱ ‘ŽȱŽ¡™Ž›’–Ž—œȱ ’‘ȱ‘ŽȱŒ˜››Žœ™˜—’—ȱŸ˜žŒ‘Ž›ȱœ•’Žȱ’Ž—’ęȱŒŠ’˜—ȱŠ—ȱ‘Š‹’Šȱ¢™ŽǯȱŒŠ•Žȱ ‹Š›ȱƽȱŗŖȱΐ–ǯȱȱŽœ’—ŠŽœȱŠšžŠ’Œȱ‘Š‹’Šȱ¢™Žœȱ˜ȱ˜›’’—ǰȱȱŽ››Žœ›’Š•ȱ‘Š‹’Šȱ¢™Žœǯ ’ǯȱ ŝǯŗŞȱ Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱ –˜›™‘˜¢™Žȱ Śȱ ǻŽœŗǼŠDzȱ ǯȱ ’ǯȱ ŝǯŗşȱ Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱ –˜›™‘˜¢™Žȱ řȱ ǻŜǼDzȱ ǯȱ ’ǯȱ ŝǯŘŖȱ Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱ –˜›™‘˜¢™Žȱ Řȱ ǻŞǼŒDzȱǯȱ’ǯȱŝǯŘŗȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œȱ–˜›™‘˜¢™ŽȱŗȱǻŗǼŽDzȱǯȱ’ǯȱŝǯŘŘȱ’ĵȱ œŒ‘’Šȱ ™Š•ŽŠȱ ǻŽœŝǼŽDzȱ ǯȱ ’ǯȱ ŝǯŘřȱ ’ĵȱ œŒ‘’Šȱ ™Ž›–’—žž–ȱ ǻŞǼŽDzȱ ǯȱ ’ǯȱ ŝǯŘŚȱ ’ĵȱ œŒ‘’Šȱ Šžœ›’ŠŒŠȱǻŽŗǼŒDzȱǯȱ’ǯȱŝǯŘśȱ–™‘˜›Šȱ™Ž’Œž•žœȱǻ˜—ŗǼDzȱǯȱ’ǯȱŝǯŘŜȱŠŸ’Œž•ŠȱŒǯȱ ’Žœ—Ž›’ȱǻŽŗǼ‘Dzȱǯȱ’ǯȱŝǯŘŝȱž—˜’Šȱ‹’•ž—Š›’œȱǻ˜—řǼ’Dzȱǯȱ’ǯȱŝǯŘŞȱ‘˜™Š•˜’Šȱ’‹‹Š –˜›™‘˜¢™Žȱ Řȱ ǻ˜—ŗǼŠDzȱ ǯȱ ’ǯȱ ŝǯŘşȱ ‘˜™Š•˜’Šȱ ’‹‹Šȱ –˜›™‘˜¢™Žȱ ŗȱ ǻŽŗǼŽDzȱ ǯȱ ’ǯȱ ŝǯřŖȱŒ‘—Š—‘ŽœȱŒ˜Š›ŒŠŠȱǻŽœřǼDzȱǯȱ’ǯȱŝǯřŗȱ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œȱ–˜›™‘˜¢™Žȱŗȱ ǻŽŘǼŽȱDzȱǯȱ’ǯȱŝǯřŘȱ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œȱ–˜›™‘˜¢™ŽȱŘȱǻŽœŜǼŒDzȱǯȱ’ǯȱŝǯřřȱž—˜’Šȱ ’–™•’ŒŠŠȱǻ ›ŠŗǼŒDzȱǯȱ’ǯȱŝǯřŚȱŒ‘—Š—‘’’ž–ȱ–’—ž’œœ’–ž–ȱǻŽŘǼDzȱǯȱ’ǯȱŝǯřśȱ Š¢Š–ŠŽŠȱŠ˜–žœ var. ™Ž›–’’œȱǻŽœŘǼŽDzȱǯ

194 Stress tolerance of vegetative diatom cells Fig. 7.36ȱ ˜¡ȱ ™•˜œȱ ˜ȱ ‘Žȱ percentages of viable cells ǻƖǼȱ ˜ȱ ‘Žȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ ˜›ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ Ž–™Ž›Šž›Žȱ ›ŽŠ–Ž—œȱ ’‘˜žȱ œŽ™Š›Š’˜—ȱ ’—ȱ ‘Š‹’Šȱ ¢™Žǯȱ ƽřŚȱ ˜›ȱ ŽŠŒ‘ȱ ›ŽŠ–Ž—ǯ

Fig. 7.37ȱŽ›ŒŽ—ŠŽœȱ˜ȱ˜•Ž›Š—ȱœ™ŽŒ’Žœȱǻ›Ž™›ŽœŽ—’—ȱ›˜ ‘ȱ’—ȱŠȱ•ŽŠœȱ ˜ȱ˜žȱ˜ȱ‘›ŽŽȱ ›Ž™•’ŒŠŽœȱ˜ȱŠȱ•ŽŠœȱ˜—Žȱœ›Š’—Ǽȱ™Ž›ȱ‘Š‹’Šȱ¢™Žȱ˜›ȱŽŠŒ‘ȱ›ŽŠ–Ž—ǯȱ‘’Žȱ‹Š›œȱ›Ž™›ŽœŽ—ȱ ŠšžŠ’ŒȱŠ¡Šǰȱ‹•ŠŒ”ȱ‹Š›œȱ›Ž™›ŽœŽ—ȱŽ››Žœ›’Š•ȱŠ¡Šǯȱ˜›ȱŽ››Žœ›’Š•ȱŠ¡ŠȱƽŘśǰȱ˜›ȱŠšžŠ’ŒȱŠ¡Šȱ ƽşǯ

Stress tolerance of vegetative diatom cells 195 ›ŽŠ–Ž—œȱ ǻpǀŖǯŖśȱ ˜›ȱ ‹˜‘ȱ ž—Œ˜››ŽŒŽȱ Š—ȱ Œ˜››ŽŒŽȱ ƖǼȱ ǻ’ǯȱ ŝǯřŜǼǯȱ••ȱœ›Š’—œȱœž›Ÿ’ŸŽȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸřŖǚȱǻ’ǯȱŝǯřŝǼȱ ’‘ȱ —˜ȱœ’—’ęȱŒŠ—ȱ’ěȱŽ›Ž—ŒŽȱ’—ȱƖȱ‹Ž ŽŽ—ȱ‘Š‹’Šȱ¢™Žœȱǻ’ǯȱŝǯřŞǼǯ ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸŚŖǚȱ Šœȱœž›Ÿ’ŸŽȱ‹¢ȱŠȱœ’—’ęȱŒŠ—•¢ȱ•˜ Ž›ȱ —ž–‹Ž›ȱ˜ȱŠšžŠ’Œȱœ™ŽŒ’ŽœȱŒ˜–™Š›Žȱ˜ȱŽ››Žœ›’Š•ȱœ™ŽŒ’ŽœȱǻpƽŖǯŖŗřǼȱ ǻ’ǯȱŝǯřŝǼǯȱ‘ŽȱŠšžŠ’Œȱ–™‘˜›Šȱ™Ž’Œž•žœǰȱœ›Š’—œȱ˜ȱŠŸ’Œž•Šȱ›Š’˜œŠ ›˜–ȱ‹˜‘ȱ‘Š‹’ŠœȱŠ—ȱ‘ŽȱŠšžŠ’Œȱœ›Š’—œȱ˜ȱ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œ and Rhopalodia gibbaȱ Ž›Žȱ ”’••Žȱ ‹¢ȱ ‘Žȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ ǻŠ‹•ŽȱŝǯŘǼǯȱ —ȱ Œ˜—›Šœǰȱ‘ŽȱŽ››Žœ›’Š•ȱœ›Š’—œȱ˜ȱ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œ and Rhopalodia gibbaȱ œž›Ÿ’ŸŽȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ ˜ȱ ŚŖǚǯȱ ‘Žȱ Ɩȱ Šœȱ ‘’‘•¢ȱ ŸŠ›’Š‹•ŽȱŠ–˜—ȱœ™ŽŒ’Žœȱ˜ȱ‘ŽȱœŠ–Žȱ‘Š‹’Šȱ ’‘ȱŽ¡›Ž–Žœȱ‹Ž ŽŽ—ȱ ŖȱŠ—ȱşŞƖȱǻŠ‹•ŽȱŝǯŘȱŠ—ȱ’ǯȱŝǯřŞǼǰȱ ‘’•Žȱ—˜ȱœ’—’ęȱŒŠ—ȱ’ěȱŽ›Ž—ŒŽœȱ Ž›ŽȱŽŽŒŽȱ‹Ž ŽŽ—ȱ‘Š‹’Šœǯ ‹›ž™ȱ ‘ŽŠ’—ȱ ˜ȱ ƸŚŖǚȱ Šœȱ –˜›Žȱ •Ž‘Š•ȱ ‘Š—ȱ ‘Žȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ Šœȱ ‘›ŽŽȱ –˜›Žȱ œ›Š’—œȱ ’œ˜•ŠŽȱ ›˜–ȱ Ž››Žœ›’Š•ȱ ‘Š‹’Šȱ Ž›Žȱ ’—˜•Ž›Š—DZȱ Œ‘—Š—‘’’ž–ȱ –’—ž’œœ’–ž–ȱǻ ûĵȱ ’—Ǽȱ £Š›—ŽŒ”’ǰȱ ’——ž•Š›’Šȱ’ŸŽ›Ž—’œœ’–Šȱǻ ›ž—˜ Ǽȱ•ŽŸŽȱŠ—ȱ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œ ǻŠ‹•ŽȱŝǯŘǼǯȱž›Ÿ’ŸŠ•ȱ›ŽšžŽ—Œ’Žœȱ Ž›Žȱ—˜ȱŽ™Ž—Ž—ȱ˜—ȱ‘Š‹’Šȱ¢™Žȱ (pƽŖǯŗŚŘǼȱ ǻ’ǯȱ ŝǯřŝǼȱ Š—ǰȱ œ’–’•Š›ȱ ˜ȱ ‘Žȱ ›ŠžŠ•ȱ ‘ŽŠ’—ǰȱ ‘Žȱ Ɩȱ Šœȱ ‘’‘•¢ȱ ŸŠ›’Š‹•Žȱ Š—ȱ —˜ȱ œ’—’ęȱŒŠ—ȱ ’ěȱŽ›Ž—ŒŽœȱ Ž›Žȱ ŽŽŒŽȱ ‹Ž ŽŽ—ȱ‘Š‹’Šȱ¢™Žœȱǻ’ǯȱŝǯřŞǼǯȱ˜›ȱ‹˜‘ȱ‘Š‹’Šȱ¢™Žœȱ˜Ž‘Ž›ǰȱŠȱ œ’—’ęȱŒŠ—•¢ȱ•˜ Ž›ȱƖȱ Šœȱ™›ŽœŽ—ȱŠŽ›ȱŠ‹›ž™ȱ‘ŽŠ’—ȱŒ˜–™Š›Žȱ ˜ȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ ˜ȱ ƸŚŖǚȱ ǻpƽŖǯŖŗŝȱ ˜›ȱ ‹˜‘ȱ ž—Œ˜››ŽŒŽȱ Š—ȱ Œ˜››ŽŒŽȱƖǼȱǻ’ǯȱŝǯřŜǼǯ

7ROHUDQFHWRIUHH]LQJ ›ŽŽ£’—ȱŠȱȬŘŖǚȱ Šœȱ•Ž‘Š•ȱ˜›ȱ–˜œȱ˜ȱ‘Žȱ’œ˜•ŠŽœȱǻŠ‹•ŽȱŝǯŘǼǯȱ˜—Žȱ ˜ȱ‘ŽȱŠšžŠ’Œȱœ›Š’—œȱœž›Ÿ’ŸŽǯȱ—•¢ȱœ˜–Žȱœ›Š’—œȱ˜ȱ‘›ŽŽȱŽ››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ ˜•Ž›ŠŽȱ ‘Žȱ ›ŽŠ–Ž—ǰȱ ‹Ž’—ȱ Pinnularia borealisȱ ǻśȱ ˜žȱ ˜ȱ ŗŖȱœ›Š’—œǼǰȱŠ¢Š–ŠŽŠȱŠ˜–žœȱŸŠ›ǯȱ™Ž›–’’œȱǻ‹˜‘ȱŽœŽȱœ›Š’—œǼȱŠ—ȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œȱ–˜›™‘˜¢™ŽȱŘȱǻŗȱ˜žȱ˜ȱŚǼȱŠ—ȱ–˜›™‘˜¢™ŽȱŚȱǻŗȱ ˜žȱ˜ȱŘǼȱǻŠ‹•ŽȱŝǯŘǼǯȱ‘ŽȱƖȱĚȱžŒžŠŽȱ›ŽŠ•¢ȱ‹Ž ŽŽ—ȱ›Ž™•’ŒŠŽœǰȱ ›˜–ȱŘȱ˜ȱŜŚƖȱǻŠ‹•ŽȱŝǯŘǼǯȱ˜ȱœ’—’ęȱŒŠ—ȱ’ěȱŽ›Ž—ŒŽœȱ Ž›Žȱ˜‹œŽ›ŸŽȱ ‹Ž ŽŽ—ȱ‘Š‹’Šȱ¢™Žœȱ‹ŠœŽȱ˜—ȱœž›Ÿ’ŸŠ•ȱ›ŽšžŽ—Œ’ŽœȱǻpƽŖǯŘŗŝǼȱǻ’ǯȱ ŝǯřŝǼȱ˜›ȱ˜—ȱƖȱǻpǁŖǯŖśȱ˜›ȱ‹˜‘ȱž—Œ˜››ŽŒŽȱŠ—ȱŒ˜››ŽŒŽȱƖǼȱ ǻ’ǯȱŝǯřŞǼǯ

Tolerance to desiccation ˜—Žȱ˜ȱ‘Žȱœ™ŽŒ’ŽœȱŒ˜—œ’œŽ—•¢ȱ˜•Ž›ŠŽȱŽœ’ŒŒŠ’˜—ǰȱ ’‘ȱ˜›ȱ ’‘˜žȱ ™›ŽŒ˜—’’˜—’—ȱǻŠ‹•ŽȱŝǯŘȱŠ—ȱ’ǯȱŝǯřŝǼǯȱ ›˜ ‘ȱ Šœȱ›ŽŒ˜›Žȱ’—ȱŠȱ

196 Stress tolerance of vegetative diatom cells Fig. 7.38ȱ˜¡ȱ™•˜œȱ˜ȱ™Ž›ŒŽ—ŠŽœȱ˜ȱŸ’Š‹•ŽȱŒŽ••œȱǻ–Ž’Š—ǰȱ‹˜¡DZȱęȱ›œȱŠ—ȱ‘’›ȱšžŠ›’•Žœǰȱ ‘’œ”Ž›œDZȱ–’—’–ž–ȱŠ—ȱ–Š¡’–ž–ǼȱŠŽ›ȱ‘Žȱ’ěȱŽ›Ž—ȱŽ–™Ž›Šž›ŽȱŠ—ȱŽœ’ŒŒŠ’˜—ȱ˜•Ž›Š—ŒŽȱ ›ŽŠ–Ž—œȱǻŒ˜—›˜•ȱŗŞǚǰȱƸřŖǚǰȱƸŚŖǚȱ›ŠžŠ•ǰȱƸŚŖǚȱŠ‹›ž™ǰȱȬŘŖǚǰȱŽœ’ŒŒŠ’˜—ǰȱƸřŖǚȱ ǭȱ Žœ’ŒŒŠ’˜—Ǽȱ ˜›ȱ ŠšžŠ’Œȱ œ™ŽŒ’Žœȱ ǻ ‘’Žȱ ‹Š›œǼȱ Š—ȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ ǻ‹•ŠŒ”ȱ ‹Š›œǼǯȱ ˜›ȱ Ž››Žœ›’Š•ȱŠ¡ŠȱƽŘśǰȱ˜›ȱŠšžŠ’ŒȱŠ¡Šȱƽşǯ œ’—•Žȱ›Ž™•’ŒŠŽȱ˜ȱęȱŸŽȱœ›Š’—œȱ›˜–ȱ‘›ŽŽȱ’ěȱŽ›Ž—ȱœ™ŽŒ’ŽœǰȱPinnularia borealisȱǻŘȱœ›Š’—œǼǰȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œȱ–˜›™‘˜¢™ŽȱŚȱǻŗȱœ›Š’—ǼȱŠ—ȱ ŠŸ’Œž•Šȱ›Š’˜œŠȱǻŘȱœ›Š’—œǼǯȱ‘Žȱęȱ›œȱ ˜ȱŠ›Žȱ¢™’ŒŠ•ȱŽ››Žœ›’Š•ȱœ™ŽŒ’Žœȱ ‘’•Žȱ ›Žœ’œŠ—ȱ œ›Š’—œȱ ˜ȱ ‘Žȱ ‘’›ȱ œ™ŽŒ’Žœȱ Ž›Žȱ ’œ˜•ŠŽȱ ›˜–ȱ Š—ȱ ŠšžŠ’ŒȱŠ—ȱŠȱŽ››Žœ›’Š•ȱœŠ–™•ŽȱǻŠ‹•ŽȱŝǯŘǼǯȱƖȱ’—ȱ‘ŽœŽȱ›Ž™•’ŒŠŽœȱ ŸŠ›’Žȱ‹Ž ŽŽ—ȱśȱŠ—ȱŞŚƖȱǻŠ‹•ŽȱŝǯŘǼǯ

,QÀXHQFHRIYDOYHOHQJWK ’–’•Š›•¢ǰȱŸŠ•ŸŽȱ•Ž—‘ȱŠ™™ŽŠ›Žȱž—’–™˜›Š—ȱ’—ȱŽ¡™•Š’—’—ȱƖȱ˜ȱ Š••ȱœ™ŽŒ’ŽœȱŠ—Š•¢£Žȱ˜Ž‘Ž›ȱǻŶȱ—˜ȱ‘’‘Ž›ȱ‘Š—ȱŖǯŖŞǰȱpǁŖǯŖśǼǰȱ—˜›ȱ ‘ŽȱƖȱ˜ȱ‘Žȱœ›Š’—œȱ˜ȱP. borealis and ǯȱŠ–™‘’˜¡¢œȱœŽ™Š›ŠŽ•¢ǯ

Stress tolerance of vegetative diatom cells 197 7.4 Discussion ••ȱŽ–™Ž›Šž›ŽȱŠ—ȱŽœ’ŒŒŠ’˜—ȱ›ŽŠ–Ž—œȱŒ˜—žŒŽȱ’—ȱ‘’œȱœž¢ȱ Œ•ŽŠ›•¢ȱ›Ž™›ŽœŽ—ŽȱŠŸŽ›œŽȱŒ˜—’’˜—œȱ˜›ȱŸŽŽŠ’ŸŽȱ’Š˜–ȱŒŽ••œǰȱ Šœȱ‘Žȱ™Ž›ŒŽ—ŠŽȱŸ’Š‹•ŽȱŒŽ••œȱǻƖǼȱœ’—’ęȱŒŠ—•¢ȱŽŒ›ŽŠœŽȱ’—ȱŠ••ȱ œ’¡ȱ›ŽŠ–Ž—œȱŒ˜–™Š›Žȱ˜ȱ‘ŽȱŒ˜—›˜•ȱŒ˜—’’˜—ǯȱž›‘Ž›–˜›Žǰȱ˜ž›ȱ ›Žœž•œȱ’—’ŒŠŽȱŠȱ‘’‘ȱœŽ—œ’’Ÿ’¢ȱ˜ȱ›Žœ‘ ŠŽ›ȱ’Š˜–œȱ˜ȱŠ‹›ž™ȱ ‘ŽŠ’—ǰȱ›ŽŽ£’—ȱŠ—ȱŽœ’ŒŒŠ’˜—ǯȱ˜›¢ȱ™Ž›ŒŽ—ȱ˜ȱ‘ŽȱŽœŽȱœ™ŽŒ’Žœȱ ’Žȱ ŠŽ›ȱ Š‹›ž™ȱ ‘ŽŠ’—ȱ ˜ȱ ƸŚŖǚǰȱ ˜—•¢ȱ ‘›ŽŽȱ œ™ŽŒ’Žœȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ǰȱŠ—ȱ—˜ȱŠȱœ’—•Žȱœ™ŽŒ’ŽœȱŒ˜—œ’œŽ—•¢ȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ǯȱ ž›ȱ ›Žœž•œȱ Š›ŽŽȱ ’‘ȱ ™ž‹•’œ‘Žȱ ŠŠȱ ˜›ȱ ›Žœ‘ ŠŽ›ȱ ™•Š—”˜—’Œȱ ’Š˜–œȱ ‘’Œ‘ȱ ›Ž™˜›ȱ ˜•Ž›Š—ŒŽȱ ˜ȱ ‘’‘ȱ Ž–™Ž›Šž›Žœȱ ˜—•¢ȱ ž™ȱ ˜ȱ řŖȬŚŖǚȱǻž£ž”’ȱǭȱŠ”Š‘Šœ‘’ǰȱŗşşśDzȱžĴȱŽ› ’Œ”ȱet al.ǰȱŘŖŖśǼǰȱŠ—ȱ—˜ȱ œž›Ÿ’ŸŠ•ȱ ‘Ž—ȱŽ¡™˜œŽȱ˜ȱŽœ’ŒŒŠ’˜—ȱǻ Š ˜›œ”’ȱǭȱž—ǰȱŗşŝŖǼǯȱ‘Ž¢ȱ Š›Žȱ ’—ȱ œŠ›”ȱ Œ˜—›Šœȱ ‘˜ ŽŸŽ›ȱ ’‘ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽœȱ ›Ž™˜›Žȱ ˜›ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ Œ¢Š—˜‹ŠŒŽ›’Šȱ Š—ȱ ›ŽŽ—ȱ Š•ŠŽǰȱ ’‘ȱœ˜–Žȱ›Ž™›ŽœŽ—Š’ŸŽœȱ‹Ž’—ȱŠ‹•Žȱ˜ȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱ ™Ž›’˜œȱ›Š—’—ȱ›˜–ȱ˜—ŽȱŠ¢ȱ˜ȱœŽŸŽ›Š•ȱ ŽŽ”œȱǻ˜ĴȱœǰȱŗşşşDzȱŠ‹ŠŒ”Šȱ ǭȱ•œŽ›ǰȱŘŖŖŜDzȱ ›Š¢ȱet al.ǰȱŘŖŖŝǼǰȱŠ—ȱ›ŽŽ£’—ȱŽ–™Ž›Šž›Žœȱ›Š—’—ȱ ›˜–ȱȬŚŖǚȱ˜ȱ•’šž’ȱ—’›˜Ž—ȱǻŠ–Š›ž et al.ǰȱŘŖŖśDzȱŠ‹ŠŒ”Šȱǭȱ•œŽ›ǰȱ ŘŖŖŜǼǯ ‘’•ŽȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ȱ‹˜‘ȱ›Žœž•ȱ’—ȱ‘ŽȱŽ‘¢›Š’˜—ȱ ˜ȱŒŽ••œȱǻŽ•œ‘ǰȱŘŖŖŖǼǰȱ˜ž›ȱ›Žœž•œȱ›ŽŸŽŠ•ŽȱŠ—ȱŽŸŽ—ȱ•˜ Ž›ȱœž›Ÿ’ŸŠ•ȱ ˜›ȱŽœ’ŒŒŠ’˜—ȱŒ˜–™Š›Žȱ˜ȱ›ŽŽ£’—ǯȱ‘’œȱŠ›ŽŽœȱ ’‘ȱ˜‹œŽ›ŸŠ’˜—œȱ ‘ŠȱŽœ’ŒŒŠ’˜—ȱ’œȱŠȱ–˜›Žȱ’—“ž›’˜žœȱœ›Žœœȱ‘Š—ȱ›ŽŽ£’—ȱǻ•Ž—‘˜ȱet al.ǰȱŘŖŖŜDzȱŠ‹ŠŒ”Šȱǭȱ•œŽ›ǰȱŘŖŖŜǼǯȱ —Ž›Žœ’—•¢ǰȱœ˜–Žȱœ›Š’—œȱ˜ȱ‘Žȱ Ž››Žœ›’Š•ȱœ™ŽŒ’Žœȱ ǯȱŠ–™‘’˜¡¢œ and P. borealisȱ’ȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ȱ ˜›ȱŽœ’ŒŒŠ’˜—ȱ’—ȱŠȱœ’—•Žȱ›Ž™•’ŒŠŽǯȱœȱ‘Žȱ™Ž›ŒŽ—ŠŽœȱ˜ȱœž›Ÿ’Ÿ’—ȱ ŒŽ••œȱ Ž›ŽȱŸŽ›¢ȱ•˜ ǰȱ‘’œȱ–Š¢ȱ‘ŠŸŽȱ‹ŽŽ—ȱžŽȱ˜ȱ‘ŽȱŒ˜–‹’—Š’˜—ȱ˜ȱ Šȱ•˜ ȱœž›Ÿ’ŸŠ•ȱ™›˜‹Š‹’•’¢ȱŠ—ȱŠȱ•˜ ȱ—ž–‹Ž›ȱ˜ȱŽœŽȱŒŽ••œȱ™Ž›ȱ Ž••ȱ ǻ‹Ž ŽŽ—ȱřŖŖȱŠ—ȱŗŖŖŖǼǯȱ‘’œȱ–ŽŠ—œȱ‘Šȱœ˜–ŽȱŒŽ••œȱ˜ȱ‘ŽœŽȱœ™ŽŒ’Žœȱ Š›ŽȱŒŠ™Š‹•Žȱ˜ȱœž›Ÿ’Ÿ’—ȱ›ŽŽ£’—ȱ˜›ȱŽœ’ŒŒŠ’˜—ǰȱ™˜œœ’‹•¢ȱ‹¢ȱ–ŽŠ—œȱ ˜ȱ’ěȱŽ›Ž—’Š•ȱŽ¡™›Žœœ’˜—ȱ˜ȱž—’ŸŽ›œŠ•ȱ–˜•ŽŒž•Š›ȱ–ŽŒ‘Š—’œ–œȱœžŒ‘ȱŠœȱ ˜œ–˜•¢ŽœȱǻŽ•œ‘ǰȱŘŖŖŖǼǰȱœ›Žœœȱ™›˜Ž’—œȱǻ’Ž›”Ž—œȱet al.ǰȱŗşşŞDzȱ˜žœŒ‘ȱ et al.ǰȱ ŘŖŖŚǼǰȱ Š—’˜¡’Š—œȱ ˜›ȱ ŠĴȱ¢ȱ ŠŒ’ȱ Œ˜–™˜œ’’˜—ȱ ǻ ˜•–œ›ž™ȱ et al.ǰȱŘŖŖŘDzȱ˜žœŒ‘ȱet al.ǰȱŘŖŖřDzȱ’Œ›Žȱet al.ǰȱŘŖŖŚDzȱž—•Š™ȱet al.ǰȱŘŖŖŝǼǰȱ ˜›ȱ‹¢ȱ‘Ž’›ȱŒŽ••ȱŒ¢Œ•Žȱ™‘ŠœŽȱǻ ˜œ˜—ȱet al.ǰȱŗşşŘǼǯȱ —ȱŠ’’˜—ǰȱ ˜ȱ œ›Š’—œȱ˜ȱǯȱ›Š’˜œŠȱœ‘˜ Žȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœȱ˜›ȱŽœ’ŒŒŠ’˜—ȱ˜ȱ ŝŚȱŠ—ȱŞŚƖȱ’—ȱŠȱœ’—•Žȱ›Ž™•’ŒŠŽǯȱ˜œœ’‹•¢ǰȱ‘ŽȱŒŽ••œȱ Ž›ŽȱŒ•žœŽ›’—ȱ ž›’—ȱ Žœ’ŒŒŠ’˜—ǰȱ ˜›ȱ Ž›Žȱ ’—ȱ Šȱ ’ěȱŽ›Ž—ȱ Œž•ž›Žȱ ›˜ ‘ȱ ™‘ŠœŽǰȱ Žœ™’Žȱ‘ŽȱŠŒȱ‘Šȱ ŽȱŠĴȱŽ–™Žȱ˜ȱ”ŽŽ™ȱŠ••ȱŒž•ž›Žœȱ’—ȱŽ¡™˜—Ž—’Š•ȱ ™‘ŠœŽǯȱ •œ˜ǰȱ Šȱ –ŽŒ‘Š—’œ–ȱ ’—Ÿ˜•Ÿ’—ȱ ’—Ž›ŒŽ••ž•Š›ȱ Œ˜––ž—’ŒŠ’˜—ȱ

198 Stress tolerance of vegetative diatom cells ˜ȱœ›Žœœž•ȱŒ˜—’’˜—œȱŠ—ȱŠȱœž‹œŽšžŽ—ȱ›Žœ™˜—œŽȱ˜ȱ‘Žȱ’—’Ÿ’žŠ•ȱ ŒŽ••œȱŒ˜ž•ȱ‹Žȱ‘¢™˜‘Žœ’£Žǯȱ‘’•Žȱ‘ŽœŽȱ˜‹œŽ›ŸŠ’˜—œȱ’—’ŒŠŽȱ‘Šȱ ŒŽ••œȱ˜ȱŠȱ•ŽŠœȱœ˜–ŽȱǻŽ››Žœ›’Š•ȱ˜›ȱ‘Š‹’ŠȬž—œ™ŽŒ’ęȱŒǼȱ’Š˜–ȱœ™ŽŒ’Žœȱ ŒŠ—ȱ‹Žȱ’—ȱŠȱ™‘¢œ’˜•˜’ŒŠ•ȱœŠŽȱ’—ȱ ‘’Œ‘ȱ‘Ž¢ȱŒŠ—ȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱ ˜›ȱ›ŽŽ£’—ǰȱ‘Žȱ›ŽŠœ˜—œȱ˜›ȱ‘’œȱ›Š›Žȱœž›Ÿ’ŸŠ•ȱŠ›Žȱ—˜ȱŒ•ŽŠ›ȱŠ—ȱœ‘˜ž•ȱ ‹Žȱž›‘Ž›ȱ’—ŸŽœ’ŠŽǯ —ȱŒ˜—›Šœȱ˜ȱŽœ’ŒŒŠ’˜—ȱ˜ȱ‘ŽȱŠ’›ǰȱ™›ŽŸ’˜žœȱŽ¡™Ž›’–Ž—œȱ ’‘ȱ œŽ’–Ž—œȱ œ‘˜ ȱ ‘Šȱ –˜œȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ œž›Ÿ’ŸŽȱ ’—ȱ œŽ’–Ž—ȱ ’‘ȱ ˜ŸŽ›ȱ śŖƖȱ –˜’œž›Žȱ Œ˜—Ž—ȱ ǻŸŠ—œǰȱ ŗşśşǼǯȱ ˜’•œȱ œ‘˜ ȱ Šȱ •Š›Žȱ ŸŽ›’ŒŠ•ȱ›Š’Ž—ȱ’—ȱ ŠŽ›ȱŒ˜—Ž—ȱ’—ȱ‘Žȱœ‘Š••˜ ȱœž›ŠŒŽȱ•Š¢Ž›ȱǻ Š˜ȱ et al.ǰȱŘŖŖŞǼȱŠ—ȱ‘Žȱ˜‹œŽ›ŸŽȱŸŽ›’ŒŠ•ȱ–’›Š’˜—ȱ˜ȱœŽ–’ȬŽ››Žœ›’Š•ȱ ’Š˜–œȱ Š—ȱ Œ¢Š—˜‹ŠŒŽ›’Šȱ ’—ȱ ›¢’—ȱ ™˜—œȱ ǻŸŠ—œǰȱ ŗşśşǼȱ Œ˜ž•ȱ ‘žœȱ ‹Žȱ ‘Ž’›ȱ –Š’—ȱ –ŽŒ‘Š—’œ–ȱ ˜ȱ ŠŸ˜’ȱ Žœ’ŒŒŠ’˜—ǯȱ ˜›Ž˜ŸŽ›ǰȱ ’—ȱ —Šž›Š•ȱŒ˜—’’˜—œǰȱ‘Žȱœ•˜ Ž›ȱŽœ’ŒŒŠ’˜—ȱ›ŠŽȱ’—ȱœŽ’–Ž—œȱŠ••˜ œȱ –˜›Žȱœ™ŽŒ’Žœȱ˜ȱœž›Ÿ’ŸŽȱǻŸŠ—œǰȱŗşśşDzȱ ˜œŽĴȱŽ›ȱǭȱ ˜œ‘Š ǰȱŗşŝŖǼǰȱ ™˜œœ’‹•¢ȱ žŽȱ ˜ȱ ‘Žȱ •˜—Ž›ȱ ’–Žȱ ’—Ž›ŸŠ•ȱ ž›’—ȱ ‘’Œ‘ȱ ŒŽ••œȱ Œ˜ž•ȱ ’—’’ŠŽȱ ™›˜ŽŒ’ŸŽȱ –ŽŒ‘Š—’œ–œȱ ǻ•Ž—‘˜ȱ et al.ǰȱ ŘŖŖŜǼȱ ˜›ȱ ˜›–ȱ ™‘¢œ’˜•˜’ŒŠ•ȱ ›Žœ’—ȱ œŠŽœȱ ǻŒž˜’ȱ ǭȱ ˜‹œ˜—ǰȱ ŗşşŜǼǯȱ —ȱ ˜ž›ȱ œž¢ǰȱ™›ŽŒ˜—’’˜—’—ȱ‹¢ȱ‘ŽŠ’—ȱ‘ŽȱŒŽ••œȱ˜ȱƸřŖǚȱ’ȱ—˜ȱŽ—‘Š—ŒŽȱ ‘Ž’›ȱ˜•Ž›Š—ŒŽȱ˜ȱŽœ’ŒŒŠ’˜—ǰȱŽœ™’Žȱ‘Žȱ”—˜ —ȱ™˜œ’’ŸŽȱ’—ĚȱžŽ—ŒŽȱ ˜ȱ™›ŽȬ›ŽŠ–Ž—ȱ˜—ȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ‹¢ȱ‘Žȱ’—’’Š’˜—ȱ˜ȱ™›˜ŽŒ’˜—ȱ –ŽŒ‘Š—’œ–œȱ ’—ȱ ŸŠ›’˜žœȱ ˜›Š—’œ–œȱ ǻ’Ž›”Ž—œȱ et al.ǰȱ ŗşşŞDzȱ Š¢•Ž¢ȱ et al.ǰȱŘŖŖŗDzȱž—ȱet al.ǰȱŘŖŖřDzȱž—•Š™ȱet alǯǰȱŘŖŖŝǼǯȱ ˜ ŽŸŽ›ǰȱ’—ȱ‘Žȱ ‘ŽŠ’—ȱ›ŽŠ–Ž—œȱ‘Ž›Žȱ ŠœȱŠ—ȱŽěȱŽŒȱ˜ȱ™›ŽŒ˜—’’˜—’—ǰȱŠœȱœŽŸŽ›Š•ȱ œ™ŽŒ’Žœȱœž›Ÿ’ŸŽȱ›ŠžŠ•ȱ‹žȱ—˜ȱŠ‹›ž™ȱ‘ŽŠ’—ȱ˜ȱŚŖǚǯȱ˜›Ž˜ŸŽ›ǰȱ Š‹›ž™ȱ‘ŽŠ’—ȱ‘Šȱ’—ȱŽ—Ž›Š•ȱŠȱ–˜›Žȱ—ŽŠ’ŸŽȱ’—ĚȱžŽ—ŒŽȱ˜—ȱƖȱ ‘Š—ȱ›ŠžŠ•ȱ‘ŽŠ’—ǯȱ—ȱ‘Žȱ˜‘Ž›ȱ‘Š—ǰȱœ˜–Žȱœ›Š’—œȱ˜ȱ˜›ȱ’—œŠ—ŒŽȱ Rhopalodia gibbaǰȱ ’ĵȱœŒ‘’Š and ǯȱ Š–™‘’˜¡¢œȱ ’ȱ ‘ŠŸŽȱ Šȱ ‘’‘Ž›ȱ œž›Ÿ’ŸŠ•ȱŠŽ›ȱ‘ŽȱŠ‹›ž™ȱ‘ŽŠ’—ȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ›ŠžŠ•ȱ‘ŽŠ’—ǰȱ ŠȱŠŒȱ‘ŠȱŒ˜ž•ȱ‹ŽȱžŽȱ˜ȱ‘Žȱ•˜—Ž›ȱž›Š’˜—ȱ˜ȱœ›Žœœȱž›’—ȱ‘Žȱ ›ŠžŠ•ȱ‘ŽŠ’—ǯȱ ‘ŽȱœŽ—œ’’Ÿ’¢ȱ˜ȱ›Žœ‘ ŠŽ›ȱ’Š˜–œȱ˜ȱ›ŽŽ£’—ǰȱŽœ’ŒŒŠ’˜—ȱ Š—ȱ Š‹›ž™ȱ ‘ŽŠ’—ȱ –Š¢ȱ ’—ĚȱžŽ—ŒŽȱ ‘Ž’›ȱ ’œ™Ž›œŠ•ȱ ŒŠ™ŠŒ’’Žœȱ Š—ȱ Œ˜—œŽšžŽ—•¢ȱ ›ŠŽœȱ ˜ȱ Š••˜™Š›’Œȱ œ™ŽŒ’Š’˜—ǯȱ ’Š˜–ȱ œ™ŽŒ’Š’˜—ȱ ‘Šœȱ ‹ŽŽ—ȱ Ž—Ž›Š••¢ȱ ’Žȱ ˜ȱ ŽŸ˜•ž’˜—ȱ ’‘’—ȱ Š—Œ’Ž—ȱ ŠŽ›ȱ ‹˜’Žœȱ ˜›ȱ •Š—œŒŠ™Žœȱ ǻ ˜Œ’˜•Ž”ȱ ǭȱ ™Šž•’—ǰȱ ŘŖŖŖDzȱ ˜œœ’Ž›ȱ ǭȱ Š Š—Š‹Žǰȱ ŘŖŖŖǼǰȱ ‘Ž›ŽŠœȱŽ››Žœ›’Š•ȱ’Š˜–œȱŠ›Žȱ‘˜ž‘ȱ˜ȱ‹Žȱ‘Žȱ•ŽŠœȱ•’”Ž•¢ȱ ˜ȱ ‹ŽŒ˜–Žȱ ›Ž™›˜žŒ’ŸŽ•¢ȱ ’œ˜•ŠŽȱ Š—ȱ ž—Ž›˜ȱ œ™ŽŒ’Š’˜—ȱ žŽȱ ˜ȱ ‘’‘Ž›ȱ’œ™Ž›œŠ•ȱŠ‹’•’’Žœȱǻ™Šž•’—ȱet al.ǰȱŘŖŗŖǼǯȱŽŸŽ›‘Ž•Žœœǰȱ˜ž›ȱ ›Žœž•œȱ Œ•ŽŠ›•¢ȱ ’—’ŒŠŽȱ ‘Šȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ –˜œȱ Š¡Šȱ ˜ȱ —˜ȱ œž›Ÿ’ŸŽȱ ‘Š›œ‘ȱ ŠŸŽ›œŽȱ Œ˜—’’˜—œǰȱ ’–™•¢’—ȱ ‘Šȱ –˜œȱ ’Š˜–œȱ Ȯȱ

Stress tolerance of vegetative diatom cells 199 Ž››Žœ›’Š•ȱœ™ŽŒ’Žœȱ’—Œ•žŽȱȮȱŠ›Žȱ•’”Ž•¢ȱ˜ȱ‹Žȱ•’–’Žȱ’—ȱ‘Ž’›ȱ’œ™Ž›œŠ•ȱ ŒŠ™ŠŒ’’Žœǯȱ ‘’œȱ ’œȱ Š•œ˜ȱ ’—ȱ Š›ŽŽ–Ž—ȱ ’‘ȱ ‘Žȱ ›Š›Žȱ ˜ŒŒž››Ž—ŒŽȱ ˜ȱ •’Ÿ’—ȱ ’Š˜–œȱ ’—ȱ ‘Žȱ Š’›ȱ ǻŠ—ȱ ŸŽ›ŽŽ–ǰȱ ŗşřŝDzȱ Œ‘•’Œ‘’—ǰȱ ŗşŜŗDzȱ ›˜ —ȱet al.ǰȱŗşŜŚDzȱŒ‘•’Œ‘’—ǰȱŗşŜŚDzȱ˜¢ȬŒ˜•ŠȱǭȱŠ››Ž›ŠǰȱŗşşřǼȱ˜›ȱ ˜—ȱ ŠŽ›˜ •ȱǻŒ‘•’Œ‘’—ǰȱŗşŜŗǼǯȱŽȱ‘Ž›Ž˜›ŽȱŠ›žŽȱ‘Šȱ™‘¢œ’ŒŠ••¢ȱ ž—™›˜ŽŒŽȱŸŽŽŠ’ŸŽȱ’Š˜–ȱŒŽ••œȱ ’••ȱ—˜ȱœž›Ÿ’ŸŽȱ•˜—Ȭ’œŠ—ŒŽȱ ’œ™Ž›œŠ•ȱ‹¢ȱ ’—ȱ˜›ȱ‹’›œǯȱ‘’œȱ ŠœȱŠ•›ŽŠ¢ȱœžŽœŽȱ‹¢ȱ‘Žȱ‘’‘ȱ ’ěȱŽ›Ž—’Š’˜—ȱ ˜›ȱ –’Œ›˜œŠŽ••’Žȱ –Š›”Ž›œȱ ‹Ž ŽŽ—ȱ ™˜™ž•Š’˜—œȱ ˜ȱ ‘Žȱ‹Ž—‘’Œȱ›Žœ‘ ŠŽ›ȱ’Š˜–ȱŽ••Š™‘˜›ŠȱŒŠ™’ŠŠǰȱŽŸŽ—ȱ ‘Ž—ȱ•˜ŒŠŽȱ ˜—•¢ȱœ˜–ŽȱŗŖŖœȱ˜ȱ”’•˜–Ž›Žœȱ›˜–ȱŽŠŒ‘ȱ˜‘Ž›ȱǻŸŠ—œ et al.ǰȱŘŖŖşǼǯȱ ȱ •’–’Žȱ ’œ™Ž›œŠ•ȱ ’œȱ Š•œ˜ȱ ’—ȱ Š›ŽŽ–Ž—ȱ ’‘ȱ ›ŽŒŽ—ȱ Š¡˜—˜–’Œȱ ›ŽŸ’œ’˜—œǰȱ ‘’Œ‘ȱ•Žȱ˜ȱ‘Žȱ’œŒ˜ŸŽ›¢ȱ˜ȱŠȱ•Š›Žȱ—ž–‹Ž›ȱ˜ȱ›Ž’˜—Š••¢ȱ Ž—Ž–’Œȱ œ™ŽŒ’Žœȱ ’—ȱ ’œ˜•ŠŽȱ Š›ŽŠœǰȱ ˜›ȱ Ž¡Š–™•Žȱ ’—ȱ ‘Žȱ Ž—Ž›Šȱ ’ŠŽœ–’œȱ ûĵȱ ’—ȱ ǻŠ—ȱŽȱ ’“ŸŽ›ȱ et al.ǰȱ ŘŖŖŘǼǰȱ Luticolaȱ ǯ ǯȱ Š——ȱ ǻŠ—ȱŽȱ’“ŸŽ›ȱǭȱŠŠ•˜—’ǰȱŘŖŖŞǼǰȱMuelleriaȱǻ›Ž—žŽ••’Ǽȱ›Ž—žŽ••’ȱ ǻ™Šž•’—ȱet al.ǰȱŗşşşǼǰȱŠ—ȱŠž›˜—Ž’œȱ‘›Ž—‹Ž›ȱǻŠ—ȱŽȱ’“ŸŽ›ȱet al.ǰȱŘŖŖśǼǯȱ ˜ ŽŸŽ›ǰȱ‘Žȱ˜ŒŒŠœ’˜—Š•ȱœž›Ÿ’ŸŠ•ȱ˜ȱŠȱœ’—•Žȱ›Ž™•’ŒŠŽȱ›˜–ȱ ˜ž›ȱŽ¡™Ž›’–Ž—œȱŠ—ȱ‘Žȱ›Š›Žȱ˜ŒŒž››Ž—ŒŽȱ˜ȱœ’—•Žǰȱ•’Ÿ’—ȱ’Š˜–ȱŒŽ••œȱ ˜—ȱ ŠŽ›˜ •ȱŠ—ȱ’—ȱŠ’›ȱ›Š™œȱ’—’ŒŠŽȱ‘Šȱ’Š˜–ȱŒŽ••œȱŒŠ—ȱ’—ŽŽȱ ‹Žȱ˜ŒŒŠœ’˜—Š••¢ȱ’œ™Ž›œŽǯȱ˜›ȱ’—œŠ—ŒŽǰȱ ˜ȱ¢ŽŠ›œȱŠŽ›ȱ‘ŽȱŸ˜•ŒŠ—’Œȱ ŠŒ’Ÿ’¢ȱ‘ŠȱŒŽŠœŽȱ˜—ȱž›œŽ¢ȱ œ•Š—ǰȱřřȱ”–ȱ˜ȱ‘ŽȱŒ˜Šœȱ˜ȱ ŒŽ•Š—ǰȱ Ŝşȱ’ěȱŽ›Ž—ȱ’Š˜–ȱœ™ŽŒ’Žœȱ Ž›Žȱ›Ž™˜›Žǰȱ–Š’—•¢ȱŽ››Žœ›’Š•ȱœ™ŽŒ’Žœȱ Š•œ˜ȱ ˜ŒŒž››’—ȱ ’—ȱ ŒŽ•Š—ȱ ǻŽ‘›Žȱ ǭȱ Œ‘ Š‹Žǰȱ ŗşŝŖȱ ’—ȱ ›’œ’Š—œŽ—ǰȱ ŗşşŜǼǯȱ‘Ž›Ž˜›Žǰȱ ŽȱŒ˜—Œ•žŽȱ‘ŠǰȱŠ•‘˜ž‘ȱ˜ŒŒŠœ’˜—Š•ȱ’œ™Ž›œ’˜—ȱ ŽŸŽ—œȱ’—ŽŽȱ–Š¢ȱ‹ŽȱœžŒŒŽœœž•ǰȱŸŽŽŠ’ŸŽȱ’Š˜–ȱŒŽ••œȱ ’••ȱ—˜ȱ‹Žȱ –Šœœ’ŸŽ•¢ȱ’œ™Ž›œŽȱ‹¢ȱ ’—ȱŠ—ȱ ŠŽ›˜ •ǯ Žœ’Žœȱ ‘Žȱ ‘’‘ȱ œŽ—œ’’Ÿ’¢ȱ ˜ȱ ‹˜‘ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ œ™ŽŒ’Žœȱ˜ȱ˜ž›ȱ›ŽŠ–Ž—œǰȱ˜ž›ȱ›Žœž•œȱ˜ȱ—˜ȱ›ŽŸŽŠ•ȱŠȱ–Š›”ŽȱŠ—ȱ Œ˜—œ’œŽ—•¢ȱ‘’‘Ž›ȱ˜•Ž›Š—ŒŽȱ˜ȱŽ››Žœ›’Š•ȱ’Š˜–ȱœ™ŽŒ’ŽœȱŒ˜–™Š›Žȱ ˜ȱ ŠšžŠ’Œȱ œ™ŽŒ’Žœǯȱ ••ȱ œ™ŽŒ’Žœǰȱ ›ŽŠ›•Žœœȱ ˜ȱ ‘Š‹’Šǰȱ Ž›Žȱ ŸŽ›¢ȱ œŽ—œ’’ŸŽȱ˜ȱŽœ’ŒŒŠ’˜—ǰȱŠ—ǰȱŠ™Š›ȱ›˜–ȱ‘›ŽŽȱœ™ŽŒ’Žœǰȱ˜ȱ›ŽŽ£’—ǯȱ ‘Žȱ ŸŽ›¢ȱ ‹›˜Šȱ ›Š—Žœȱ ˜ȱ Ɩȱ ‹Ž ŽŽ—ȱ œ™ŽŒ’Žœȱ ’‘’—ȱ ‘Žȱ  ˜ȱ ‘Š‹’Šȱ ¢™Žœȱ ˜›ȱ ‘Žȱ ˜‘Ž›ȱ ›ŽŠ–Ž—œȱ Ȭȱ ›Š—’—ȱ ›˜–ȱ Ŗȱ ˜ȱ ŗŖŖƖȱȬȱ ’—’ŒŠŽȱ ‘’‘•¢ȱ œ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒȱ ˜•Ž›Š—ŒŽœǰȱ ‘’Œ‘ȱ Ž›Žȱ ˜›ȱ Šȱ •Š›Žȱ ™Š›ȱ’—Ž™Ž—Ž—ȱ˜ȱ‘Š‹’Šǯȱ’–’•Š›ȱœ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒȱœ›Žœœȱ˜•Ž›Š—ŒŽœȱ Ž›ŽȱŠ•›ŽŠ¢ȱ›Ž™˜›Žȱ’—ȱ˜‘Ž›ȱ–’Œ›˜Š•ŠŽȱǻžĴȱŽ› ’Œ” et al.ǰȱŘŖŖśDzȱ ›Š¢ȱet al.ǰȱŘŖŖŝǼǯȱ œȱ Žȱ Ž›Žȱ–Š’—•¢ȱ’—Ž›ŽœŽȱ’—ȱ‘ŽȱŽ—Ž›Š•ȱœž›Ÿ’ŸŠ•ȱŒŠ™ŠŒ’’Žœȱ ˜ȱŸŽŽŠ’ŸŽȱ’Š˜–ȱŒŽ••œȱŠ—ȱ‘Š‹’ŠȬŽ™Ž—Ž—ȱœž›Ÿ’ŸŠ•ȱ’ěȱŽ›Ž—ŒŽœȱ Š–˜—ȱœ™ŽŒ’Žœǰȱ Žȱ’ȱ—˜ȱŽ¡™•’Œ’•¢ȱŽœȱ˜›ȱ’—›Šœ™ŽŒ’ęȱŒȱŸŠ›’Š’˜—ȱ ’—ȱ Ɩǯȱ•‘˜ž‘ȱ ‘Žȱ Ž¡™Ž›’–Ž—Š•ȱ Žœ’—ȱ Šœȱ —˜ȱ œŠ—Š›’£Žȱ

200 Stress tolerance of vegetative diatom cells Ž—˜ž‘ȱ˜ȱ›Š ȱęȱ›–ȱŒ˜—Œ•žœ’˜—œȱ˜—ȱ‘’œȱ–ŠĴȱŽ›ǰȱŠ—ȱœ˜–Žȱœ›Š’—œȱ Ž›Žȱ ˜‹Ÿ’˜žœ•¢ȱ ’—ȱ Šȱ •Žœœȱ ‘ŽŠ•‘¢ȱ ™‘¢œ’˜•˜’ŒŠ•ȱ œŠŽȱ ‘Š—ȱ ˜‘Ž›œǰȱ ‘Ž›ŽȱœŽŽ–ȱ˜ȱ‹Žȱœ˜–Žȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ‹Ž ŽŽ—ȱœ›Š’—œȱ ˜ȱ‘ŽȱœŠ–Žȱœ™ŽŒ’Žœǯȱ˜›ȱ’—œŠ—ŒŽǰȱ˜—Žȱœ›Š’—ȱ˜ȱ ǯȱŠ–™‘’˜¡¢œȱ–˜›™‘ǯȱ Śȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱ –žŒ‘ȱ ‹ŽĴȱŽ›ȱ ‘Š—ȱ ‘Žȱ ˜‘Ž›ȱ œ›Š’—œǯȱ ‘Žȱ œŠ–Žȱ Šœȱ›žŽȱ˜›ȱP. borealisǰȱ’—ȱ ‘’Œ‘ȱŒŽ••œȱ˜ȱ‘Š•ȱ˜ȱ‘Žȱœ›Š’—œȱ˜•Ž›ŠŽȱ ›ŽŽ£’—ǯȱ •œ˜ȱ ’—ȱ ‘Žȱ ‘ŽŠ’—ȱ ˜ȱ ƸŚŖǚȱ ›ŽŠ–Ž—œǰȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ Ɩȱ ‹Ž ŽŽ—ȱ œ›Š’—œȱ Ž›Žȱ ˜‹Ÿ’˜žœȱ ˜›ȱ œŽŸŽ›Š•ȱ œ™ŽŒ’Žœǯȱ žž›Žȱ Ž¡™Ž›’–Ž—œȱœ‘˜ž•ȱ˜Œžœȱ˜—ȱŽŽ›–’—’—ȱ‘ŽȱŽ¡Ž—ȱ˜ȱ’—›Šœ™ŽŒ’ęȱŒȱ Ž—Ž’ŒȱŸŠ›’Š’˜—ȱ˜›ȱ‘ŽœŽȱ›Š’œǯ ŽŸŽ›‘Ž•Žœœǰȱ Š™Š›ȱ ›˜–ȱ ‘ŽœŽȱ ’—Ž›Ȭȱ Š—ȱ ’—›Šœ™ŽŒ’ęȱŒȱ ’ěȱŽ›Ž—ŒŽœǰȱ‘Žȱ‘Š‹’ŠȬŽ™Ž—Ž—ȱ˜•Ž›Š—ŒŽœȱ˜›ȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱ ƸŚŖǚȱŠ—ȱ›ŽŽ£’—ȱ˜ȱ™˜’—ȱŠȱŠȱ‹ŽĴȱŽ›ȱŠŠ™Š’˜—ȱ˜ȱŸŽŽŠ’ŸŽȱŒŽ••œȱ ˜ȱ‘ŽȱŽ››Žœ›’Š•ȱœ™ŽŒ’Žœȱ˜ȱ‘Ž’›ȱ–˜›ŽȱŽ¡›Ž–Žȱ‘Š‹’Šǯȱ’›œǰȱŠȱ‘’‘Ž›ȱ —ž–‹Ž›ȱ ˜ȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ œž›Ÿ’ŸŽȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ ˜ȱ ƸŚŖǚȱ Œ˜–™Š›Žȱ˜ȱŠšžŠ’Œȱœ™ŽŒ’Žœǰȱ ‘’Œ‘ȱ’œȱ™›˜‹Š‹•¢ȱŠ—ȱŠŠ™Š’˜—ȱ˜ȱ‘Žȱ Ž¡›Ž–Žȱ ’ž›—Š•ȱ ŸŠ›’Š’˜—œȱ ’—ȱ Ž–™Ž›Šž›Žȱ ’—ȱ ‘Žȱ ž™™Ž›ȱ œ˜’•ȱ •Š¢Ž›ȱ ǻ Š˜ȱet al.ǰȱŘŖŖŞǼǯȱ‘Žȱ™˜œ’’ŸŽȱ›Žœ™˜—œŽœȱ˜ȱ‘ŽȱŽ››Žœ›’Š•ȱœ›Š’—œȱ˜ȱ Rhopalodia gibba and ¢–‹Ž••Šȱœž‹ŠŽšžŠ•’œȱ˜ȱ‘’œȱ›ŽŠ–Ž—ȱŒ˜–™Š›Žȱ ˜ȱ ‘Žȱ ŠšžŠ’Œȱ œ›Š’—œȱ ž—Ž›œŒ˜›Žȱ ‘’œȱ ‘Š‹’ŠȬœ™ŽŒ’ęȱŒȱ ’ěȱŽ›Ž—ŒŽǯȱ —Ž›Žœ’—•¢ǰȱ ‘Žȱ ŠšžŠ’Œȱ Š—ȱ Ž››Žœ›’Š•ȱ œ›Š’—œȱ ˜ȱ ‹˜‘ȱ œ™ŽŒ’Žœȱ Š•œ˜ȱ ’ěȱŽ›Žȱ –˜›™‘˜•˜’ŒŠ••¢ǯȱ ‘ŽœŽȱ ’ěȱŽ›Ž—ȱ ŽŒ˜•˜’ŒŠ•ȱ Ž—’’Žœȱ –’‘ȱ›Ž™›ŽœŽ—ȱ’ěȱŽ›Ž—ȱœ™ŽŒ’Žœǰȱœ’–’•Š›ȱ˜ȱ‘ŽȱŽŒ˜™‘¢œ’˜•˜’ŒŠ••¢ȱ Š—ȱŽ—Ž’ŒŠ••¢ȱœŽ™Š›ŠŽȱŠšžŠ’ŒȱŠ—ȱŽ››Žœ›’Š•ȱ•’—ŽŠŽœȱ˜ȱ›ŽŽ—ȱ Š•ŠŽȱ ǻŽ ’œȱ ǭȱ Ž ’œǰȱ ŘŖŖśDzȱ ›Š¢ȱ et al.ǰȱ ŘŖŖŝDzȱ ˜Žȱ et al.ǰȱ ŘŖŖŞǼǯȱ —ȱ ’Š˜–œǰȱ ’ȱ ‘Šœȱ ›ŽŒŽ—•¢ȱ ‹ŽŒ˜–Žȱ Œ•ŽŠ›ȱ ‘Šȱ Šȱ ‘’‘ȱ ǻ™œŽž˜ǼŒ›¢™’Œȱ œ™ŽŒ’Žœȱ ’ŸŽ›œ’¢ȱ Ž¡’œœȱ ǻŠ›—˜ȱ et al.ǰȱ ŘŖŖśDzȱ Š——ȱ ǭȱ ŸŠ—œǰȱ ŘŖŖŝDzȱ Š—˜›–Ž•’—Ž— et al.ǰȱŘŖŖŞŠǼǰȱŠ—ȱŒ•˜œŽ•¢ȱ›Ž•ŠŽȱœ™ŽŒ’ŽœȱŒŠ—ȱ˜ŒŒž™¢ȱ ’ěȱŽ›Ž—ȱ —’Œ‘Žœȱ ǻŠ—Ž•œ•Š—Ž›ȱ et al.ǰȱ ŘŖŖşǼǯȱ •Ž›—Š’ŸŽ•¢ǰȱ ’ȱ –Š¢ȱ Œ˜—ŒŽ›—ȱ’ěȱŽ›Ž—ȱ•˜ŒŠ••¢ȱŠŠ™Žȱ™˜™ž•Š’˜—œǰȱŠ•‘˜ž‘ȱ’ȱ’œȱž—Œ•ŽŠ›ȱ ’—ȱ‘ŠȱŒŠœŽȱ ‘¢ȱ‘Ž›Žȱ’œȱŠȱŒ˜››Ž•Š’˜—ȱ ’‘ȱŸŠ•ŸŽȱ–˜›™‘˜•˜¢ǯȱ —ȱ Œ˜—›ŠœǰȱŠŸ’Œž•Šȱ›Š’˜œŠȱœ›Š’—œȱ›˜–ȱ‹˜‘ȱ‘Š‹’Šȱ¢™Žœȱ›Žœ™˜—Žȱ ’—ȱŽ¡ŠŒ•¢ȱ‘ŽȱœŠ–Žȱ Š¢ȱ˜ȱ˜ž›ȱ˜•Ž›Š—ŒŽȱŽ¡™Ž›’–Ž—œȱŠ—ȱœ‘˜ Žȱ ǻ’—ȱ˜ž›ȱŽ¢ŽœǼȱ—˜ȱ–˜›™‘˜•˜’ŒŠ•ȱ’ěȱŽ›Ž—ŒŽœǯȱœȱœžŒ‘ǰȱǯȱ›Š’˜œŠȱ–Š¢ȱ ‹Žȱ Šȱ ›ž•¢ȱ Ž—Ž›Š•’œȱ œ™ŽŒ’Žœȱ ˜ŒŒž››’—ȱ ’—ȱ ‹˜‘ȱ ‘Š‹’Šœǯȱ ˜ ŽŸŽ›ǰȱ ’ȱ–’‘ȱ‹Žȱ‘Šȱ‘ŽȱŽ››Žœ›’Š•ȱœ›Š’—œȱŠ›Žȱ—˜ȱ’Ž—’ŒŠ•ȱ˜ȱŠŸ’Œž•Šȱ radiosaǯȱ‘’œȱ—ŽŽœȱž›‘Ž›ȱœž¢ǰȱ‘˜ ŽŸŽ›ǯ ȱ œŽŒ˜—ȱ Œ•žŽȱ ˜›ȱ Šȱ ‘Š‹’ŠȬœ™ŽŒ’ęȱŒȱ ŠŠ™Š’˜—ȱ ˜ȱ ’Š˜–œȱ Ȯȱ Š•‘˜ž‘ȱ—˜ȱœŠ’œ’ŒŠ••¢ȱž—Ž›™’——ŽȱȮȱ›Žœž•Žȱ›˜–ȱ‘Žȱ›ŽŽ£’—ȱ Ž¡™Ž›’–Ž—ǯȱ‘Žȱ—’—Žȱœž›Ÿ’Ÿ’—ȱœ›Š’—œȱŠ••ȱ‹Ž•˜—Žȱ˜ȱ‘Žȱ¢™’ŒŠ•ȱ Ž››Žœ›’Š•ȱŠ¡Šȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œǰȱPinnularia borealis and Š¢Š–ŠŽŠȱ

Stress tolerance of vegetative diatom cells 201 Š˜–žœȱŸŠ›ǯȱ™Ž›–’’œȱǻĴȱ•ȱǭȱ §›—Ž›ǰȱŗşşśǼǯȱ’–’•Š›•¢ǰȱ‘Žȱ˜—•¢ȱ’Š˜–ȱ ›Ž™˜›Žȱ’—ȱ•’Ž›Šž›Žȱ˜ȱ˜•Ž›ŠŽȱ›ŽŽ£’—ȱ’œȱ‘ŽȱŽ››Žœ›’Š•ȱŠž›˜—Ž’œȱ ancepsȱ‘›Ž—‹Ž›ȱ˜›’’—Š’—ȱ›˜–ȱŽ–™Ž›ŠŽȱŽœŽ›ȱŒ›žœœȱǻ ˜œŽĴȱŽ›ȱ ǭȱ ˜œ‘Š ǰȱŗşŝŖǼǯȱ‘Žȱ‘’‘Ž›ȱ˜•Ž›Š—ŒŽȱ˜ȱ›ŽŽ£’—ȱ–Š¢ȱ‘ŠŸŽȱŠ›’œŽ—ȱ ŠœȱŠ—ȱŠŠ™Š’˜—ȱ˜ȱ‘Žȱ–˜›ŽȱŽ¡›Ž–ŽȱŸŠ›’Š’˜—œȱ’—ȱŽ–™Ž›Šž›Žȱ’—ȱ Ž››Žœ›’Š•ȱ‘Š‹’Šœȱǻ Š˜ȱet al.ǰȱŘŖŖŞǼǯȱ —Ž›Žœ’—ȱ ˜ȱ —˜Žȱ ’œȱ ‘Žȱ ™˜œœ’‹•Žȱ ’—ĚȱžŽ—ŒŽȱ ˜ȱ Œ•’–Š’Œȱ Œ˜—’’˜—œȱ ˜—ȱ ‘Žȱ ˜‹œŽ›ŸŽȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ’ěȱŽ›Ž—ŒŽœȱ ‹Ž ŽŽ—ȱ ŠšžŠ’ŒȱŠ—ȱŽ››Žœ›’Š•ȱ’Š˜–œǯȱ••ȱ˜ž›ȱœ›Š’—œȱ Ž›Žȱ’œ˜•ŠŽȱ›˜–ȱ Š›–ȱ Ž–™Ž›ŠŽǰȱ ž••¢ȱ ‘ž–’ȱ Š›ŽŠœȱ ’‘ȱ Š›–ȱ œž––Ž›œȱ ǻ ˜ĴȱŽ”ȱ et al.ǰȱ ŘŖŖŜǼǯȱ Š›’˜žœȱ ˜›Š—’œ–œȱ ›˜–ȱ –˜›Žȱ Ž¡›Ž–Žȱ Œ•’–ŠŽœȱ ‘ŠŸŽȱ Šȱ ’Ž›ȱ ˜•Ž›Š—ŒŽȱ ›Š—Žȱ ˜›ȱ Ž–™Ž›Šž›Žȱ Š—ȱ ›˜ž‘ȱ Œ˜–™Š›Žȱ ˜ȱ‘Ž’›ȱŒ˜ž—Ž›™Š›œȱ›˜–ȱ–’•Ž›ȱŒ•’–ŠŽœȱǻe.g.ȱ’—Œ•Š’›ȱet al.ǰȱŘŖŖřDzȱ ˜–Š—Ž”ǰȱŘŖŖŞDzȱ’Š˜ȱet al.ǰȱŘŖŖŞDzȱ˜—ȱǭȱ˜–Ž›˜ǰȱŘŖŖşǼǯȱœȱœžŒ‘ǰȱ ‘Žȱ›Ž•Š’ŸŽ•¢ȱœ–Š••ȱ’ěȱŽ›Ž—ŒŽȱ’—ȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱ Š—ȱŠšžŠ’Œȱ’Š˜–œȱ’—ȱ˜ž›ȱœž¢ȱŒ˜ž•ȱ›Žœž•ȱ›˜–ȱ‘ŽȱŽ–™Ž›ŠŽȱ Œ•’–ŠŽȱ‘Ž¢ȱ’—‘Š‹’ǰȱŠ—ȱ–Š¢ȱ‹Žȱ•Š›Ž›ȱ’—ȱ–˜›ŽȱŽ¡›Ž–ŽȱŒ•’–ŠŽœǯ —ȱ Œ˜—Œ•žœ’˜—ǰȱ ’—ȱ ‘Žȱ ™›ŽœŽ—ȱ œž¢ȱ Žȱ ŽŽŒŽȱ Šȱ ‘’‘ȱ œŽ—œ’’Ÿ’¢ȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ ‹Ž—‘’Œȱ ›Žœ‘ ŠŽ›ȱ ’Š˜–œȱ ˜ȱ Žœ’ŒŒŠ’˜—ǰȱ ›ŽŽ£’—ȱ Š—ȱ Š‹›ž™ȱ ‘ŽŠ’—ǯȱ ‘’œȱ ’œȱ ’—ȱ Š›ŽŽ–Ž—ȱ ’‘ȱ ‘Žȱ ‘’‘ȱ ™˜™ž•Š’˜—ȱ ’ěȱŽ›Ž—’Š’˜—ȱ ˜‹œŽ›ŸŽȱ ’—ȱ Šȱ ›Žœ‘ ŠŽ›ȱ ‹Ž—‘’Œȱ ’Š˜–ȱ Š—ȱ –Š¢ȱ Ž¡™•Š’—ȱ ‘Žȱ ’Žœ™›ŽŠȱ Ž—Ž–’œ–ȱ ˜‹œŽ›ŸŽȱ ’—ȱ ›Žœ‘ ŠŽ›ȱ ’Š˜–œǯȱ ŽŒ˜—•¢ǰȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ Ž››Žœ›’Š•ȱ’Š˜–œȱŠ›Žȱ–˜›Žȱ˜•Ž›Š—ȱ˜ȱŽ–™Ž›Šž›ŽȱŽ¡›Ž–Žœȱ‘Š—ȱ ‘Ž’›ȱŠšžŠ’ŒȱŒ˜ž—Ž›™Š›œǰȱ™›˜‹Š‹•¢ȱŠœȱŠ—ȱŠŠ™Š’˜—ȱ˜ȱ‘Žȱ–˜›Žȱ Ž¡›Ž–ŽȱŽ››Žœ›’Š•ȱŽ—Ÿ’›˜—–Ž—ǯȱ’’˜—Š•ȱœž’Žœȱœ‘˜ž•ȱŠ›Žœœȱ ‘Žȱ ’—ĚȱžŽ—ŒŽȱ ˜ȱ Œ•’–ŠŽȱ ˜—ȱ ’Š˜–ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽǰȱ ‘Žȱ –˜•ŽŒž•Š›ȱ –ŽŒ‘Š—’œ–œȱ ž—Ž›•¢’—ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽǰȱ Š—ȱ ‘Žȱ ŽŸ˜•ž’˜—Š›¢ȱ ’ŸŽ›Ž—ŒŽȱ ˜ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ ’Š˜–ȱ •’—ŽŠŽœǯȱ •’–ŠŽ•¢ǰȱ •’—”’—ȱ ’ěȱŽ›Ž—’Š•ȱ •ŽŸŽ•œȱ ˜ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ Š–˜—ȱ œ™ŽŒ’Žœȱ ˜ȱ ™˜™ž•Š’˜—ȱ ’ěȱŽ›Ž—’Š’˜—ȱ Š—ȱ ‘Žȱ Ž˜›Š™‘’ŒŠ•ȱ ’œ›’‹ž’˜—ȱ ˜ȱ œ™ŽŒ’Žœȱ ’••ȱ ›ŽŸŽŠ•ȱ ‘˜ ȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ’—ĚȱžŽ—ŒŽœȱ ’œ™Ž›œŠ•ȱ Š—ȱ Œ˜•˜—’£Š’˜—ȱŠ—ȱ‘žœȱœ‘Š™Žœȱ’Š˜–ȱ’ŸŽ›œ’¢ȱŠ—ȱ’œ›’‹ž’˜—ǯ

Acknowledgements Žȱ‘Š—”ȱ’Ž”ŽȱŽ›”Ž—ȱŠ—ȱŠ’”ŽȱŽȱŽŸŽ›ȱ˜›ȱ™›˜Ÿ’’—ȱŸŠ•žŠ‹•Žȱ œžŽœ’˜—œȱ˜›ȱ’–™›˜ŸŽ–Ž—ȱ˜ȱ‘Žȱ–Š—žœŒ›’™ǯȱ‘’œȱ›ŽœŽŠ›Œ‘ȱ Šœȱ ęȱ—Š—Œ’Š••¢ȱœž™™˜›Žȱ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱŽœŽŠ›Œ‘ȱȮȱ•Š—Ž›œȱ ǻȬ•Š—Ž›œǰȱŽ•’ž–ǰȱž—’—ȱ˜ȱȱŠ—ȱǼǰȱ‘ŽȱȬ™›˜“ŽŒȱ ř ȦŖśřřȦŖŝȱ ˜—ȱ Š¡˜—˜–’Œȱ ž›—˜ŸŽ›ȱ ’—ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ

202 Stress tolerance of vegetative diatom cells ’Š˜–ȱŒ˜––ž—’’ŽœǰȱŠ—ȱ‘ŽȱȬ™›˜“ŽŒȱř ȦŖŚŗşȦŖŞȱ˜—ȱ‘Ž›–Š•ȱ ŠŠ™Š’˜—ǯ

Stress tolerance of vegetative diatom cells 203

8. Resistance of freshwater benthic diatom resting stages to experimental desiccation and freezing depends on the temporality of their habitat

Š›˜•’—Žȱ˜žěȱ›ŽŠžǰȱ’ŽŽ›ȱŠ—˜›–Ž•’—Ž—ȱŠ—ȱ’–ȱ¢ŸŽ›–Š—

ǐȱȱŠ‹˜›Š˜›¢ȱ˜ȱ›˜’œ˜•˜¢ȱŠ—ȱšžŠ’ŒȱŒ˜•˜¢ǰȱ ‘Ž—ȱ —’ŸŽ›œ’¢ǰȱ ›’“œ•ŠŠ—ȱŘŞŗȱȬȱŞǰȱşŖŖŖȱ Ž—ǰȱŽ•’ž–

—™ž‹•’œ‘Žȱ–Š—žœŒ›’™

Stress tolerance of diatom resting cells 205 Abstract Š”Žœǰȱ Ž–™˜›Š›¢ȱ ™˜—œȱ Š—ȱ Ž››Žœ›’Š•ȱ œ˜’•œȱ ŸŠ›¢ȱ ’Ž•¢ȱ ’—ȱ ‘Žȱ Ž¡Ž—ȱ Š—ȱ ™Ž›’˜’Œ’¢ȱ ˜ȱ ĚȱžŒžŠ’˜—œȱ ’—ȱ –˜’œž›Žȱ Œ˜—Ž—ȱ Š—ȱ Ž–™Ž›Šž›Žǯȱ‘’•Žȱ‘ŽœŽȱ‘Š‹’Šȱ¢™ŽœȱŠ›ŽȱŒ‘Š›ŠŒŽ›’£Žȱ‹¢ȱ’ěȱŽ›Ž—ȱ ’Š˜–ȱŒ˜––ž—’’Žœǰȱ’ȱ’œȱž—Œ•ŽŠ›ȱ‘˜ ȱŽ››Žœ›’Š•ȱ’Š˜–œȱ˜ŸŽ›Œ˜–Žȱ ›Žž•Š›•¢ȱ Ž—Œ˜ž—Ž›Žȱ œ›Žœœȱ ŠŒ˜›œȱ œžŒ‘ȱ Šœȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ǰȱŠ—ȱ ‘Ž‘Ž›ȱ’Š˜–ȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ’œȱ‘Š‹’ŠȬŽ™Ž—Ž—ǯȱ Žȱ Ž¡™Ž›’–Ž—Š••¢ȱ ŠœœŽœœŽȱ ‘Žȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ȱ˜ȱ’Š˜–ȱ›Žœ’—ȱŒŽ••œǰȱ’—ȱŒ˜–™Š›’œ˜—ȱ˜ȱŸŽŽŠ’ŸŽȱŒŽ••œǰȱ ˜›ȱŗŝȱ‹Ž—‘’Œȱ›Žœ‘ ŠŽ›ȱ–˜›™‘˜œ™ŽŒ’Žœȱ˜ŒŒž››’—ȱ˜ŸŽ›ȱŠȱ›Š’Ž—ȱ ›˜–ȱ™Ž›–Š—Ž—ȱŠšžŠ’Œȱ‘Š‹’Šœȱ˜ȱŽ››Žœ›’Š•ȱœ˜’•œǰȱ’Ÿ’Žȱ’—˜ȱęȱŸŽȱ –˜’œž›ŽȱŒŠŽ˜›’ŽœǯȱŽœ’—ȱŒŽ••ȱ˜›–Š’˜—ȱ Šœȱ’—’’ŠŽȱ‹¢ȱ—’›˜Ž—ȱ Ž™•Ž’˜—ȱ ’—ȱ Š›”ȱ Œ˜—’’˜—œǯȱ ŽŽŠ’ŸŽȱ ŒŽ••œȱ Ž›Žȱ ’—ȱ Ž—Ž›Š•ȱ ‘’‘•¢ȱ œŽ—œ’’ŸŽȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ǯȱ —•¢ȱ œ›Š’—œȱ ˜ȱ ‘›ŽŽȱ Ž››Žœ›’Š•ȱ Š¡Šȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱ ’—ȱ ŸŽŽŠ’ŸŽȱ œŠŽȱ ‘’•Žȱ ˜—•¢ȱ Šȱ œ’—•Žȱœ›Š’—ȱœž›Ÿ’ŸŽȱśȱ–’—žŽœȱ˜ȱŽœ’ŒŒŠ’˜—ǯȱ —ȱŒ˜—›Šœǰȱ›Žœ’—ȱ ŒŽ••œȱ œ‘˜ Žȱ Šȱ ‘’‘Ž›ȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ Žœ’ŒŒŠ’˜—ǰȱ Žœ™ŽŒ’Š••¢ȱ ‘Ž—ȱ ™›ŽŒŽŽȱ‹¢ȱŠȱ‘ŽŠȱ›ŽŠ–Ž—ǰȱŠ—ȱ–˜›Žȱœ›Š’—œȱŠ—ȱŠ¡Šȱœž›Ÿ’ŸŽȱ ›ŽŽ£’—ǰȱ Š•‹Ž’ȱ ˜Ž—ȱ ’‘ȱ •˜ ȱ œž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ Š—ȱ Šȱ •Š›Žȱ ’—Ž›Œ•˜—Š•ȱŸŠ›’Š’˜—ǯȱ›’”’—•¢ǰȱ˜—•¢ȱ‘Žȱ›Žœ’—ȱŒŽ••œȱ˜ȱŽ››Žœ›’Š•ȱ Š¡Šǰȱ i.e.ȱ ‘˜œŽȱ ˜ŒŒž››’—ȱ –Š’—•¢ȱ ’—ȱ Žȱ Š—ȱ –˜’œȱ ˜›ȱ Ž–™˜›Š›’•¢ȱ ›¢ȱ™•ŠŒŽœȱǻ–˜’œž›ŽȱŒŠŽ˜›¢ȱŚǼȱ˜›ȱ—ŽŠ›•¢ȱŽ¡Œ•žœ’ŸŽ•¢ȱ˜žœ’Žȱ ŠŽ›ȱ ‹˜’ŽœȱǻŒŠŽ˜›¢ȱśǼȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ǰȱ’—’ŒŠ’—ȱ‘Žȱ ™›ŽœŽ—ŒŽȱ˜ȱ‘Š‹’ŠȬœ™ŽŒ’ęȱŒȱŠŠ™Š’˜—œȱ˜ȱ‘ŽœŽȱŠŸŽ›œŽȱŒ˜—’’˜—œǯȱ ˜œœ’‹•Žȱ ’–™•’ŒŠ’˜—œȱ ˜ȱ ‘Žȱ ˜‹œŽ›ŸŽȱ ǻ•ŠŒ”ȱ ˜Ǽȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ ’œ™Ž›œŠ•ǰȱ ™˜™ž•Š’˜—ȱ œ›žŒž›Žǰȱ Ž˜›Š™‘’Œȱ ’œ›’‹ž’˜—œȱ Š—ȱ Š••˜™Š›’Œȱœ™ŽŒ’Š’˜—ȱ˜ȱ’Š˜–œȱŠ›Žȱ’œŒžœœŽǯ

Key words:ȱ ‹Ž—‘’Œȱ ’Š˜–œǰȱ Ž››Žœ›’Š•ǰȱ ›Žœ‘ ŠŽ›ǰȱ ›Žœ’—ȱ ŒŽ••œǰȱŽœ’ŒŒŠ’˜—ǰȱ›ŽŽ£’—ǰȱœ›Žœœȱ˜•Ž›Š—ŒŽǰȱ’œ™Ž›œŠ•

206 Stress tolerance of diatom resting cells 8.1 Introduction ’Š˜–œȱ‘›’ŸŽȱ’—ȱŠȱ›Š—Žȱ˜ȱŠšžŠ’Œȱ‘Š‹’Šœǰȱ’—Œ•ž’—ȱ™Ž›–Š—Ž—ȱ ŠŽ›ȱ‹˜’Žœǰȱ‹žȱŠ•œ˜ȱŽ–™˜›Š›¢ȱ‘Š‹’ŠœȱœžŒ‘ȱŠœȱœŽ–’Ȭ™Ž›–Š—Ž—ȱ ˜ȱŽ™‘Ž–Ž›Š•ȱ™˜˜•œȱŠ—ȱœŽŽ™ŠŽœȱŠ—ȱŠȱŸŠ›’Ž¢ȱ˜ȱ Žȱ˜›ȱ–˜’œȱœ˜’•œȱ ǻ˜ž—ȱ et al.ǰȱ ŗşşŖǼǯȱ ‘ŽœŽȱ Ž–™˜›Š›¢ȱ ‘Š‹’Šœȱ ›ŽšžŽ—•¢ȱ ›¢ȱ ˜žȱ Œ˜–™•ŽŽ•¢ȱ Š—ȱ ž—Ž›˜ȱ •Š›Žȱ ’ž›—Š•ȱ Š—ȱ œŽŠœ˜—Š•ȱ ĚȱžŒžŠ’˜—œȱ ’—ȱ Ž–™Ž›Šž›Žȱ žŽȱ ˜ȱ ‘Žȱ ǻ—ŽŠ›ȬǼŠ‹œŽ—ŒŽȱ ˜ȱ Šȱ ‹žěȱŽ›’—ȱ ŠŽ›ȱ Œ˜•ž–—ȱǻŠ›”œȱet al.ǰȱŗşŞŗDzȱ Š˜ȱet al.ǰȱŘŖŖŞǼǯȱȱ›Š’Ž—ȱŽ¡’œœȱ›˜–ȱ ™Ž›–Š—Ž—ȱ ˜ŸŽ›ȱ œŽ–’Ȭ™Ž›–Š—Ž—ȱ Š—ȱ Ž™‘Ž–Ž›Š•ȱ ŠŽ›ȱ ‹˜’Žœȱ ˜ȱ Ž–™˜›Š›’•¢ȱ Žȱ œ˜’•œǰȱ Ž—Š’•’—ȱ ŸŠ›’Š’˜—œȱ ’—ȱ ˜‘Ž›ȱ ™‘¢œ’ŒŠ•ȱ Š—ȱ Œ‘Ž–’ŒŠ•ȱ™Š›Š–ŽŽ›œȱǻŒ‘˜•—’”ǰȱŗşşŚǼǯȱŸŽ›ȱ‘’œȱ›Š’Ž—ǰȱ‘Ž›Žȱ’œȱŠȱ ž›—˜ŸŽ›ȱ˜ȱ‹Ž—‘’Œȱ’Š˜–ȱŠœœŽ–‹•ŠŽœȱ ’‘ȱŠȱ—ž–‹Ž›ȱ˜ȱ’Š˜–ȱ –˜›™‘˜œ™ŽŒ’Žœȱ•Š›Ž•¢ȱŒ˜—ęȱ—Žȱ˜ȱ–˜’œȱ˜›ȱ Žȱœ˜’•œǰȱŒ•Šœœ’ęȱŽȱŠœȱ ȃŽ››Žœ›’Š•Ȅȱ’Š˜–œȱǻŽŽ›œŽ—ǰȱŗşřśDzȱĴȱ•ȱǭȱ §›—Ž›ǰȱŗşşśǼǰȱ’—Œ•ž’—ȱ ˜›ȱ ’—œŠ—ŒŽȱ Achnanthes coarctataȱ ǻ›·‹’œœ˜—Ǽȱ ›ž—˜ ǰȱ Luticola spp. ǻŠ——Ǽǰȱ Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱ ǻ‘›Ž—‹Ž›Ǽȱ ›ž—˜ ǰȱ Pinnularia borealisȱ ‘›Ž—‹Ž›ȱ Š—ȱ Š¢Š–ŠŽŠȱ Š˜–žœȱǻ ûĵȱ ’—Ǽȱ Š—ŽȬŽ›Š•˜ȱ ǻĴȱ•ȱǭȱ §›—Ž›ǰȱŗşşśDzȱ ˜‘Š—œŽ—ǰȱŗşşşDzȱŠ—ȱ Ž›Œ”Ÿ˜˜›Žȱet al.ǰȱŘŖŖŖDzȱ Š—ȱŽȱ’“ŸŽ›ȱet al.ǰȱŘŖŖŚDzȱ’••Š—žŽŸŠǰȱŘŖŖŜǼǯȱŠ—ȱŠ–ȱet al.ȱǻŗşşŚǼȱ ˜ž•’—ŽȱęȱŸŽȱ–˜’œž›ŽȱŒŠŽ˜›’ŽœȱŠ—ȱŠœœ’—Žȱ‘Žȱ‹Ž—‘’Œȱ›Žœ‘ ŠŽ›ȱ ’Š˜–œȱ˜ȱ‘ŽȱŽ‘Ž›•Š—œȱ˜ȱŠȱŒŠŽ˜›¢ȱ‹ŠœŽȱ˜—ȱ‘˜ ȱ˜Ž—ȱ‘Ž¢ȱ ŒŠ—ȱ‹Žȱ˜ž—ȱ˜žœ’Žȱ ŠŽ›ȱ‹˜’Žœǯ šžŠ’Œȱ˜›Š—’œ–œȱ’—‘Š‹’’—ȱŽ–™˜›Š›¢ȱ‘Š‹’Šœȱ‘ŠŸŽȱ˜ȱ‹Žȱ Š‹•Žȱ˜ȱŒ˜™Žȱ ’‘ȱ•Š›ŽȱŽ—Ÿ’›˜—–Ž—Š•ȱĚȱžŒžŠ’˜—œǰȱ‹žȱŠ•œ˜ȱ‹›’Žȱ ž—ŠŸ˜ž›Š‹•Žȱ™Ž›’˜œȱ’—ȱ ‘’Œ‘ȱ‘Žȱ‘Š‹’Šȱ’œȱ—˜ȱœž’Š‹•Žȱ˜›ȱ›˜ ‘ǯȱ ȱ’œȱŠœȱ¢Žȱž—Œ•ŽŠ›ȱ‘˜ ȱŽ››Žœ›’Š•ȱ’Š˜–œȱŽŠ•ȱ ’‘ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ Ž–™Ž›Šž›ŽȱŽ¡›Ž–Žœǯȱ’ěȱŽ›Ž—ȱ–žžŠ••¢ȱ—˜—ȬŽ¡Œ•žœ’ŸŽȱœ›ŠŽ’Žœȱ Š›Žȱ™˜œœ’‹•Žǯȱ’›œǰȱŸŽŽŠ’ŸŽȱŒŽ••œȱŒ˜ž•ȱ‘ŠŸŽȱ™›˜ŽŒ’˜—ȱ–ŽŒ‘Š—’œ–œȱ ›Ž™˜›Žȱ˜ȱŽ—‘Š—ŒŽȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ’—ȱ˜‘Ž›ȱ–’Œ›˜Š•ŠŽǰȱœžŒ‘ȱŠœȱŠ—ȱ Ȭ•Š¢Ž›ȱǻ˜ĴȱœǰȱŗşşşDzȱŠ–Š›žȱet al.ǰȱŘŖŖśǼȱ˜›ȱ‘ŽȱŠŒŒž–ž•Š’˜—ȱ˜ȱ ŸŠ›’˜žœȱ–ŽŠ‹˜•’ŽœȱǻŽ•œ‘ǰȱŘŖŖŖDzȱ˜žœŒ‘ȱet al.ǰȱŘŖŖŚDzȱ Š¢ Š›ȱet al.ǰȱ ŘŖŖŝDzȱŠ“Ž—›Š—ȱet al.ǰȱŘŖŖŝǼǯȱ ˜ ŽŸŽ›ǰȱŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱŽ››Žœ›’Š•ȱ ’Š˜–œȱ Š›Žȱ ˜—•¢ȱ œ•’‘•¢ȱ –˜›Žȱ ˜•Ž›Š—ȱ ˜›ȱ Ž–™Ž›Šž›Žȱ Ž¡›Ž–Žœȱ ‘Š—ȱ ‘Ž’›ȱ ŠšžŠ’Œȱ Œ˜ž—Ž›™Š›œȱ Š—ȱ ˜ȱ —˜ȱ œž›Ÿ’ŸŽȱ Žœ’ŒŒŠ’˜—ȱ ǻ˜žěȱ›ŽŠžȱet al.ǰȱŘŖŗŖǼǰȱŒ˜››Žœ™˜—’—ȱ˜ȱ‘ŽȱŽ—Ž›Š•ȱ‘’‘ȱœŽ—œ’’Ÿ’¢ȱ ˜ȱŸŽŽŠ’ŸŽȱ’Š˜–ȱŒŽ••œȱ˜ȱŽœ’ŒŒŠ’˜—ȱǻŸŠ—œǰȱŗşśŞǰȱŗşśşDzȱ ˜œŽĴȱŽ›ȱ ǭȱ ˜œ‘Š ǰȱŗşŝŖDzȱž£ž”’ȱǭȱŠ”Š‘Šœ‘’ǰȱŗşşśDzȱžĴȱŽ› ’Œ” et al.ǰȱŘŖŖśǼǯȱ Žœ’ŒŒŠ’˜—ȱœ›Žœœȱ–’‘ȱ˜ȱŠȱŒŽ›Š’—ȱŽ¡Ž—ȱ‹Žȱ–’’ŠŽȱ‹¢ȱœŽ’–Ž—ǰȱ ‹žȱ™Šœœ’—ȱŠȱ‘›Žœ‘˜•ȱ˜ȱśŖƖȱ–˜’œž›ŽȱŒ˜—Ž—ȱ–˜œȱ’Š˜–ȱŒŽ••œȱ ’Žȱ ǻŸŠ—œǰȱ ŗşśŞǰȱ ŗşśşǼǯȱ ŽŒ˜—•¢ǰȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ –’‘ȱ ŠŸ˜’ȱ œ›Žœœȱ Œ˜—’’˜—œȱ ‹¢ȱ –’›Š’—ȱ ŽŽ™Ž›ȱ ’—˜ȱ ‘Žȱ œŽ’–Ž—ǯȱ ‘’œȱ ’œȱ

Stress tolerance of diatom resting cells 207 ™•Šžœ’‹•Žȱ ’ŸŽ—ȱ ‘Šȱ –Š›’—Žȱ ’—Ž›’Š•ȱ ’Š˜–œȱ Š›Žȱ Ž••Ȭ”—˜ —ȱ ˜ȱ ŠŸ˜’ȱ•’‘ȱœ›Žœœȱ‹¢ȱŸŽ›’ŒŠ•ȱ–’›Š’˜—ȱǻŽ›”’—œȱet al.ǰȱŘŖŗŖǼǯȱ‘’›•¢ǰȱ Ž››Žœ›’Š•ȱŒ˜––ž—’’ŽœȱŒ˜ž•ȱ‹Žȱ™Š›ȱ˜ȱŠȱ–ŽŠŒ˜––ž—’¢ȱ’—Ÿ˜•Ÿ’—ȱ •˜ŒŠ•ȱŽ¡’—Œ’˜—ȱž›’—ȱŠŸŽ›œŽȱŒ˜—’’˜—œȱŠ—ȱǻ›ŽǼŒ˜•˜—’£Š’˜—ȱ›˜–ȱ —ŽŠ›‹¢ȱ™ŠŒ‘Žœȱ ‘Ž—ȱ‘Žȱ™ŠŒ‘ȱ‹ŽŒ˜–Žœȱœž’Š‹•ŽȱŠŠ’—ǯȱ ˜ ŽŸŽ›ǰȱ œžŒ‘ȱŽ¡’—Œ’˜—ȬŒ˜•˜—’£Š’˜—ȱ¢—Š–’Œœȱ˜ȱ’–™•¢ȱŠȱ–’—’–Š•ȱ˜•Ž›Š—ŒŽȱ ˜ȱŠŸŽ›œŽȱŒ˜—’’˜—œȱŽ—Œ˜ž—Ž›Žȱž›’—ȱ ’—ȱ˜›ȱŠ—’–Š•Ȭ–Ž’ŠŽȱ ’œ™Ž›œŠ•ȱǻ ›’œ’Š—œŽ—ǰȱŗşşŜDzȱ œŠ›ȱǭȱ ŠŽǰȱŘŖŖŗǼǯȱȱęȱ—Š•ȱ™˜œœ’‹’•’¢ȱ’œȱ ‘Žȱ˜›–Š’˜—ȱ˜ȱ˜•Ž›Š—ȱ›Žœ’—ȱœŠŽœǰȱ ‘’Œ‘ȱ ˜ž•ȱ—˜ȱ˜—•¢ȱŠ••˜ ȱ Ž››Žœ›’Š•ȱœ™ŽŒ’Žœȱ˜ȱ™Ž›œ’œȱ•˜ŒŠ••¢ȱ‹žȱŠ•œ˜ȱ˜ȱŒ˜•˜—’£Žȱœž’Š‹•Žȱ—Ž ȱ ‘Š‹’Šȱ™ŠŒ‘Žœǯ Žœ’—ȱœŠŽœȱŠ›Žȱ‹¢ȱŽęȱ—’’˜—ȱœŠŽœȱ˜ȱ‘Žȱ•’ŽȱŒ¢Œ•Žȱ˜ȱŠ—ȱ ˜›Š—’œ–ȱž›’—ȱ ‘’Œ‘ȱ›˜ ‘ȱŠ—ȱŽŸŽ•˜™–Ž—ȱŠ›Žȱœ˜™™ŽȱŠ—ȱ ŒŽ••œȱ ˜—Ȃȱ ’Ÿ’Žǯȱ ‘Ž¢ȱ Š›Žȱ Œ‘Š›ŠŒŽ›’£Žȱ ‹¢ȱ Šȱ ›ŽžŒŽȱ –ŽŠ‹˜•’Œȱ ŠŒ’Ÿ’¢ǰȱŠ—ȱŠ›Žȱ¢™’ŒŠ••¢ȱ˜›–Žȱ˜ȱœž›Ÿ’ŸŽȱŠŸŽ›œŽȱŽ—Ÿ’›˜—–Ž—Š•ȱ Œ˜—’’˜—œǯȱŽœ’—ȱœŠŽœȱŠ›Žȱ ’Žœ™›ŽŠȱŠ–˜—ȱŠšžŠ’Œȱ˜›Š—’œ–œǰȱ ’—Œ•ž’—ȱ‹ŠŒŽ›’Š•ȱŽ—˜œ™˜›Žœȱǻe.g.ȱ’Œ‘˜•œ˜—ȱet al.ǰȱŘŖŖŖǼǰȱŠ”’—ŽŽœȱ ˜ȱŒ¢Š—˜‹ŠŒŽ›’Šȱǻe.g.ȱž‘Ž›•Š—ȱet al.ǰȱŗşŝşǼǰȱŠ—ȱŒ¢œœȱŠ—ȱœ™˜›Žœȱ ˜ȱ ŸŠ›’˜žœȱ ™›˜’œœȱ ǻe.g.ȱ —Ž›œ˜—ǰȱ ŗşŝśDzȱ •ŸŽȱ ǭȱ ˜•œŽ’—ǰȱ ŘŖŗŖDzȱ —Ž›œ˜—ǰȱŘŖŗŖDzȱû••Ž›ȱet al.ǰȱŘŖŗŖǼȱ‹žȱŠ•œ˜ȱ£˜˜™•Š—”˜—ȱ›Žœ’—ȱŽœȱ ǻe.g.ȱ•˜‹˜”’—ǰȱŗşśŚDzȱ žŒ‘’—œ˜—ǰȱŗşŜŝDzȱ ’•‹Ž›ȱǭȱŒ‘›Ž’‹Ž›ǰȱŗşşśǼǰȱ ˜›–Š—ȱœŠŽœȱ˜ȱ’—œŽŒœȱǻe.g.ȱŽŸ’—œǰȱŗşŜşDzȱŠ¢•˜›ǰȱŗşŞŖDzȱ›Š˜›ȱǭȱ ˜ěȱǰȱŗşşřǼȱŠ—ȱœŽŽœȱ˜ȱ‘’‘Ž›ȱ™•Š—œȱǻe.g.ȱ•ŽŽœ‘˜ž Ž›œȱet al.ǰȱŗşşśǼǯȱ •œ˜ȱ’Š˜–œȱ˜›–ȱ›Žœ’—ȱœŠŽœǯȱ ˜ȱ¢™Žœȱ˜ȱ›Žœ’—ȱœŠŽœȱŠ›Žȱ ›Ž™˜›ŽDzȱ ›Žœ’—ȱ œ™˜›Žœȱ ‘ŠŸŽȱ Šȱ ’œ’—Œȱ –˜›™‘˜•˜¢ȱ ǻ›ŽŸ’Ž Žȱ ’—ȱ Œž˜’ȱǭȱ ˜‹œ˜—ǰȱŗşşŜǼǰȱ ‘’•Žȱ›Žœ’—ȱŒŽ••œȱŠ›Žȱ–˜›™‘˜•˜’ŒŠ••¢ȱ ’Ž—’ŒŠ•ȱ˜ȱ‘ŽȱŸŽŽŠ’ŸŽȱœŠŽœȱǻž—ǰȱŗşśřDzȱ—Ž›œ˜—ǰȱŗşŝśDzȱ’Œ”˜Ȭ ˜Šȱet al.ǰȱŗşŞŜǼǯȱŽœ’—ȱŒŽ••œȱŠ›Žȱ–˜›ŽȱĚȱŽ¡’‹•Žȱ‹ŽŒŠžœŽȱ‘Ž¢ȱ˜›–ȱ Š—ȱŽ›–’—ŠŽȱŠœŽ›ȱŠ—ȱ˜—Ȃȱ›Žšž’›Žȱœ’•’ŒŠȱ˜›ȱ‘Ž’›ȱ˜›–Š’˜—ǰȱ ‘’•Žȱ ›Žœ’—ȱœ™˜›Žœȱœž›Ÿ’ŸŽȱ•˜—Ž›ȱ’—ȱœ™ŽŒ’Žœȱ˜›–’—ȱ‹˜‘ȱ¢™Žœȱǻ ž ŠŠȱ ǭȱŠ”Š‘Šœ‘’ǰȱŗşşŖDzȱ ž ŠŠȱet al.ǰȱŗşşřǼǯȱ‘Žȱ¢™’ŒŠ•ȱŒŽ••ȱŒ˜—Ž—ȱ˜ȱ ‹˜‘ȱ¢™Žœȱ˜ȱ›Žœ’—ȱœŠŽœȱŒŠ—ȱŒ˜—œ’œȱ˜ȱŒ˜—Ž—œŽȱ™•Šœ’œǰȱ•Š›Ž›ȱ ŸŠŒž˜•Žœȱ˜›ȱ–˜›Žȱ•’™’ȱ›˜™•ŽœȱŠ—ȱŠȱ›Š—ž•Š›ȱŒ¢˜™•Šœ–ǰȱ‹žȱ‘’œȱ ŸŠ›’ŽœȱŠ–˜—ȱ‘Žȱ’ěȱŽ›Ž—ȱŠ¡Šȱœž’Žȱǻ—Ž›œ˜—ǰȱŗşŝśDzȱ Š››ŠŸŽœȱ ǭȱ›Ž—Œ‘ǰȱŗşŝśDzȱ ˜‹Š—ȱet al.ǰȱŗşŞŖDzȱ’Œ”˜Ȭ ˜Šȱet al.ǰȱŗşŞŜǼǯȱŽœ’—ȱ œ™˜›ŽœȱŠ›Žȱ–Š’—•¢ȱ›Ž™˜›Žȱ’—ȱŒŽ—›’Œȱ’Š˜–œǰȱ ’‘ȱœ˜–Žȱ—˜Š‹•Žȱ Ž¡ŒŽ™’˜—œȱ ǻ›ŽŸ’Ž Žȱ ’—ȱ Š››ŠŸŽœȱ ǭȱ ›Ž—Œ‘ǰȱ ŗşŝśDzȱ Œž˜’ȱ ǭȱ ˜‹œ˜—ǰȱ ŗşşŜDzȱ Œ‘–’ǰȱ ŘŖŖşǼǰȱ ‘’•Žȱ ›Žœ’—ȱ ŒŽ••œȱ ™›ŽŸŠ’•ȱ ’—ȱ ‘Žȱ ™Ž——ŠŽȱ’Š˜–œȱǻ’Œ”˜Ȭ ˜Šȱet al.ǰȱŗşŞŜDzȱŒž˜’ȱǭȱ ˜‹œ˜—ǰȱŗşşŜǼȱ ‘’Œ‘ȱŒ˜—œ’žŽȱ‘Žȱ‹ž•”ȱ˜ȱ‹Ž—‘’Œȱ’Š˜–ȱŒ˜––ž—’’Žœǯ —ȱ ŸŠ›’˜žœȱ ŠšžŠ’Œȱ ’Š˜–ȱ ™˜™ž•Š’˜—œǰȱ ›Žœ’—ȱ ŒŽ••œȱ ŠŒȱ Šœȱ Šȱ

208 Stress tolerance of diatom resting cells œŽŽȱ‹Š—”ȱ’—ȱ‘ŽȱœŽ’–Ž—ȱǻž—ǰȱŗşśřDzȱŒž˜’ȱǭȱ ˜‹œ˜—ǰȱŗşşśDzȱ Œ‘Ž•œ”Žȱet al.ǰȱŗşşśDzȱŽ›œœ˜—ǰȱŘŖŖŘDzȱ Ž œ˜—ȱet al.ǰȱŘŖŖŜDzȱ˜ž•ÇŒ”˜Ÿ¤ȱ et al.ǰȱŘŖŖŞǼǰȱ ‘’Œ‘ȱ–Š¢ȱŽ¡™•Š’—ȱ‘ŽȱŠœȱŠ—ȱŽ—œŽȱœ™›’—ȱ‹•˜˜–œȱ ˜ȱ ™•Š—”˜—’Œȱ ’Š˜–œȱ ǻ ›Š—ǰȱ ŗşŗŘDzȱ ž—ǰȱ ŗşśřǼǯȱ Žœ’—ȱ ŒŽ••œȱ ’—ȱ œŽ’–Ž—ȱ œŽŽȱ ‹Š—”œȱ ‘ŠŸŽȱ ˜ȱ ‹Žȱ ˜•Ž›Š—ȱ ˜ȱ Š›”ȱ Œ˜—’’˜—œǰȱ ‹žȱ Š•œ˜ȱ ˜ȱ —ž›’Ž—ȱ Ž™•Ž’˜—ȱ ˜›ȱ Š—˜¡’Šǰȱ ‘’Œ‘ȱ Šœȱ Ž¡™Ž›’–Ž—Š••¢ȱ Ž–˜—œ›ŠŽȱ ˜›ȱ Šȱ Ž ȱ œ™ŽŒ’Žœȱ ǻe.g. Š››ŠŸŽœȱ ǭȱ ›Ž—Œ‘ǰȱ ŗşŝśDzȱ ˜••’‹Šž‘ȱ et al.ǰȱ ŗşŞŗDzȱ ž ŠŠȱ et al.ǰȱ ŗşşřDzȱ Œž˜’ȱ ǭȱ ˜‹œ˜—ǰȱ ŗşşśDzȱ Ž œ˜—ȱet al.ǰȱŘŖŖŜǼǯȱ —ȱŽ–™˜›Š›¢ȱŠšžŠ’Œȱ‘Š‹’Šœǰȱ‘˜ ŽŸŽ›ǰȱ‘Žȱ –Š’—ȱœ›ŽœœȱŠŒ˜›œȱŠ›Žȱ’ěȱŽ›Ž—ǰȱ‹Ž’—ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱŽ–™Ž›Šž›Žȱ Ž¡›Ž–Žœǯȱ‘’•Žȱ’ȱ‘Šœȱ‹ŽŽ—ȱœžŽœŽȱ‘Šȱ›Žœ’—ȱŒŽ••œȱ˜ȱŽ››Žœ›’Š•ȱ ’Š˜–œȱ–’‘ȱ‹Žȱ’–™˜›Š—ȱ˜›ȱœž›Ÿ’Ÿ’—ȱŽœ’ŒŒŠ’˜—ȱǻŸŠ—œǰȱŗşśŞǰȱ ŗşśşǼǰȱ ’ȱ ’œȱ ž—”—˜ —ȱ ˜ȱ ‘Šȱ Ž¡Ž—ȱ ǻŽ››Žœ›’Š•Ǽȱ ’Š˜–ȱ ›Žœ’—ȱ ŒŽ••œȱŠ›Žȱ˜•Ž›Š—ȱ˜ȱ‘ŽœŽȱœ›ŽœœȱŠŒ˜›œǯȱ —ȱ‘’œȱœž¢ȱ Žȱ‘Ž›Ž˜›Žȱ Ž¡™Ž›’–Ž—Š••¢ȱ ŽœŽȱ ‘Žȱ ˜••˜ ’—ȱ ‘¢™˜‘ŽœŽœDzȱ ǻŗǼȱ ›Žœ’—ȱ ŒŽ••œȱ ˜ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ Š›Žȱ ˜•Ž›Š—ȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ǰȱ ’—ȱ Œ˜—›Šœȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œǰȱ Š—ȱ ǻŘǼȱ ‘Ž¢ȱ Š›Žȱ –˜›Žȱ ˜•Ž›Š—ȱ˜ȱ Žœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ȱ‘Š—ȱ‘Žȱ›Žœ’—ȱŒŽ••œȱ˜ȱ›Žœ‘ ŠŽ›ȱ‹Ž—‘’Œȱ ’Š˜–œǰȱ’ŸŽ—ȱ‘Žȱ’ěȱŽ›Ž—ȱœ›ŽœœȱŠŒ˜›œȱŽ—Œ˜ž—Ž›Žȱ‹¢ȱ’Š˜–œȱ ›˜–ȱ ‹˜‘ȱ ‘Š‹’Šȱ ¢™Žœǯȱ Žœ’—ȱ ŒŽ••œȱ Ž›Žȱ ’—žŒŽȱ ‹¢ȱ Œ˜•ȱ Š›”ȱ Œ˜—’’˜—œȱŠ—ȱ—’›˜Ž—ȱŽ™•Ž’˜—ȱǻŒž˜’ȱǭȱ ˜‹œ˜—ǰȱŗşşśǼȱ˜›ȱśŖȱ œ›Š’—œȱ›˜–ȱŗŝȱ–˜›™‘˜œ™ŽŒ’Žœȱ˜ȱ™Ž——ŠŽȱ‹Ž—‘’Œȱ’Š˜–œǰȱ’Ÿ’Žȱ ˜ŸŽ›ȱ‘ŽȱęȱŸŽȱ–˜’œž›ŽȱŒŠŽ˜›’Žœȱ˜ȱŠ—ȱŠ–ȱet al. ǻŗşşŚǼǯȱŽ¡ǰȱ‘Ž’›ȱ ˜•Ž›Š—ŒŽȱ ˜ȱ ›ŽŽ£’—ȱ Š—ȱ Žœ’ŒŒŠ’˜—ȱ ǻ ’‘ȱ ˜›ȱ ’‘˜žȱ ™›ŽŒŽ’—ȱ ›ŠžŠ•ȱ‘ŽŠ’—Ǽȱ ŠœȱŽŽ›–’—ŽȱŠ—ȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ˜•Ž›Š—ŒŽȱ˜ȱ ŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱ‘ŽȱœŠ–Žȱœ›Š’—œǯ

8.2 Materials & Methods 7D[RQVDPSOLQJDQGLGHQWL¿FDWLRQ —ȱ ˜Š•ȱ śŖȱ Œ•˜—Š•ȱ œ›Š’—œȱ ˜ȱ ŗŝȱ ‹Ž—‘’Œȱ ’Š˜–ȱ –˜›™‘˜œ™ŽŒ’Žœȱ Ž›Žȱ žœŽȱ ǻŠ‹•Žȱ ŞǯŗǼǰȱ ’Ÿ’Žȱ ˜ŸŽ›ȱ ‘Žȱ ęȱŸŽȱ –˜’œž›Žȱ ŒŠŽ˜›’Žœȱ ˜ž•’—Žȱ‹¢ȱŠ—ȱŠ–ȱet al.ȱǻŗşşŚǼȱǻŠ‹•ŽȱŞǯŘǼǯȱ—•¢ȱ–˜›™‘˜œ™ŽŒ’Žœȱ ˜›ȱ ‘’Œ‘ȱŠȱ•ŽŠœȱ ˜ȱœ›Š’—œȱ Ž›ŽȱŠŸŠ’•Š‹•Žȱ Ž›Žȱ’—Œ•žŽǰȱ˜ȱ‹Žȱ Š‹•Žȱ ˜ȱ Šȱ •ŽŠœȱ ’—ȱ ™Š›ȱ ŠŒŒ˜ž—ȱ ˜›ȱ ›Š’ȱ ŸŠ›’Š’˜—ȱ ’‘’—ȱ ‘Žȱ Š¡Šȱ œž’Žǯȱ ŽŠ’•œȱ ˜—ȱ ‘Žȱ Ž—Ÿ’›˜—–Ž—Š•ȱ œŠ–™•’—ǰȱ œ›Š’—ȱ ’œ˜•Š’˜—ǰȱ –˜›™‘˜•˜’ŒŠ•ȱ Œ‘Š›ŠŒŽ›’£Š’˜—ȱ Š—ȱ ’Ž—’ęȱŒŠ’˜—ȱ ŒŠ—ȱ ‹Žȱ ˜ž—ȱ ’—ȱ˜žěȱ›ŽŠžȱet al.ȱǻŘŖŗŖDzȱœž‹–’ĴȱŽǼǰȱ›˜‹Š“˜ et al. ǻŘŖŖŜǼǰȱŸŠ—œȱet al. ǻŘŖŖşǼǰȱŠ—˜›–Ž•’—Ž—ȱet al.ȱǻŘŖŖŞǼȱŠ—ȱ›˜‹Š“˜ȱet al.ȱǻŘŖŖşǼȱǻœŽŽȱ ˜˜—˜Žœȱ ’—ȱ Š‹•Žȱ ŞǯŗǼǯȱ ‘Žȱ œ›Š’—œȱ ǻŖŝŖǼ‹ȱ Š—ȱ ǻŖŚřǼ‹ȱ Ž›Žȱ ’œ˜•ŠŽȱŠœȱŽœŒ›’‹Žȱ’—ȱ˜žěȱ›ŽŠžȱet al.ȱǻŘŖŗŖǼȱ›˜–ȱŠšžŠ’ŒȱœŠ–™•Žœȱ˜ȱ

Stress tolerance of diatom resting cells 209 Ǽȱ RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 -20°C -20°C —ȱŗǯŖȱŠ—ȱŗŖǯŖƖDzȱŠ›”ȱ RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 +30°C +desiccation

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 +30°C +desiccation RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 ȱŒŠ’˜—ǰȱ˜›’’—ȱŠ—ȱ™Ž›ŒŽ—ŠŽȱ˜ȱ•’Ÿ’—ȱŒŽ••œȱǻ–’—’–ž–Ȭ–Š¡’–ž–

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 RC Control Desiccation Desiccation 98.7-100 95.0-95.6 Origin BCCM/DCG BCCM/DCG Dr. D.G. Mann D.G. Dr. Mann D.G. Dr. 86.4-94.5 96.3-99.9 Dr. D.G. Mann D.G. Dr. Mann D.G. Dr. 99.9-99.9 99.9-100 Culture collection Culture collection Belgium – De Panne 94.1-95.3 Belgium – De Panne 99.9-100 Belgium – De Panne 99.7-99.7

(Ehr.) (Ehr.) (Ehr.) Cleve Cleve Taxon Grunow Grunow Krammer Krammer ’——ž•Š›’Š . ȱŽǼȱ‘¢•˜Ž—Ž’Œȱœ’—Š•œȱ’—ȱ‘ŽȱŸŠ•ŸŽȱŠ—ȱ™•Šœ’ȱ–˜›™‘˜•˜¢ȱ˜ȱ‘Žȱ’Š˜–ȱŽ—žœȱ Lange-Bertalot Lange-Bertalot Lange-Bertalot

Nitzschia fonticola Nitzschia fonticola Pinnularia grunowii Pinnularia grunowii Caloneis silicula Caloneis silicula cryptotenella Navicula cryptotenella Navicula cryptotenella Navicula c c c b b a a a ŽȱŠ•ǯ ȱǻœž‹–’Ĵ ŽȱŠ•ǯȱ ǻŘŖŗŖǼȱ ‘¢Œ˜•˜’Š 49 DZȱřŖşȬřŘŚǯ ȱŽȱŠ•ǯ ȱǻŘŖŖŜǼȱ ˜ž›—Š•ȱ˜ȱ‘¢Œ˜•˜¢ 42 DZȱŗřśřȬŗřŝŘǯ ȱŽȱŠ•ǯ ȱǻŘŖŖşǼȱ ‘¢Œ˜•˜’Š 48 DZȱŚŚřȬŚśşǯȱ ȱ ȱ ȱ ȱ›ŽŠžȱ ȱ›ŽŠžȱ 1 Cal 856 1 Clone A 1 Clone C 1 867 Pin 1 889a Pin 2(Wes5)c 2(Pan2)c 2(Pan2)d 1 Cal 769 M.C. Strain ȱŽȱŠ•ǯ ȱǻŘŖŖşǼȱ ›˜’œ 160 DZȱřŞŜȬřşŜǯ ȱŸŠ—œ ȱ›˜‹Š“˜ ȱ˜žě ȱ˜žě ŽȱŠ•ǯ ȱǻŘŖŖŞǼȱ ›˜’œ 159 DZȱŝřȬşŖǯ ȱŠ—˜›–Ž•’—Ž—ȱ ȱ›˜‹Š“˜ œ‘Š’—œȱŠ‹˜ŸŽȱŗŖǯŖƖǯȱŽŽ›Ž—ŒŽœȱ˜ȱ™ž‹•’ŒŠ’˜—œȱ’—ȱ ‘’Œ‘ȱ–˜›™‘˜•˜’ŒŠ•ȱŒ‘Š›ŠŒŽ›’œ’ŒœȱŠ—ȱ˜¡’’£Žȱ–ŠŽ›’Š•ȱŠ›Žȱœ‘˜ —ȱŠ›Žȱ’ŸŽ—ȱ’—ȱ˜˜—˜Žœǯ Table 8.1 ›Š’—ȱ•’œȱ ’‘ȱ’—’ŒŠ’˜—ȱ˜ȱ–˜’œž›ŽȱŒŠŽ˜›¢ȱǻǯǯǰȱœŽŽȱŠ‹•ŽȱŞǯŘǼǰȱ’Ž—’ę Table a b c d e f ’—ȱ‘Žȱ’ěȱŽ›Ž—ȱ›ŽŠ–Ž—œȱ˜›ȱ‹˜‘ȱ›Žœ’—ȱŒŽ••œȱǻǼȱŠ—ȱŸŽŽŠ’ŸŽȱŒŽ••œȱǻǼǯȱȱœ’—•ŽȱȘȱŽœ’—ŠŽœȱ˜—Žȱ›Ž™•’ŒŠŽȱ ’‘˜žȱœž›Ÿ’ŸŠ•ǰ ȱ ˜ȱȘȘȱŽœ’—ŠŽȱ  ˜ȱ›Ž™•’ŒŠŽœȱ ’‘˜žȱœž›Ÿ’ŸŠ•ǯȱ’‘ȱœ‘Š’—ȱ’—’ŒŠŽœȱŠȱ–Š¡’–Š•ȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽȱ‹Ž•˜ ȱŗǯŖƖDzȱ’—Ž›–Ž’ŠŽȱœ‘Š’—ȱ‹Ž ŽŽ

210 Stress tolerance of diatom resting cells RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 -20°C -20°C RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 +30°C +desiccation

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 +30°C +desiccation RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 RC Control Desiccation Desiccation 99.8-100 99.9-100 98.6-99.7 99.8-99.9 99.9-99.9 99.8-99.9 99.3-99.5 99.4-99.6 99.4-99.5 99.9-99.9 99.0-99.1 Origin Belgium – Belgium – Belgium – Belgium – Belgium – Belgium – BCCM/DCG BCCM/DCG BCCM/DCG BCCM/DCG BCCM/DCG Blankenberge Blankenberge Blankenberge Blankenberge Blankenberge Oostduinkerke Oostduinkerke Oostduinkerke Oostduinkerke Oostduinkerke Culture collection Culture collection Culture collection Culture collection Culture collection Belgium – De Panne 99.7-99.7 ” ” ” ”

Mann Mann

(Ehr.) (Ehr.) labile (Ehr.) labile (Ehr.) (Ehr.) robust robust Kützing Kützing Belgium – De Panne Kützing Belgium – De Panne 90.7-94.4 Kützing Belgium – De Panne 99.8-100 Kützing 99.7-99.7 Belgium – De Panne 99.6-99.6 Kützing Belgium – De Panne Kützing 99.4-99.9 (Kützing) (Kützing) Taxon W. Smith W. Smith & McDonald & McDonald (Kützing) Grunow (Kützing) Grunow Nitzschia frustulum Nitzschia frustulum

Eunotia bilunaris Schaarschmidt “ Eunotia bilunaris Schaarschmidt “ Eunotia bilunaris Eunotia bilunaris Schaarschmidt “ Schaarschmidt “ radiosa Navicula radiosa Navicula radiosa Navicula radiosa Navicula radiosa Navicula veneta Navicula veneta Navicula Sellaphora capitata Sellaphora capitata Sellaphora Nitzschia palea Nitzschia palea e c c c c c c c c e c c c f c d d 2Mf38 3(Fon3)g 3(Fon3)i 3 DM22-17 3 DM22-4 3(Fon3)f 3(Wes4)d 3(Wes5)a 3(Wes5)b 3(Pan2)b 3(Wes6)d 3(Yde3)f 3(Yde1)c 3(Yde1)o 3 (02)7D 3(Wes7)e 2Mf18 M.C. Strain

Stress tolerance of diatom resting cells 211 RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0.1* 0.2-0.7 0.5-1.0 0.1-0.5 0-0.08* 7.2-22.6 0.07-0.5 0.02-0.1 0-0.02** 0.006-8.2

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 -20°C -20°C 2.1-39.3 10.3-18.3 RC 0-0 0-0 0-0 0-0 0-0.7* 1.1-0.7 0.7-1.8 1.1-2.2 +30°C 1.4-15.8 0.08-0.6 2.2-19.6 0-0.05** 27.4-35.3 36.8-69.0 0.04-0.06 0.002-0.004 +desiccation

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 +30°C +desiccation RC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0.3-2.2 5.6-13.8 28.9-54.8 13.4-31.0 28.9-43.5 33.6-36.5 0.001-0.002 0.001-0.002

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 RC Control Desiccation Desiccation Origin Belgium – Gent 99.7-99.7 Belgium – Gent 99.7-99.8 Belgium – Gent 99.7-99.8 Belgium – Gent 99.4-99.6 Belgium – Gent 99.8-99.9 Belgium – Gent 99.6-99.6 Belgium – Gent 99.8-99.8 Belgium – Gent Belgium – Gent 100-100 99.9-99.9 Belgium – Gent 98.2-99.2 Belgium – Gent 99.7-99.8 Belgium – Gent 99.8-99.8 Amsterdam Island 99.8-99.9 Amsterdam Island 99.9-99.9 Belgium – De Panne 98.4-98.7 Belgium – De Panne 99.9-99.9

.

sp sp. Grunow Grunow Taxon Grunow Grunow Ehrenberg (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.) Grunow (Ehr.)

Mayamaea atomus Mayamaea atomus Mayamaea Pinnularia borealis Nitzschia perminuta Nitzschia perminuta Nitzschia communis Nitzschia communis Hantzschia amphioxys Hantzschia amphioxys Hantzschia amphioxys Hantzschia amphioxys Hantzschia amphioxys Hantzschia amphioxys Hantzschia amphioxys (Grunow) M. Peragallo (Grunow) M. Peragallo Hantzschia Hantzschia (Kützing) Lange-Bertalot (Kützing) Lange-Bertalot c c b b c c c c c c c c c c c c 4(St5)b 3(St8)i 4(St1)e 4(St2)d 4(Wes2)e 4 (W043) 4(St2)d 4(St4)a 4(St5)c 4(St1)h 4 (M070) 4(St5)a 4(Wes2)f 4(St1)f 4(St3)c 3(St8)e M.C. Strain

212 Stress tolerance of diatom resting cells RC 0-0.8* 0.2-1.6 0-0.06* 0.08-0.8 0.07-0.2 27.0-30.5 88.5-90.0 95.2-96.9

VC 0-0 0-0 0-0

-20°C -20°C 0.3-1.6 2.1-3.0 3.1-12.4 4.6-16.2 13.9-23.2 RC 0-0 0-0 4.4-6.1 2.4-4.8 0.2-0.5 0.1-0.4 1.6-1.8 +30°C 0.06-0.4 +desiccation

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0

+30°C 2.0-3.9 +desiccation RC 0-0 0-0 0-0 0-0 0-0.8* 3.9-5.7 1.2-2.0 0-0.08**

VC 0-0 0-0 0-0 0-0 0-0 0-0 0-0

1.0-2.7 RC Control Desiccation Desiccation Origin Canada – Banff Canada – Banff 99.1-99.3 Belgium – Gent Belgium – Gent 99.6-100 99.7-99.8 Belgium – Gent 97.7-98.7 Belgium – Gent Belgium – Gent 100-100 99.7-99.8 Belgium – Gent 99.7-99.8 Belgium – De Panne 97.1-97.2

Taxon Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg Ehrenberg

Pinnularia borealis Pinnularia borealis Pinnularia borealis Pinnularia borealis Pinnularia borealis Pinnularia borealis (Brébisson) Grunow (Brébisson) Grunow (Brébisson) Achnanthes coarctata Achnanthes coarctata c c c c c c c 4(St6)a 4(St8)a 4(St8)d 5(Ban2)b 4(St1)b 5(Wes3)f 4(St1)i 4(St6)g M.C. Strain

Stress tolerance of diatom resting cells 213 Table 8.2ȱ ˜’œž›Žȱ ŒŠŽ˜›’Žœȱ ˜ȱ Š—ȱ Š–ȱ Žȱ Š•ǯȱ ǻŗşşŚǼȱ ’‘ȱ ‘Žȱ ŽœŒ›’™’˜—ȱ ˜ȱ ‘Žȱ ŒŠŽ˜›’Žœǰȱ‘Žȱ—ž–‹Ž›ȱ˜ȱ•’œŽȱ–˜›™‘˜œ™ŽŒ’Žœȱ‹Ž•˜—’—ȱ˜ȱŽŠŒ‘ȱŒŠŽ˜›¢ȱŠ—ȱ‘Žȱ—ž–‹Ž›ȱ˜ȱ Š¡Šȱ›˜–ȱŽŠŒ‘ȱŒŠŽ˜›¢ȱžœŽȱ˜›ȱ‘’œȱœž¢ǯȱ‘Žȱ˜Š•ȱŠ¡˜—ȱ—ž–‹Ž›ȱ’—ȱ‘Žȱ•’œȱ‹¢ȱŠ—ȱŠ–ȱ ŽȱŠ•ǯȱǻŗşşŚǼȱ ŠœȱŗǰřŖşǰȱ˜ȱ ‘’Œ‘ȱŝŘşȱ Ž›ŽȱŠœœ’—Žȱ˜ȱŠȱ–˜’œž›ŽȱŒŠŽ˜›¢ǯ

Moisture # of taxa # of taxa in Description category in the list this study 1 never, or only very rarely, occurring outside water bodies 167 3 mainly occurring in water bodies, sometimes on wet 2 148 2 places mainly occurring in water bodies, also rather regularly on 3 282 6 wet and moist places mainly occurring on wet and moist or temporarily dry 4 116 5 places 5 nearly exclusively occurring outside water bodies 16 1

–œŽ›Š–ȱ œ•Š—ǰȱœŠ–™•Žȱ’—ȱŽŒŽ–‹Ž›ȱŘŖŖŝǰȱŠ—ȱ Ž›Žȱ’Ž—’ęȱŽȱ žœ’—ȱ ›Š––Ž›ȱǭȱŠ—ŽȬŽ›Š•˜ȱǻŗşŞŞǼǯȱ›Š’—ȱǻŠ—ŘǼ‹ȱ Šœȱ’œ˜•ŠŽȱ žœ’—ȱ‘ŽȱœŠ–ŽȱŽŒ‘—’šžŽȱ›˜–ȱŠȱœ˜’•ȱœŠ–™•Žȱ›˜–ȱŠ—ěȱȱǻŠ—ŠŠǼȱ œŠ–™•Žȱ ’—ȱ Š¢ȱ ŘŖŖŞǰȱ Š—ȱ ’Ž—’ęȱŽȱ žœ’—ȱ ›Š––Ž›ȱ ǭȱ Š—ŽȬ Ž›Š•˜ȱǻŗşşŗǼǯȱ›Š’—œȱ Ž›Žȱ–Š’—Š’—Žȱ’—ȱȱ–Ž’ž–ȱǻ ž’••Š›ȱǭȱ ˜›Ž—£Ž—ǰȱŗşŝŘDzȱ‹žȱ ’‘˜žȱ™ ȱŠ“žœ–Ž—ȱ˜›ȱŸ’Š–’—ȱŠ’’˜—Ǽȱ’—ȱ œŠ—Š›ȱŒž•ž›ŽȱŒ˜—’’˜—œȱ˜ȱŗŞǚȱƹȱŘǚǰȱŘśȬřŖȱΐ–˜•ȱ™‘ȱ–ȬŶȱœȬŗȱŠ—ȱ ŠȱŗŘDZŗŘȱ‘˜ž›œȱ•’‘DZŠ›”ȱ™Ž›’˜ǰȱŠ—ȱ›Ž’—˜Œž•ŠŽȱŽŸŽ›¢ȱŽ ȱ ŽŽ”œȱ ‘Ž—ȱ›ŽŠŒ‘’—ȱ•ŠŽȱŽ¡™˜—Ž—’Š•ȱ™‘ŠœŽǯ

Experimental set-up ‘ŽȱŽ¡™Ž›’–Ž—œȱŒ˜—œ’œŽȱ˜ȱ˜ž›ȱ’ěȱŽ›Ž—ȱ›ŽŠ–Ž—œȱ˜ȱ ‘’Œ‘ȱ‘Žȱ ŸŽŽŠ’ŸŽȱŠ—ȱ›Žœ’—ȱŒŽ••œȱ˜ȱ‘ŽȱŒ•˜—Š•ȱœ›Š’—œȱ Ž›ŽȱŽ¡™˜œŽDZȱǻŗǼȱ Œ˜—›˜•ȱǻœŠ—Š›ȱ›˜ ‘ȱŒ˜—’’˜—œǼDzȱǻŘǼȱ›ŽŽ£’—ȱŠȱȬŘŖǚȱž›’—ȱ Ś‘ŚśDzȱǻřǼȱŽœ’ŒŒŠ’˜—ȱž›’—ȱśȱ–’—žŽœDzȱŠ—ȱǻŚǼȱ™›ŽŒ˜—’’˜—’—ȱ‹¢ȱ ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸřŖǚȱ˜••˜ Žȱ‹¢ȱŽœ’ŒŒŠ’˜—ȱž›’—ȱśȱ–’—žŽœǯȱȱ ŽŠ’•ŽȱŽœŒ›’™’˜—ȱ˜ȱ‘ŽœŽȱ›ŽŠ–Ž—œȱŒŠ—ȱ‹Žȱ˜ž—ȱ’—ȱ˜žěȱ›ŽŠžȱet al. ǻŘŖŗŖǼǰȱŽ¡ŒŽ™ȱ‘ŠȱŒŽ••œȱ Ž›ŽȱŽœ’ŒŒŠŽȱž›’—ȱśȱ–’—žŽœȱ’—œŽŠȱ ˜ȱŗŖǯȱ‘Žȱ›Š’˜—Š•Žȱ‹Ž‘’—ȱ‘Žȱ™›ŽŒ˜—’’˜—’—ȱ’œȱ’ŸŽ—ȱ’—ȱ˜žěȱ›ŽŠžȱ et al.ȱǻŘŖŗŖǼǯȱ‘Žȱž›Š’˜—ȱ˜ȱŽœ’ŒŒŠ’˜—ȱ Šœȱ‹ŠœŽȱ˜—ȱŠȱ™›ŽŒŽ’—ȱ Ž¡™Ž›’–Ž—ȱŽœ’—ȱŽœ’ŒŒŠ’˜—ȱ™Ž›’˜œȱ›Š—’—ȱ›˜–ȱŗȱ–’—žŽȱ˜ȱŜȱ ‘˜ž›œȱǻž—™ž‹•’œ‘ŽȱŠŠǼǯȱ›ŽœœȱŽ¡™˜œž›Žȱ˜ȱ‹˜‘ȱ›Žœ’—ȱŒŽ••œȱŠ—ȱ ŸŽŽŠ’ŸŽȱŒŽ••œȱ ŠœȱŒ˜—žŒŽȱ’—ȱ›’™•’ŒŠŽȱ’—ȱŘŚȬ Ž••ȱ™•ŠŽœȱŠ—ȱ’—ȱ ‘ŽȱŠ›”ȱ˜ȱŠŸ˜’ȱ™‘˜˜Ȭ˜¡’Š’ŸŽȱœ›Žœœǯȱ ȱ —žŒ’˜—ȱ˜ȱ›Žœ’—ȱŒŽ••œȱ Šœȱ‹ŠœŽȱ˜—ȱŒž˜’ȱǭȱ ˜‹œ˜—ȱ ǻŗşşśǼǰȱ ‘˜ȱžœŽȱŠȱŒ˜–‹’—Š’˜—ȱ˜ȱ—’›˜Ž—ȱŽ™•Ž’˜—ȱŠ—ȱŒ˜•ȱŠ›”ȱ Œ˜—’’˜—œȱ˜›ȱŗŖȱŠ¢œǰȱ‹žȱ ŽȱžœŽȱŠȱŠ›”ȱ™Ž›’˜ȱ˜ȱŗŚȱŠ¢œǯȱ‘Žȱ

214 Stress tolerance of diatom resting cells ˜›–Š’˜—ȱ˜ȱ›Žœ’—ȱŒŽ••œȱ Šœȱ›’Ž›Žȱ‹¢ȱŠȱŒ˜–‹’—Š’˜—ȱ˜ȱ—’›˜Ž—Ȭ ›ŽŽȱȱ–Ž’ž–ȱŠ—ȱŠȱŠ›”ȱŠ—ȱŒ˜•ȱǻśǚǼȱŽ—Ÿ’›˜—–Ž—ǯȱ˜ȱŠŸ˜’ȱ ’œž›‹Š—ŒŽȱ ˜ȱ ‘Žȱ ›Žœ’—ȱ ŒŽ••œȱ žŽȱ ˜ȱ ŒŽ••ȱ ›Š—œŽ›ǰȱ ›Žœ’—ȱ ŒŽ••œȱ Ž›Žȱ’—žŒŽȱ’›ŽŒ•¢ȱ’—ȱ‘ŽȱŽ¡™Ž›’–Ž—Š•ȱ Ž••œǯȱŽ••ȱŽ—œ’’Žœȱ Ž›Žȱ ŽŽ›–’—Žȱ ‹¢ȱ ž•œŽȱ –™•’žŽȱ ˜ž•ŠŽȱ ǻǼȱ Ěȱž˜›ŽœŒŽ—ŒŽȱ žœ’—ȱŠȱŠ•ĵȱȱ ȱ –Š’—ȬȱǻȬœŽ›’ŽœǼȱ ’‘ȱŽŠž•ȱœŽĴȱ’—œǰȱ ’—Ž—œ’¢ȱ Ŝǰȱ Š’—ȱ Śȱ Š—ȱ Š–™’—ȱ ŗǯȱ ‘Žȱ ‹ŠœŠ•ȱ Ěȱž˜›ŽœŒŽ—ŒŽȱ ˜›ȱ Ŗȱ ˜••˜ ’—ȱŠȱŗśȱ–’—žŽœȱŠ›”ȬŠŠ™Š’˜—ȱ ŠœȱžœŽȱŠȱ™›˜¡¢ȱ˜›ȱŒŽ••ȱ Ž—œ’¢ȱǻ˜—œŠ•ŸŽ¢ȱet al.ǰȱŘŖŖśǼǯȱ˜ȱŽ—œž›Žȱ‘ŠȱŠ••ȱœ›Š’—œȱ Ž›Žȱ‘ŽŠ•‘¢ȱ Š—ȱ ’—ȱ ‘Žȱ œŠ–Žȱ ™‘¢œ’˜•˜’ŒŠ•ȱ Œ˜—’’˜—ȱ ™›’˜›ȱ ˜ȱ ‘Žȱ Ž¡™Ž›’–Ž—ǰȱ Œž•ž›Žœȱ Ž›Žȱ ›Ž’—˜Œž•ŠŽȱ  ’ŒŽȱ Šȱ Šȱ œŠ›’—ȱ Ž—œ’¢ȱ ˜ȱ ŖƽŖǯŖřŖȱ ŽŠŒ‘ȱ’–Žȱ˜••˜ Žȱ‹¢ȱŽ¡™˜—Ž—’Š•ȱ›˜ ‘ȱ˜›ȱŚȱŠ¢œǯȱ¡™˜—Ž—’Š••¢ȱ ›˜ ’—ȱ Œž•ž›Žœȱ Ž›Žȱ ‘Š›ŸŽœŽǰȱ Šœ‘Žȱ  ’ŒŽȱ ’‘ȱ —’›˜Ž—Ȭ ›ŽŽȱ–Ž’ž–ǰȱŠ—ȱ’—˜Œž•ŠŽȱ’—ȱ‘ŽȱŽ¡™Ž›’–Ž—Š•ȱ Ž••œȱŠȱŠ—ȱ’—’’Š•ȱ Ž—œ’¢ȱ˜ȱŖƽŖǯŖřŖȱ™Ž›ȱ Ž••ȱ’—ȱŘȱ–•ȱ˜ȱ—’›˜Ž—Ȭ›ŽŽȱ–Ž’ž–ǯȱ‘Žȱ Ž••ȱ™•ŠŽœȱ Ž›Žȱ™•ŠŒŽȱ’—ȱœŠ—Š›ȱŒž•ž›ŽȱŒ˜—’’˜—œȱž›’—ȱœŽŸŽ—ȱ Š¢œȱ˜ȱŠ••˜ ȱ‘ŽȱŒŽ••œȱ˜ȱŽ¡‘ŠžœȱŠ••ȱ›Ž–Š’—’—ȱ—’›˜Ž—ȱŠ—ȱ‹ŽŒ˜–Žȱ œŠ’˜—Š›¢ǰȱ ‘’Œ‘ȱ ’œȱ Œ•ŽŠ›•¢ȱ Ÿ’œ’‹•Žȱ ˜—ȱ ’—ŸŽ›Žȱ –’Œ›˜œŒ˜™Žȱ Šȱ ŘŖŖȱ ’–Žœȱ–Š—’ęȱŒŠ’˜—ȱžŽȱ˜ȱ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱŠȱŽ—œŽȱŒ¢˜™•Šœ–ǯȱ‘Žȱ œŠ’˜—Š›¢ȱ™‘ŠœŽȱŒŽ••œȱ Ž›Žȱ™•ŠŒŽȱ’—ȱ‘ŽȱŠ›”ȱŠȱśǚȱ˜›ȱ ˜ȱ ŽŽ”œȱ ˜ȱ’—žŒŽȱ‘Žȱ˜›–Š’˜—ȱ˜ȱ›Žœ’—ȱŒŽ••œȱǻŒž˜’ȱǭȱ ˜‹œ˜—ǰȱŗşşśǼǯ ȱ Ž›ȱ ˜ȱ ŽŽ”œǰȱ‘ŽȱŽ¡™Ž›’–Ž—œȱ˜—ȱ‘Žȱ›Žœ’—ȱœŠŽœȱ Ž›Žȱ ’––Ž’ŠŽ•¢ȱ ™Ž›˜›–Žȱ ˜••˜ ’—ȱ Šȱ œ•’‘•¢ȱ –˜’ęȱŽȱ ™›˜˜Œ˜•ȱ ˜ȱ ˜žěȱ›ŽŠžȱet al.ȱǻŘŖŗŖǼǯȱŽŒŠžœŽȱ‘Žȱ’ěȱŽ›Ž—ȱŽ¡™Ž›’–Ž—Š•ȱ›ŽŠ–Ž—œȱ Œ˜ž•ȱ—˜ȱŠ”Žȱ™•ŠŒŽȱœ’–ž•Š—Ž˜žœ•¢ȱŠ—ȱž›Š’˜—œȱ˜ȱŽ¡™Ž›’–Ž—Š•ȱ ‘Š—•’—ȱŸŠ›’ŽǰȱŠ••ȱ Ž••ȱ™•ŠŽœȱ Ž›Žȱ”Ž™ȱ’—ȱ‘ŽȱŠ›”ȱŠȱśǚȱž—’•ȱ Š••ȱ ›ŽŠ–Ž—œȱ Ž›Žȱ ęȱ—Š•’£Žǯȱ ••ȱ ›ŽŠ–Ž—œȱ Ž›Žȱ ŒŠ››’Žȱ ˜žȱ ’—ȱ —’›˜Ž—Ȭ›ŽŽȱ –Ž’ž–ǯȱ Ž›ȱ Ž›–’—Š’˜—ȱ ˜ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ œ›Žœœȱ ›ŽŠ–Ž—œǰȱ‘Žȱ—’›˜Ž—Ȭ›ŽŽȱ–Ž’ž–ȱ Šœȱ›Ž™•ŠŒŽȱ˜›ȱŠ••ȱ™•ŠŽœȱ‹¢ȱ —˜›–Š•ȱ ȱ –Ž’ž–ȱ Š—ȱ ‘Žȱ ™•ŠŽœȱ Ž›Žȱ ›Š—œŽ››Žȱ ˜ȱ œŠ—Š›ȱ Œž•ž›ŽȱŒ˜—’’˜—œȱŠȱŗŞǚǯȱ ȱ ž•ž›Žœȱ ˜›ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ Ž›Žȱ ™›Ž™Š›Žȱ ˜›ȱ ‘Žȱ Ž¡™Ž›’–Ž—œȱ ‹¢ȱ Šȱ ˜ž‹•Žȱ ›ŽȬ’—˜Œž•Š’˜—ȱ ’—ȱ ‘Žȱ œŠ–Žȱ Š¢ȱ Šœȱ ‘Žȱ Œž•ž›Žœȱ˜›ȱ›Žœ’—ȱœŠŽœǯȱ’–’•Š›•¢ǰȱ™Ž›ȱ›ŽŠ–Ž—ȱ›’™•’ŒŠŽȱ Ž••œȱ ˜ȱ ŘŚȬ Ž••ȱ ™•ŠŽœȱ Ž›Žȱ ęȱ••Žȱ ’‘ȱ Řȱ –•ȱ Œž•ž›Žȱ œžœ™Ž—œ’˜—ȱ Šȱ Šȱ œŠ›’—ȱŽ—œ’¢ȱ˜ȱŖƽŖǯŖřŖǯȱ•ŠŽœȱ Ž›Žȱ™•ŠŒŽȱ’—ȱœŠ—Š›ȱŒž•ž›Žȱ Œ˜—’’˜—œȱ˜›ȱ ˜ȱŠ¢œȱ˜ȱŠ••˜ ȱ‘ŽȱŒŽ••œȱ˜ȱ›ŽŒ˜ŸŽ›ȱ›˜–ȱ™˜Ž—’Š•ȱ œ›Žœœȱž›’—ȱ›ŽȬ’—˜Œž•Š’˜—ǰȱŠŽ›ȱ ‘’Œ‘ȱ‘ŽȱœŠ–Žȱ›ŽŠ–Ž—œȱ Ž›Žȱ ™Ž›˜›–ŽȱŠœȱ ’‘ȱ‘Žȱ›Žœ’—ȱŒŽ••œǯȱž•ž›Žœȱ Ž›Žȱ”Ž™ȱ’—ȱ‘ŽȱŠ›”ȱ ŠȱŗŞǚȱž›’—ȱ‘Žȱ™Ž›’˜ȱ‘Šȱ‘Žȱ’ěȱŽ›Ž—ȱ›ŽŠ–Ž—œȱ Ž›ŽȱŒŠ››’Žȱ ˜žǰȱŠ—ȱ Ž›Žȱ˜—•¢ȱ™•ŠŒŽȱ’—ȱ‘Žȱ•’‘ȱŠȱœŠ—Š›ȱŒž•ž›ŽȱŒ˜—’’˜—œȱ

Stress tolerance of diatom resting cells 215 ŠŽ›ȱ‘Žȱ•Šœȱ›ŽŠ–Ž—ȱ ŠœȱŽ›–’—ŠŽȱŠ—ȱ‘Žȱ–Ž’ž–ȱ˜ȱŠ••ȱ Ž••œȱ Šœȱ›Ž™•ŠŒŽȱ‹¢ȱ›Žœ‘ȱȱ–Ž’ž–ǰȱœ’–’•Š›ȱŠœȱ ’‘ȱ‘Žȱ›Žœ’—ȱŒŽ••œǯ ȱ ‘Žȱ™›˜™˜›’˜—ȱ˜ȱœž›Ÿ’Ÿ’—ȱŒŽ••œȱ’—ȱŽŠŒ‘ȱ Ž••ȱ ŠœȱŽŽ›–’—Žȱ ‹¢ȱ Œ˜ž—’—ȱ ‘Žȱ Ž—œ’’Žœȱ ˜ȱ •’Ÿ’—ȱ Š—ȱ ŽŠȱ ŒŽ••œȱ ˜—ȱ Š—ȱ ’—ŸŽ›Žȱ –’Œ›˜œŒ˜™Žȱ ˜—ȱ ‘Žȱ Š¢ȱ ˜ȱ ‘Žȱ Ž¡™Ž›’–Ž—ȱ ǻŖǼȱ Š—ȱ ŠŽ›ȱ ŝȱ Š¢œȱ ˜ȱ ›˜ ‘ȱǻŝǼǯȱ›ŽŠŽȱŒŽ••ȱŽ—œ’’ŽœȱŸŠ›’Žȱ‹Ž ŽŽ—ȱŘǰřŖŖȱŠ—ȱŗřŜǰŖŖŖȱ ŒŽ••œȱ ™Ž›ȱ Ž••ǰȱ ’‘ȱ ˜—ȱ ŠŸŽ›ŠŽȱ řřǰŖŖŖȱ ŒŽ••œȱ ™Ž›ȱ Ž••ȱ ›ŽŠŽȱ Šȱ Ŗǯȱ ȱ–Š—¢ȱŒŽ••œȱœž›Ÿ’ŸŽǰȱŠœȱ Šœȱ‘ŽȱŒŠœŽȱ˜›ȱ‘ŽȱŒ˜—›˜•ȱŒ˜—’’˜—œǰȱ ŽȱŒ˜ž—ŽȱŠȱ•ŽŠœȱŘŖŖȱŒŽ••œȱ™Ž›ȱ Ž••ǯȱ —ȱ‘Žȱ˜‘Ž›ȱŒŠœŽœȱ‘ŽȱŸŽ›¢ȱ •˜ ȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœȱ˜›ŒŽȱžœȱ˜ȱŒŠ›Žž••¢ȱŒ˜ž—ȱŠ••ȱ•’Ÿ’—ȱŒŽ••œȱ ™›ŽœŽ—ȱ˜ŸŽ›ȱ‘Žȱ ‘˜•Žȱœž›ŠŒŽȱ˜ȱ‘Žȱœ’—•Žȱ Ž••œǯȱ•œ˜ȱ‘ŽȱŠ‹œŽ—ŒŽȱ ˜ȱ›˜ ‘ȱ Šœȱ˜—•¢ȱ›ŽŒ˜›ŽȱŠŽ›ȱŒŠ›Žž•ȱŽ¡Š–’—Š’˜—ȱ˜ȱ‘Žȱ ‘˜•Žȱ Ž••ǯȱ‘Žȱ™›˜™˜›’˜—ȱ˜ȱŸ’Š‹•ŽȱŒŽ••œȱŠȱŖȱ ŠœȱŒŠ•Œž•ŠŽȱŠœȱŗŖŖȱ¡ȱǽŗȱ Ȭȱǻ—ž–‹Ž›ȱ˜ȱŽŠȱŒŽ••œȱ™Ž›ȱ––ŶȱŠȱŝȱȦȱ—ž–‹Ž›ȱ˜ȱ›ŽŠŽȱŒŽ••œȱ™Ž›ȱ ––ŶȱŠȱŖǼǾǯȱ

8.3 Results Strain selection ‘›ŽŽȱ–˜›™‘˜œ™ŽŒ’Žœȱ Ž›ŽȱŠ—Š•¢œŽȱ˜›ȱ–˜’œž›ŽȱŒŠŽ˜›¢ȱŗȱǻ—ŽŸŽ›ǰȱ ˜›ȱ˜—•¢ȱŸŽ›¢ȱ›Š›Ž•¢ǰȱ˜ŒŒž››’—ȱ˜žœ’Žȱ ŠŽ›ȱ‹˜’ŽœǼǰȱ ˜ȱ˜›ȱŒŠŽ˜›¢ȱ Řȱǻ–Š’—•¢ȱ˜ŒŒž››’—ȱ’—ȱ ŠŽ›ȱ‹˜’Žœǰȱœ˜–Ž’–Žœȱ˜—ȱ Žȱ™•ŠŒŽœǼǰȱœ’¡ȱ˜›ȱ ŒŠŽ˜›¢ȱřȱǻ–Š’—•¢ȱ˜ŒŒž››’—ȱ’—ȱ ŠŽ›ȱ‹˜’ŽœǰȱŠ•œ˜ȱ›Š‘Ž›ȱ›Žž•Š›•¢ȱ ˜—ȱ ŽȱŠ—ȱ–˜’œȱ™•ŠŒŽœǼǰȱęȱŸŽȱ˜›ȱŒŠŽ˜›¢ȱŚȱǻ–Š’—•¢ȱ˜ŒŒž››’—ȱ˜—ȱ ŽȱŠ—ȱ–˜’œȱ˜›ȱŽ–™˜›Š›’•¢ȱ›¢ȱ™•ŠŒŽœǼȱŠ—ȱŠȱœ’—•Žȱœ™ŽŒ’Žœȱ˜›ȱ ŒŠŽ˜›¢ȱśȱǻ—ŽŠ›•¢ȱŽ¡Œ•žœ’ŸŽ•¢ȱ˜ŒŒž››’—ȱ˜žœ’Žȱ ŠŽ›ȱ‹˜’ŽœǼǯȱ‘Žȱ ŠŒȱ‘Šȱ Žȱ˜—•¢ȱ Ž›ŽȱŠ‹•Žȱ˜ȱœŠ–™•ŽȱŠȱœ’—•Žȱœ™ŽŒ’Žœȱ˜ȱŒŠŽ˜›¢ȱśȱ ’œȱžŽȱ˜ȱ‘Žȱ•˜ ȱ—ž–‹Ž›ȱ˜ȱœ™ŽŒ’Žœȱ’—ȱ‘ŠȱŒŠŽ˜›¢ȱǻŗŜDzȱŠ‹•ŽȱŞǯŗǼǯȱ ŽŸŽ›‘Ž•ŽœœǰȱœŽŸŽ›Š•ȱ˜ȱ‘Žȱ–˜œȱŠ‹ž—Š—ȱŽ››Žœ›’Š•ȱ’Š˜–œǰȱœžŒ‘ȱ Šœȱ Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ or Pinnularia borealisǰȱ Ž›Žȱ’—Œ•žŽȱ’—ȱ‘Žȱ œž¢ǯ

Cytological changes in resting cells and survival of resting cell induction Ž›ȱ ˜—Žȱ ŽŽ”ȱ ’—ȱ —’›˜Ž—ȬŽ™•ŽŽȱ –Ž’ž–ȱ ’—ȱ •’‘ȱ Œ˜—’’˜—œǰȱ ŒŽ••œȱ ˜ȱ –˜œȱ œ›Š’—œȱ Œ˜—Š’—Žȱ Ž ȱ •Š›Žȱ ˜›ȱ –ž•’™•Žȱ œ–Š••ȱ ˜’•ȱ ›˜™•ŽœǯȱŽ›ȱ‘Žȱœž‹œŽšžŽ—ȱ ˜ȱ ŽŽ”œȱ’—ȱ‘ŽȱŠ›”ȱŠȱśǚǰȱœ™ŽŒ’Žœȱ ’ěȱŽ›ŽȱŒ¢˜•˜’ŒŠ••¢ȱǻ’ǯȱŞǯŗȱŠȬ‘Ǽǯȱ‘ŽȱŒ¢˜™•Šœ–ȱ Šœȱ’—ȱ–ž•’™•Žȱ ŒŠœŽœȱ –˜›Žȱ ›Š—ž•Š›ǰȱ ‹žȱ —ŽŸŽ›ȱ Œ˜—›ŠŒŽǯȱ ŠŒž˜•Žœȱ Ž›Žȱ –žŒ‘ȱ Ž—•Š›Žȱ˜›ȱ ˜ȱœ–Š••ȱ˜›ȱ•Š›Ž›ȱ˜’•ȱ›˜™•Žœȱ Ž›Žȱ™›ŽœŽ—ȱǻ’ǯȱŞǯŗǼǯȱ

216 Stress tolerance of diatom resting cells Fig. 8.1 ‘˜˜›Š™‘œȱ‹¢ȱ’—ŸŽ›Žȱ–’Œ›˜œŒ˜™Žȱ˜ȱ›Žœ’—ȱœŠŽœȱŠȱŖǯȱŠǼȱ’——ž•Š›’Šȱ›ž—˜ ’’ ǻ’—ȱŞŞşǼǰȱǯǯƽŗDzȱ‹ǼȱŠŸ’Œž•ŠȱŒ›¢™˜Ž—Ž••ŠȱǻŠ—ŘǼǰȱǯǯƽŘDzȱŒǼȱŽ••Š™‘˜›ŠȱŒŠ™’ŠŠ ǻřŞǼǰȱǯǯƽŘDzȱǼȱž—˜’Šȱ‹’•ž—Š›’œȱǻŘŘȬŗŝǼǰȱǯǯƽřDzȱŽǼȱ’ĵȱ œŒ‘’Šȱ™Š•ŽŠȱǻŖŘǼŝǰȱ ǯǯƽřDzȱǼȱ’ĵȱ œŒ‘’Šȱ›žœž•ž–ȱǻŽŗǼ˜ǰȱǯǯƽřDzȱǼȱ’——ž•Š›’Šȱ‹˜›ŽŠ•’œȱǻŞǼŠǰȱǯǯƽŚDzȱ ‘ǼȱŒ‘—Š—‘ŽœȱŒ˜Š›ŒŠŠȱǻŠ—ŘǼ‹ǰȱǯǯƽśǯ

Stress tolerance of diatom resting cells 217 ‘•˜›˜™•Šœœȱ Ž›Žȱ Œ˜—›ŠŒŽǰȱ ‹žȱ œ›˜—•¢ȱ Œ˜—›ŠŒŽǰȱ ›˜ž—Žȱ ™•Šœ’œȱ Ž›Žȱ—ŽŸŽ›ȱ˜‹œŽ›ŸŽDzȱŠ—ȱ™•Šœ’œȱŒ˜ž•ȱ‹ŽȱŠ›”Ž›ȱ˜›ȱ™Š•Ž›ȱ ‘Š—ȱ ‘Ž’›ȱ ŸŽŽŠ’ŸŽȱ Œ˜ž—Ž›™Š›œǯȱ Žȱ ’ȱ —˜ȱ ˜‹œŽ›ŸŽȱ Œ˜—œ’œŽ—ȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ Œ¢˜•˜’ŒŠ•ȱ Œ‘Š—Žœȱ ‹Ž ŽŽ—ȱ ŠšžŠ’Œȱ Š—ȱ Ž››Žœ›’Š•ȱ ’Š˜–œǰȱ˜›ȱ‹Ž ŽŽ—ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ȱ˜•Ž›Š—ȱŠ—ȱœŽ—œ’’ŸŽȱ Ž››Žœ›’Š•ȱ ’Š˜–ȱ œ›Š’—œǯȱ ž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ ˜ȱ ›Žœ’—ȱ ŒŽ••œȱ ’—ȱ Œ˜—›˜•ȱŒ˜—’’˜—œȱ Ž›ŽȱŒ•˜œŽȱ˜ȱŗŖŖȱ˜›ȱŠ••ȱœ›Š’—œǰȱ’—’ŒŠ’—ȱ‘Šȱ‘Žȱ Œ˜–‹’—ŽȱŠ›”ȱŒ˜—’’˜—œȱŠ—ȱ—’›˜Ž—ȱ•’–’Š’˜—ȱ’ȱŒŠžœŽȱŠ•–˜œȱ —˜ȱŒŽ••ȱŽŠ‘ȱǻŠ‹•ŽȱŞǯŗǼǯ

Tolerance to desiccation ŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ Š••ȱ œ›Š’—œǰȱ ’‘ȱ ‘Žȱ Ž¡ŒŽ™’˜—ȱ ˜ȱ ˜—Žȱ œ›Š’—ȱ ˜ȱ Achnanthes coarctataȱǻ–˜’œž›ŽȱŒŠŽ˜›¢ȱśǼǰȱ’ȱ—˜ȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱ ˜›ȱśȱ–’—žŽœǰȱ ‘Ž‘Ž›ȱ™›ŽŒŽŽȱ‹¢ȱŠȱ‘ŽŠȱ›ŽŠ–Ž—ȱ˜›ȱ—˜ȱǻ’ǯȱŞǯŘȱ ȬǼǯȱ‘ŽȱœŠ–Žȱ Šœȱ›žŽȱ˜›ȱ›Žœ’—ȱŒŽ••œȱ˜ȱ–˜›™‘˜œ™ŽŒ’Žœȱ‹Ž•˜—’—ȱ ˜ȱ–˜’œž›ŽȱŒŠŽ˜›’ŽœȱŗȬřDzȱ—˜—Žȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱǻ™›ŽŒŽŽȱ‹¢ȱŠȱ ‘ŽŠȱ›ŽŠ–Ž—Ǽȱǻ’ǯȱŞǯŘȱȬǼǯȱ —ȱœŠ›”ȱŒ˜—›Šœǰȱ›Žœ’—ȱŒŽ••œȱ˜ȱŠȱ•ŽŠœȱ œ˜–Žȱœ›Š’—œȱ˜ȱŽŠŒ‘ȱ–˜›™‘˜œ™ŽŒ’Žœȱ›˜–ȱ–˜’œž›ŽȱŒŠŽ˜›’ŽœȱŚȱŠ—ȱ śǰȱŽ¡ŒŽ™ȱ˜›ȱ‘Žȱ ˜ȱ’ĵȱœŒ‘’ŠȱŒ˜––ž—’œȱ ›ž—˜ ȱœ›Š’—œǰȱœž›Ÿ’ŸŽȱ Žœ’ŒŒŠ’˜—ȱ ™›ŽŒŽŽȱ ‹¢ȱ Šȱ ‘ŽŠȱ ›ŽŠ–Ž—ȱ ǻ’ǯȱ ŞǯŘȱ Ǽǯȱ ’‘˜žȱ ‘ŽŠȱ›ŽŠ–Ž—ǰȱŽ Ž›ȱœ›Š’—œȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ǰȱ’—Œ•ž’—ȱ‹˜‘ȱ Š—ĵȱœŒ‘’Šȱ ›ž—˜ ȱ sp.ȱ œ›Š’—œǯȱ ‘Ž›Žȱ Šœȱ Šȱ •Š›Žȱ ‹Ž ŽŽ—Ȭœ›Š’—ȱ ŸŠ›’Š’˜—ȱ’—ȱŽœ’ŒŒŠ’˜—ȱœž›Ÿ’ŸŠ•ȱ˜ȱ›Žœ’—ȱŒŽ••œȱ˜›ȱ‹˜‘ȱ ǯȱŠ–™‘’˜¡¢œ Š—ȱP. borealisȱǻŠ‹•ŽȱŞǯŗǼǯȱ —ȱŽ—Ž›Š•ǰȱ‘˜ ŽŸŽ›ǰȱ›Žœ’—ȱŒŽ••ȱœž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ ǻ™›ŽŒŽŽȱ ‹¢ȱ Šȱ ‘ŽŠȱ ›ŽŠ–Ž—Ǽȱ Ž›Žȱ •˜ ǰȱŠ—ȱ˜—•¢ȱ›ŽŠŒ‘Žȱ‘’‘Ž›ȱŸŠ•žŽœȱǻǁŘśƖǼȱ˜›ȱ˜ž›ȱ˜ȱ Š—ĵȱœŒ‘’Šȱ Š–™‘’˜¡¢œȱǻŠ‹•ŽȱŞǯŗǼǯȱž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœȱ Ž›ŽȱŽ—Ž›Š••¢ȱœ’–’•Š›ȱ˜›ȱ •˜ Ž›ȱ ’‘˜žȱ™›ŽŒŽ’—ȱ‘ŽŠȱ›ŽŠ–Ž—ǰȱŽ¡ŒŽ™ȱ˜›ȱ ˜ȱ ǯȱŠ–™‘’˜¡¢œ œ›Š’—œȱ ‘’Œ‘ȱœ‘˜ Žȱ‘Žȱ›ŽŸŽ›œŽȱ™ŠĴȱŽ›—ȱǻŠ‹•ŽȱŞǯŗǼǯ

Tolerance to freezing ŽŽŠ’ŸŽȱ˜›ȱ›Žœ’—ȱŒŽ••œȱ˜ȱœ›Š’—œȱ›˜–ȱ–˜›™‘˜œ™ŽŒ’Žœȱ‹Ž•˜—’—ȱ ˜ȱ–˜’œž›ŽȱŒŠŽ˜›’ŽœȱŗȬřȱ’ȱ—˜ȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ȱǻ’ǯȱŞǯŘȱǼǯȱ —ȱ œŠ›”ȱŒ˜—›Šœǰȱ›ŽŽ£’—ȱ Šœȱœž›Ÿ’ŸŽȱ‹¢ȱŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱŠȱ•ŽŠœȱ ˜—Žȱœ›Š’—ȱ›˜–ȱ‘›ŽŽȱ˜ȱ‘Žȱ–˜›™‘˜œ™ŽŒ’Žœȱ‹Ž•˜—’—ȱ˜ȱ–˜’œž›Žȱ ŒŠŽ˜›’ŽœȱŚȱŠ—ȱśǯȱœȱ›Žœ’—ȱŒŽ••œǰȱ–˜›Žȱœ›Š’—œȱ›˜–ȱ‘ŽœŽȱ–˜’œž›Žȱ Œ•ŠœœŽœȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ǰȱ˜ȱ‘ŽȱŽ¡Ž—ȱ‘ŠȱŠȱ•ŽŠœȱŠȱœ’—•Žȱœ›Š’—ȱ ˜ȱ ŽŠŒ‘ȱ –˜›™‘˜œ™ŽŒ’Žœȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ǰȱ ŠŠ’—ȱ Ž¡ŒŽ™ȱ ˜›ȱ ‘Žȱ  ˜ȱ ’ĵȱœŒ‘’Šȱ Œ˜––ž—’œȱ œ›Š’—œǯȱ ž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ Ž›Žȱ –˜œ•¢ȱ •˜ ǰȱ ’‘ȱŠœȱ–˜œȱ—˜Š‹•ŽȱŽ¡ŒŽ™’˜—ȱA. coarctata ˜›ȱ ‘’Œ‘ȱ‘ŽȱŸŠœȱ

218 Stress tolerance of diatom resting cells –Š“˜›’¢ȱ˜ȱŒŽ••œȱ˜ȱ‹˜‘ȱœ›Š’—œȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ȱǻ˜—ȱŠŸŽ›ŠŽȱşřƖǼǯȱ ‘Ž›Žȱ ŠœȱŠȱ•Š›Žȱ‹Ž ŽŽ—Ȭœ›Š’—ȱŸŠ›’Š’˜—ȱ’—ȱ›ŽŽ£’—ȱœž›Ÿ’ŸŠ•ȱ˜›ȱ ‹˜‘ȱ ŸŽŽŠ’ŸŽȱ Š—ȱ ›Žœ’—ȱ ŒŽ••œȱ ˜ȱ ǯȱ Š–™‘’˜¡¢œǰȱ P. borealisǰȱ Š—ȱ ŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱA. coarctataȱǻŠ‹•ŽȱŞǯŗǼǯȱž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœȱ Ž›Žȱ —˜ȱ—ŽŒŽœœŠ›’•¢ȱ‘’‘Ž›ȱ˜›ȱ›Žœ’—ȱŒŽ••œȱ‘Š—ȱ˜›ȱŸŽŽŠ’ŸŽȱŒŽ••œȱǻŠ‹•Žȱ ŞǯŗǼǰȱœ’—ŒŽȱ‘ŽȱP. borealisȱŠ—ȱŠ¢Š–ŠŽŠȱŠ˜–žœȱœ›Š’—œȱ‘Šȱœž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱšž’Žȱ Ž••ȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œȱ‘ŠȱŸŽ›¢ȱ•˜ ȱ™Ž›ŒŽ—ŠŽœȱ˜ȱ œž›Ÿ’Ÿ’—ȱ›Žœ’—ȱŒŽ••œǯȱ

8.4 Discussion ‘’œȱ œž¢ȱ ŠœœŽœœŽȱ ‘Žȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ȱ ˜ȱ ›Žœ’—ȱ ŒŽ••œǰȱ ’—ȱ Œ˜–™Š›’œ˜—ȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œǰȱ ›˜–ȱ ŗŝȱ ‹Ž—‘’Œȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ ˜ŒŒž››’—ȱ ˜ŸŽ›ȱ Šȱ ›Š’Ž—ȱ ›˜–ȱ ™Ž›–Š—Ž—ȱ ›Žœ‘ ŠŽ›ȱ ŠšžŠ’Œȱ ‘Š‹’Šœȱ ˜ȱ Ž››Žœ›’Š•ȱ œ˜’•œǯȱ ‘›ŽŽȱ –Š’—ȱ ›Žœž•œǰȱ ’œŒžœœŽȱ ‹Ž•˜ ǰȱ Ž–Ž›Žǯȱ ’›œǰȱ ›Žœ’—ȱ ŒŽ••ȱ ˜›–Š’˜—ȱ ˜ȱ ‹Ž—‘’Œȱ ›Žœ‘ ŠŽ›ȱ’Š˜–œȱŒ˜ž•ȱ’—ŽŽȱ‹Žȱ’—’’ŠŽȱ‹¢ȱ—’›˜Ž—ȱŽ™•Ž’˜—ȱ ’—ȱŒ˜•ȱŠ›”ȱŒ˜—’’˜—œǰȱŠ•‘˜ž‘ȱŒ¢˜•˜’ŒŠ•ȱŒ‘Š—ŽœȱŸŠ›’Žȱ ’Ž•¢ȱ ‹Ž ŽŽ—ȱœ™ŽŒ’ŽœǯȱŽŒ˜—•¢ǰȱ›Žœ’—ȱŒŽ••œȱŽ—Ž›Š••¢ȱœ‘˜ ŽȱŠȱ‘’‘Ž›ȱ ˜•Ž›Š—ŒŽȱ ‘Š—ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜›ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ǰȱ Š•‹Ž’ȱ ˜Ž—ȱ ’‘ȱŸŽ›¢ȱ•˜ ȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœǯȱ˜›Ž˜ŸŽ›ǰȱœ˜–Žȱœ›Š’—œȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱ ‹ŽĴȱŽ›ȱ Šœȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œǯȱ ‘’›•¢ǰȱ ˜—•¢ȱ ›Žœ’—ȱ ŒŽ••œȱ˜ȱœ™ŽŒ’Žœȱ˜ȱ–˜’œž›ŽȱŒŠŽ˜›’ŽœȱŚȱǻ–Š’—•¢ȱ’—ȱ ŽȱŠ—ȱ–˜’œȱ˜›ȱ Ž–™˜›Š›’•¢ȱ›¢ȱ™•ŠŒŽœǼȱŠ—ȱśȱǻ˜ŒŒž››’—ȱ—ŽŠ›•¢ȱŽ¡Œ•žœ’ŸŽ•¢ȱ˜žœ’Žȱ ŠŽ›ȱ ‹˜’ŽœǼȱ œž›Ÿ’ŸŽȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ ›ŽŽ£’—ǰȱ ’—’ŒŠ’—ȱ ‘Žȱ ™›ŽœŽ—ŒŽȱ˜ȱ‘Š‹’ŠȬœ™ŽŒ’ęȱŒȱŠŠ™Š’˜—œȱ˜ȱ‘ŽœŽȱŠŸŽ›œŽȱŒ˜—’’˜—œǯ ȱ ‘Žȱ˜‹œŽ›ŸŽȱŒ¢˜•˜’ŒŠ•ȱŒ‘Š—Žœȱ’—ȱ›Žœ™˜—œŽȱ˜ȱ‘Žȱ’–™˜œŽȱ ›˜ ‘ȱ Š››Žœȱ žŽȱ ˜ȱ ‘Žȱ Œ˜–‹’—Š’˜—ȱ ˜ȱ —’›˜Ž—ȱ •’–’Š’˜—ǰȱ •˜ ȱ Ž–™Ž›Šž›Žȱ Š—ȱ Š›”—Žœœǰȱ Š™™•’Žȱ ™›ŽŸ’˜žœ•¢ȱ ‹¢ȱ Œž˜’ȱ ǭȱ ˜‹œ˜—ȱǻŗşşśǼǰȱœžŽœȱ‘Šȱ›Žœ’—ȱŒŽ••ȱ˜›–Š’˜—ȱ ŠœȱœžŒŒŽœœž•ǯȱ ˜›Ž˜ŸŽ›ǰȱŠ•–˜œȱ—˜ȱ–˜›Š•’¢ȱ˜ŒŒž››Žȱž›’—ȱ‘ŽȱŗŚȱŠ¢œȱ˜ȱŒ˜•ȱ Š›”—ŽœœȱŠ—ȱ—’›˜Ž—ȱŽ™•Ž’˜—ǰȱ’—’ŒŠ’—ȱ‘Šȱ‘ŽȱŒŽ••œȱ Ž›ŽȱŠ‹•Žȱ ˜ȱ˜ŸŽ›Œ˜–Žȱ‘ŽœŽȱ–ŽŠ‹˜•’ŒŠ••¢ȱŠŸŽ›œŽȱŒ˜—’’˜—œȱ‹¢ȱ˜›–Š—Œ¢ǯȱ Ž••ȱŒ¢Œ•ŽȱŠ››Žœȱ’—ȱ’Š˜–œȱŠ•›ŽŠ¢ȱ˜ŒŒž›œȱŠŽ›ȱŗȱ˜ȱŘȱŠ¢œȱž›’—ȱ ™›˜•˜—ŽȱŠ›”ȱŒ˜—’’˜—œȱǻŠž•˜ȱet al.ǰȱŗşŞŜDzȱ›£Ž£’—œ”’ȱet al.ǰȱŗşşŖDzȱ ’••Š›ȱ et al.ǰȱ ŘŖŖŞǼǰȱ ‹¢ȱ —’›˜Ž—ȬŽ™•Ž’˜—ȱ ǻ•œ˜—ȱ et al.ǰȱ ŗşŞŜǼȱ Š—ȱ ‹¢ȱ‘ŽȱŒ˜–‹’—Š’˜—ȱ˜ȱ‹˜‘ȱǻ ž¢œ–Š—ȱet al.ǰȱŘŖŗŖǼǯȱ ˜ ȱŠœȱŠ—ȱ’—ȱ ›Žœ™˜—œŽȱ˜ȱ ‘’Œ‘ȱŠŒ˜›ǻœǼȱ’Š˜–ȱŒŽ••œȱž—Ž›˜ȱŒ¢˜•˜’ŒŠ•ȱŒ‘Š—Žœȱ ›Š—œ˜›–’—ȱ‘Ž–ȱ’—˜ȱ›Žœ’—ȱŒŽ••œȱ’œȱ•ŽœœȱŒ•ŽŠ›ǯȱŽœ’—ȱŒŽ••œȱžœŽȱ ’—ȱ‘’œȱœž¢ȱ Ž›ŽȱŒ¢˜•˜’ŒŠ••¢ȱŠ• Š¢œȱŒ•ŽŠ›•¢ȱ’ěȱŽ›Ž—’ŠŽȱ›˜–ȱ ‘Ž’›ȱŸŽŽŠ’ŸŽȱŒ˜ž—Ž›™Š›œǰȱ‹žȱ’ěȱŽ›Ž—ŒŽœȱ Ž›ŽȱŠ¡˜—ȬŽ™Ž—Ž—ȱ

Stress tolerance of diatom resting cells 219 Fig. 8.2ȱ ›Š™‘œȱœ‘˜ ’—ȱ‘ŽȱŠŸŽ›ŠŽȱƖȱœž›Ÿ’ŸŠ•ȱ™Ž›ȱ–˜›™‘˜œ™ŽŒ’Žœȱ˜›ȱ‹˜‘ȱ›Žœ’—ȱœŠŽœȱ ǻ‹•ŠŒ”ǼȱŠ—ȱŸŽŽŠ’ŸŽȱŒŽ••œȱǻ›Ž¢Ǽǰȱœž‹’Ÿ’Žȱ’—˜ȱ‘ŽȱęȱŸŽȱ–˜’œž›ŽȱŒŠŽ˜›’Žœȱ˜ȱŠ—ȱŠ–ȱ ŽȱŠ•ǯȱǻŗşşŚǼǯȱǼȱŽœ’ŒŒŠ’˜—DzȱǼȱŽœ’ŒŒŠ’˜—ȱ ’‘ȱ™›ŽŒŽ’—ȱ›ŠžŠ•ȱ‘ŽŠ’—DzȱǼȱ›ŽŽ£’—ǯȱ Š•žŽœȱ ‹Ž‘’—ȱ ‘Žȱ ‹Š›œȱ Š›Žȱ ‘Žȱ ŠŸŽ›ŠŽȱ Ɩȱ œž›Ÿ’ŸŠ•ǯȱ ››˜›œȱ ‹Š›œȱ ›Ž™›ŽœŽ—ȱ ˜—Žȱ œŠ—Š›ȱ ŽŸ’Š’˜—ǯȱ˜Žȱ‘Žȱlogarithmic scaleȱ˜›ȱ‹˜‘ȱŠŸŽ›ŠŽȱƖȱœž›Ÿ’ŸŠ•ȱŠ—ȱŽ››˜›ȱ‹Š›œǯ

220 Stress tolerance of diatom resting cells ’‘ȱ ŸŠ›’Š’˜—ȱ ’—ȱ ‘Žȱ Ž¡Ž—ȱ ˜ȱ ŸŠŒž˜•Žȱ Ž—•Š›Ž–Ž—ǰȱ Œ¢˜™•Šœ–ȱ ›Š—ž•Š›’¢ǰȱ œ’£Žȱ Š—ȱ —ž–‹Ž›ȱ ˜ȱ ˜’•ȱ ›˜™•Žœȱ Š—ȱ Œ‘•˜›˜™•Šœȱ ™’–Ž—Š’˜—ǯȱ ’ěȱŽ›Ž—ȱ Š¡Šȱ ‘žœȱ ž—Ž›˜ȱ ’ěȱŽ›Ž—ȱ Œ¢˜•˜’ŒŠ•ȱ Œ‘Š—Žœȱ ‘Ž—ȱ˜›–’—ȱ›Žœ’—ȱŒŽ••œǰȱ ‘’Œ‘ȱ–’‘ȱ‹Žȱ•’—”Žȱ˜ȱ’œ’—Œȱ ™‘¢œ’˜•˜’ŒŠ•ȱœ›ŠŽ’Žœȱ’—ȱœ˜›’—ȱŽ—Ž›¢ȱ’—ȱ‘Žȱ˜›–ȱ˜ȱŠĴȱ¢ȱŠŒ’œȱ ˜›ȱœžŠ›œȱŠ—ȱ™›˜ŽŒ’—ȱ‘ŽȱŒŽ••ȱŒ˜—Ž—ȱ›˜–ȱŸŠ›’˜žœȱœ›ŽœœȱŠŒ˜›œǯȱ ˜ ŽŸŽ›ǰȱ—˜ȱŒ˜—œ’œŽ—ȱ’ěȱŽ›Ž—ŒŽȱ’—ȱŒ¢˜•˜’ŒŠ•ȱŒ‘Š—Žœȱ‹Ž ŽŽ—ȱ ŠšžŠ’ŒȱŠ—ȱŽ››Žœ›’Š•ȱ’Š˜–œǰȱ˜›ȱ‹Ž ŽŽ—ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ȱ ˜•Ž›Š—ȱŠ—ȱœŽ—œ’’ŸŽȱŽ››Žœ›’Š•ȱ’Š˜–ȱœ›Š’—œǰȱ Šœȱ˜‹œŽ›ŸŽǯ ȱ ŽŽŠ’ŸŽȱ ŒŽ••œȱ Ž›Žȱ ‘’‘•¢ȱ œŽ—œ’’ŸŽȱ ˜ȱ ‹˜‘ȱ Žœ’ŒŒŠ’˜—ȱ Š—ȱ›ŽŽ£’—ǯȱ—•¢ȱŠȱœ’—•Žȱœ›Š’—ȱ˜ȱAchnanthes coarctataȱœž›Ÿ’ŸŽȱ Žœ’ŒŒŠ’˜—ȱǻ ’‘ȱ™›ŽŒŽ’—ȱ‘ŽŠȱ›ŽŠ–Ž—ǼȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œǰȱ‹žȱ œ›Š’—œȱ˜ȱ‘›ŽŽȱŠ¡Šȱ›˜–ȱ–˜’œž›ŽȱŒŠŽ˜›’ŽœȱŚȱŠ—ȱśȱ’ȱ˜•Ž›ŠŽȱ ›ŽŽ£’—ȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œȱ ’‘ȱ•˜ ȱ˜ȱ–˜Ž›ŠŽȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœǯȱ ›ŽŽ£’—ȱ˜•Ž›Š—ŒŽȱ˜ȱŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱœ˜–Žȱ˜ȱ‘Žȱœ›Š’—œȱžœŽȱ‘Ž›Žȱ ŠœȱŠ•œ˜ȱŽœŽȱ‹¢ȱ˜žěȱ›ŽŠžȱet al.ȱǻŘŖŗŖǼǯȱŽœž•œȱ Ž›ŽȱŒ˜–™Š›Š‹•Žȱ œ’—ŒŽȱ‘ŽȱœŠ–Žȱœ›Š’—œȱœž›Ÿ’ŸŽȱǻ˜›ȱ’ŽǼȱŠ—ȱŚȱ˜žȱ˜ȱŜȱœž›Ÿ’Ÿ’—ȱ Œ˜––˜—ȱœ›Š’—œȱ‘Šȱ‘’‘•¢ȱœ’–’•Š›ȱœž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽœǯȱž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ ˜ȱ ‘Žȱ  ˜ȱ ›Ž–Š’—’—ȱ œ›Š’—œȱ ǻP. borealisȱ ǻŞǼŠȱ Š—ȱ ǻŞǼǼȱ Ž›Žȱ –žŒ‘ȱ •˜ Ž›ȱ ’—ȱ ‘’œȱ œž¢ǰȱ ‘˜ ŽŸŽ›ǯȱ ‘’œȱ œ‘˜ œȱ ‘Žȱ ›Ž™ŽŠŠ‹’•’¢ȱ ˜ȱ ˜‹œŽ›ŸŠ’˜—œȱ Š—ȱ Œ˜—ęȱ›–œȱ ‘Šȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜ȱ œ˜–ŽȱŽ››Žœ›’Š•ȱ’Š˜–œȱ‘ŠŸŽȱŠ—ȱ’—›’—œ’Œȱ™›˜ŽŒ’˜—ȱŠŠ’—œȱ›ŽŽ£’—ȱ

Stress tolerance of diatom resting cells 221 ‘’Œ‘ȱ’œȱŠ‹œŽ—ȱ’—ȱŠšžŠ’Œȱ’Š˜–œǯ ȱ ˜–™Š›Žȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œǰȱ ›Žœ’—ȱ ŒŽ••œȱ ˜ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱœ‘˜ ŽȱŠ—ȱŽ—‘Š—ŒŽȱ›Žœ’œŠ—ŒŽȱ˜›ȱŽœ’ŒŒŠ’˜—ȱǻ™›ŽŒŽŽȱ ‹¢ȱŠȱ‘ŽŠȱ›ŽŠ–Ž—Ǽȱœ’—ŒŽȱ–˜›Žȱœ›Š’—œȱŠ—ȱŠ¡Šȱœž›Ÿ’ŸŽȱŽœ’ŒŒŠ’˜—ȱ Šœȱ›Žœ’—ȱŒŽ••œǰȱŚȱǻśǼȱŠ¡Šȱ˜žȱ˜ȱŜȱŒ˜–™Š›Žȱ˜ȱ‘ŽȱŸŽŽŠ’ŸŽȱœŠŽȱ ǻ˜—ŽȱŠ¡˜—Ǽǯȱ‘’œȱ Šœȱ˜ȱŠȱ•ŽœœŽ›ȱŽ¡Ž—ȱ‘ŽȱŒŠœŽȱ˜›ȱ›ŽŽ£’—ǰȱœ’—ŒŽȱ ‘›ŽŽȱ˜žȱ˜ȱęȱŸŽȱ˜•Ž›Š—ȱŠ¡Šȱ Ž›ŽȱŠ•œ˜ȱ›Žœ’œŠ—ȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œǯȱ ˜ ŽŸŽ›ǰȱ ‘’•Žȱ˜—•¢ȱŠȱ•’–’Žȱ—ž–‹Ž›ȱ˜ȱœ›Š’—œȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ȱ Šœȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œǰȱ Š•–˜œȱ Š••ȱ œ›Š’—œȱ ‘Šȱ Ÿ’Š‹•Žȱ ŒŽ••œȱ Šœȱ ›Žœ’—ȱ ŒŽ••œǯȱŽœ’—ȱŒŽ••œȱ˜ȱ‘Žȱœ’—•Žȱœ™ŽŒ’Žœȱ˜ȱ–˜’œž›ŽȱŒŠŽ˜›¢ȱśǰȱA. coarctataȱ˜ȱ ‘’Œ‘ȱ˜—Žȱœ›Š’—ȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œǰȱ ‘Šȱ Šȱ ‘’‘•¢ȱ ’—Œ›ŽŠœŽȱ ›ŽŽ£’—ȱ œž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽǰȱ ž™ȱ ˜ȱ şŜƖǯȱ —ȱ‘Žȱ˜‘Ž›ȱ‘Š—ǰȱ‘ŽȱP. borealisǰȱŠ—ȱǯȱŠ˜–žœȱœ›Š’—œȱœž›Ÿ’Ÿ’—ȱ ›ŽŽ£’—ȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œȱ‘ŠȱŠȱǻ–žŒ‘Ǽȱ•˜ Ž›ȱ›Žœ’—ȱŒŽ••ȱœž›Ÿ’ŸŠ•ǰȱ œžŽœ’—ȱ‘Šȱ‘Ž¢ȱ–’‘ȱ‘ŠŸŽȱŠȱ’ěȱŽ›Ž—ȱœ›ŠŽ¢ȱ˜›ȱœž›Ÿ’Ÿ’—ȱ ›ŽŽ£’—ǯȱ—‘Š—ŒŽȱ˜•Ž›Š—ŒŽȱ•ŽŸŽ•œȱ˜ȱ›Žœ’—ȱœŠŽœȱ˜›ȱŽœ’ŒŒŠ’˜—ȱ Š—Ȧ˜›ȱ ›ŽŽ£’—ȱ ‘ŠŸŽȱ ‹ŽŽ—ȱ œ‘˜ —ȱ ™›ŽŸ’˜žœ•¢ȱ ˜›ȱ ›Žœ’—ȱ œ™˜›Žœȱ ˜ȱ ’Š˜–œȱ ǻ Š››ŠŸŽœȱ ǭȱ ›Ž—Œ‘ǰȱ ŗşŝśDzȱ Œ‘–’ǰȱ ŘŖŖşǼȱ Š—ȱ ›Žœ’—ȱ œŠŽœȱ ˜ȱ ŸŠ›’˜žœȱ ˜›Š—’œ–œȱ œžŒ‘ȱ Šœȱ ‘Žȱ Š”’—ŽŽœȱ ˜ȱ Œ¢Š—˜‹ŠŒŽ›’Šȱ ǻž‘Ž›•Š— et al.ǰȱŗşŝşDzȱŠ”Ž›ȱǭȱŽ••’Ž–’—ŽǰȱŘŖŖŖDzȱ ˜›’ȱet al.ǰȱŘŖŖřǼǰȱ ‹›¢˜£˜Š—œȱœŠ˜‹•Šœœȱǻžœ‘—Ž••ȱǭȱŠ˜ǰȱŗşŝŚǼǰȱ£˜˜™•Š—”˜—ȱ›Žœ’—ȱ Žœȱǻ ’•‹Ž›ȱǭȱŒ‘›Ž’‹Ž›ǰȱŗşşśDzȱ›¢Ž›ǰȱŗşşŜǼȱŠ—ȱŒ’•’ŠŽȱŒ¢œœȱǻû••Ž›ȱ et al.ǰȱŘŖŗŖǼǯȱ˜Žȱ‘˜ ŽŸŽ›ȱ‘ŠȱŠ••ȱ‘ŽœŽȱ›Žœ’—ȱœŠŽœȱŠ›Žȱ™‘¢œ’ŒŠ••¢ȱ ™›˜ŽŒŽȱ‹¢ȱ‘’Œ”ȱŒŽ••ȱ Š••œȱ˜›ȱ™›˜ŽŒ’ŸŽȱ•Š¢Ž›œǰȱ ‘’Œ‘ȱ’œȱ—˜ȱ‘Žȱ ŒŠœŽȱ˜›ȱ’Š˜–ȱ›Žœ’—ȱŒŽ••œǯȱ ȱ ‘’•Žȱ ›Žœ’—ȱ ŒŽ••œȱ ˜ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ Ž—Ž›Š••¢ȱ ‘Šȱ Š—ȱ Ž—‘Š—ŒŽȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ Œ˜–™Š›Žȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œǰȱ œž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ Ž›Žȱ˜Ž—ȱŸŽ›¢ȱ•˜ ǰȱŠ—ȱ‘Ž›Žȱ ŠœȱŠȱ•Š›ŽȱŸŠ›’Š’˜—ȱ’—ȱ œž›Ÿ’ŸŠ•ȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱ–˜›™‘˜œ™ŽŒ’ŽœȱŠ—ȱ‹Ž ŽŽ—ȱœ›Š’—œȱ˜ȱ ‘ŽȱœŠ–Žȱ–˜›™‘˜œ™ŽŒ’Žœǯȱ —ȱ–˜œȱŒŠœŽœǰȱ‘Žȱ™Ž›ŒŽ—ŠŽȱ˜ȱŸ’Š‹•ŽȱŒŽ••œȱ Šœȱ—˜ȱ‘’‘Ž›ȱ‘Š—ȱśƖȱŠ—ȱŒ˜ž•ȱ‹ŽȱŠœȱ•˜ ȱŠœȱŖǯŖŖŗƖǯȱŽŽŒ’˜—ȱ ˜ȱ œžŒ‘ȱ •˜ ȱ ™Ž›ŒŽ—ŠŽœȱ ’œȱ ˜—•¢ȱ ™˜œœ’‹•Žȱ ‘Ž—ȱ ‘ŠŸ’—ȱ ‘’‘ȱ ŒŽ••ȱ —ž–‹Ž›œǰȱ Š—ȱ Žȱ ˜˜”ȱ ŒŠ›Žȱ ˜ȱ ‘ŠŸŽȱ Šœȱ –Š—¢ȱ ŒŽ••œȱ Šœȱ ™˜œœ’‹•Žȱ ’—ȱ ‹˜‘ȱ‘ŽȱŸŽŽŠ’ŸŽȱŠ—ȱ›Žœ’—ȱŒŽ••ȱŒž•ž›Žœǯȱ‘’œȱ•˜ ȱœž›Ÿ’ŸŠ•ȱ’œȱ’—ȱ Œ˜—›Šœȱ˜ȱ‘Žȱ‘’‘ȱœž›Ÿ’ŸŠ•ȱ•ŽŸŽ•œȱ˜ȱŸŽŽŠ’ŸŽȱœŠŽœȱ˜ȱ˜›ȱŽ¡Š–™•Žȱ Ž››Žœ›’Š•ȱŒ¢Š—˜‹ŠŒŽ›’Šȱǻ ž™Šȱǭȱ›Š Š•ǰȱŘŖŖŜDzȱŠ‹ŠŒ”Šȱǭȱ•œŽ›ǰȱ ŘŖŖŜǼȱ˜›ȱœ˜–Žȱ›ŽŽ—ȱŠ•ŠŽȱǻ•œŽ›ȱet al.ǰȱŘŖŖŞǼǯȱ‘’œȱŽ–™‘Šœ’£Žœȱ‘Šȱ ’—ȱŽ—Ž›Š•ȱ—˜ȱ˜—•¢ȱŸŽŽŠ’ŸŽȱŒŽ••œȱ˜ȱ’Š˜–œȱ‹žȱŠ•œ˜ȱ‘Žȱ›Žœ’—ȱ ŒŽ••œȱŠ›Žȱœ’••ȱšž’ŽȱœŽ—œ’’ŸŽǰȱŠ•‘˜ž‘ȱ‘’‘ȱ›Žœ’—ȱŒŽ••ȱœž›Ÿ’ŸŠ•ȱ Šœȱ ˜‹œŽ›ŸŽȱ ˜›ȱ œ˜–Žȱ œ›Š’—œǯȱ ‘Žȱ •Š›Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ ’ěȱŽ›Ž—ŒŽœȱ ’—ȱ œž›Ÿ’ŸŠ•ȱ™Ž›ŒŽ—ŠŽȱŠ›Žȱ’—ȱŠ›ŽŽ–Ž—ȱ ’‘ȱœŽŸŽ›Š•ȱ˜‘Ž›ȱœž’Žœȱ˜—ȱ

222 Stress tolerance of diatom resting cells –’Œ›˜Š•ŠŽȱǻžĴȱŽ› ’Œ”ȱet al.ǰȱŘŖŖśDzȱŠ‹ŠŒ”Šȱǭȱ•œŽ›ǰȱŘŖŖŜDzȱ ›Š¢ȱet al.ǰȱ ŘŖŖŝǼǯȱ —Ž›™›ŽŠ’˜—ȱ˜ȱ‘Žȱ•Š›ŽȱŸŠ›’Š’˜—ȱŠ–˜—ȱœ›Š’—œȱ˜ȱ‘ŽȱœŠ–Žȱ Ž››Žœ›’Š•ȱ –˜›™‘˜œ™ŽŒ’Žœȱ ’œȱ •Žœœȱ œ›Š’‘Ȭ˜› Š›ǯȱ Š—¢ȱ ’Š˜–ȱ –˜›™‘˜œ™ŽŒ’ŽœȱŠ›Žȱ’—ȱŠŒȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡ŽœȱǻŠ›—˜ȱet al.ǰȱŘŖŖśDzȱŠ——ȱ ǭȱŸŠ—œǰȱŘŖŖŝDzȱŠ—˜›–Ž•’—Ž—ȱet al.ǰȱŘŖŖŞǼǰȱ’—Œ•ž’—ȱP. borealisȱŠ—ȱ ǯȱŠ–™‘’˜¡¢œȱǻ˜žěȱ›ŽŠžȱet al.ǰȱž—™ž‹•ǯȱŒǼǯȱœȱŠȱ›Žœž•ȱ’ȱ’œȱ—˜ȱŸŽ›¢ȱ Œ•ŽŠ›ȱ˜ȱ ‘ŠȱŽ¡Ž—ȱ’ȱŒ˜—ŒŽ›—œȱ’—›Šœ™ŽŒ’ęȱŒȱ›Š‘Ž›ȱ‘Š—ȱ’—Ž›œ™ŽŒ’ęȱŒȱ ŸŠ›’Š’˜—ǯȱ —ȱ‘Žȱęȱ›œȱŒŠœŽǰȱ‘Ž›Žȱ’œȱŠȱ•Š›ŽȱœŠ—’—ȱŽ—Ž’ŒȱŸŠ›’Š’˜—ȱ ˜›ȱœ›Žœœȱ˜•Ž›Š—ŒŽȱ ’‘’—ȱŠȱœ’—•Žȱœ™ŽŒ’ŽœǰȱŠ—ȱ‘žœȱŠȱ•Š›Žȱ™˜Ž—’Š•ȱ ˜›ȱ›Š™’ȱ–’Œ›˜ŽŸ˜•ž’˜—ȱŠ—ȱ™˜™ž•Š’˜—ȱ™Ž›œ’œŽ—ŒŽȱ’—ȱ›Žœ™˜—œŽȱ˜ȱ Ž—Ÿ’›˜—–Ž—Š•ȱŒ‘Š—Žǯȱ —ȱ‘ŽȱœŽŒ˜—ȱŒŠœŽǰȱŽ››Žœ›’Š•ȱ’Š˜–ȱœ™ŽŒ’Žœȱ –’‘ȱ ‹Žȱ œ™ŽŒ’Š•’œœȱ ’‘ȱ ›Ž•Š’ŸŽ•¢ȱ •’–’Žȱ ’—›Šœ™ŽŒ’ęȱŒȱ Ž—Ž’Œȱ ŸŠ›’Š’˜—ȱŒ˜—ęȱ—Žȱ˜ȱŒŽ›Š’—ȱŽ››Žœ›’Š•ȱ‘Š‹’Šœǯȱȱ•Š›Žȱ™Š›ȱ˜ȱ‘Žȱ ŸŠ›’Š’˜—ȱŽ—Œ˜ž—Ž›Žȱž›’—ȱ‘’œȱœž¢ȱ–’‘ȱ‹Žȱ’—›Šœ™ŽŒ’ęȱŒǰȱ’ŸŽ—ȱ ‘Šȱ‘Ž›Žȱ’œȱŸŠ›’Š’˜—ȱ˜›ȱŽœ’ŒŒŠ’˜—ȱ›Žœ’œŠ—ŒŽȱŠŽ›ȱ‘ŽŠȱ›ŽŠ–Ž—ȱ Š–˜—ȱ ˜ȱœ›Š’—œȱ˜ȱ‹˜‘ȱ Š—ĵȱœŒ‘’Šȱœ™ǯȱŠ—ȱ ǯȱŠ–™‘’˜¡¢œȱǽǻŗǼŽȱ Š—ȱǻřǼŒǾȱ‹Ž•˜—’—ȱ˜ȱŠȱœ’—•Žȱ•’—ŽŠŽȱǻ˜žěȱ›ŽŠžȱet al.ǰȱž—™ž‹•ǯȱŒǼȱ Š—ȱ’—ȱ‹˜‘ȱ›ŽŽ£’—ȱŠ—ȱŽœ’ŒŒŠ’˜—ȱ›Žœ’œŠ—ŒŽȱ˜›ȱ‘›ŽŽȱP. borealis œ›Š’—œȱ›˜–ȱ‘ŽȱœŠ–Žȱ•’—ŽŠŽȱǽǻŗǼ‹ǰȱǻŗǼ’ȱŠ—ȱǻŜǼŠǾǯȱ‘’œȱœ‘˜ž•ȱ ‹Žȱ’—ŸŽœ’ŠŽȱž›‘Ž›ǯȱ’—Š••¢ǰȱ‘Ž›Žȱ Šœȱ—˜ȱ›ŠŽȬ˜ěȱȱ’—ȱ˜ž›ȱœ›Š’—œȱ ‹Ž ŽŽ—ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ȱ˜•Ž›Š—ŒŽǰȱ™›˜‹Š‹•¢ȱ‹ŽŒŠžœŽȱ‘ŽœŽȱ Š›Žȱ‹˜‘ȱ˜œ–˜’Œȱœ›ŽœœŽœȱŠ—ȱ›Žšž’›Žȱšž’Žȱœ’–’•Š›ȱǻ‹žȱ—˜ȱ’Ž—’ŒŠ•Ǽȱ ™›˜ŽŒ’˜—ȱ–ŽŒ‘Š—’œ–œȱǻŽ•œ‘ǰȱŘŖŖŖDzȱ•Ž—‘˜ et al.ǰȱŘŖŖŜǼǯ ȱ ȱ’œȱœ›’”’—ȱ‘Šȱ’—ȱŠ••ȱŒ˜—’’˜—œȱŠ—ȱ‹˜‘ȱŠœȱŸŽŽŠ’ŸŽȱ˜›ȱ ›Žœ’—ȱŒŽ••œǰȱ˜—•¢ȱœ›Š’—œȱœž›Ÿ’ŸŽȱ‘Šȱ‹Ž•˜—ȱ˜ȱŠ¡Šȱ˜ȱ–˜’œž›Žȱ ŒŠŽ˜›’ŽœȱŚȱ˜›ȱśȱǻ˜••˜ ’—ȱŠ—ȱŠ–ȱet al.ǰȱŗşşŚǼǰȱ˜ŒŒž››’—ȱ–Š’—•¢ȱ ’—ȱ Žȱ Š—ȱ –˜’œȱ ˜›ȱ Ž–™˜›Š›’•¢ȱ ›¢ȱ ™•ŠŒŽœȱ ˜›ȱ —ŽŠ›•¢ȱ Ž¡Œ•žœ’ŸŽ•¢ȱ ˜žœ’Žȱ ŠŽ›ȱ ‹˜’Žœǯȱ ȱ œ’—•Žȱ Š¡˜—ȱ ˜ȱ ŒŠŽ˜›¢ȱ Śǰȱ ’ĵȱœŒ‘’Šȱ Œ˜––ž—’œǰȱ ’ȱ —˜ȱ œ‘˜ ȱ Š—¢ȱ ˜•Ž›Š—ŒŽǰȱ ‘’Œ‘ȱ ’œȱ œž›™›’œ’—ȱ ’ŸŽ—ȱ ‘ŠȱŠ••ȱ˜‘Ž›ȱŽ››Žœ›’Š•ȱŠ¡Šȱ’ǯȱ ’ŸŽ—ȱ‘Žȱ™›ŽŸŠ•Ž—ŒŽȱ˜ȱǻ™œŽž˜Ǽ Œ›¢™’Œȱ œ™ŽŒ’Š’˜—ȱ ’—ȱ ’Š˜–œȱ ǻŠ›—˜ȱ et al.ǰȱ ŘŖŖśDzȱ Š——ȱ ǭȱ ŸŠ—œǰȱ ŘŖŖŝDzȱ Š—˜›–Ž•’—Ž—ȱ et al.ǰȱ ŘŖŖŞŠǼȱ Š—ȱ ‘Žȱ ™˜œœ’‹’•’¢ȱ ˜ȱ —’Œ‘Žȱ ’ěȱŽ›Ž—’Š’˜—ȱ‹Ž ŽŽ—ȱŒ•˜œŽ•¢ȱ›Ž•ŠŽȱœ™ŽŒ’ŽœȱǻŠ—Ž•œ•Š—Ž›ȱet al.ǰȱ ŘŖŖşǼǰȱ‘ŽœŽȱœ›Š’—œȱ’œ˜•ŠŽȱ›˜–ȱ‘Žȱœž‹›˜™’ŒŠ•ȱ–œŽ›Š–ȱ œ•Š—ȱ ’—ȱ ‘Žȱ —’Š—ȱ ŒŽŠ—ȱ –’‘ȱ —˜ȱ ‹Ž•˜—ȱ ˜ȱ ‘Žȱ ǯȱ Œ˜––ž—’œȱ œ™ŽŒ’Žœȱ ˜ȱ ‘Žȱ Ž‘Ž›•Š—œȱ ˜›ȱ ‘’Œ‘ȱ Š—ȱ Š–ȱ et al.ȱ ǻŗşşŚǼȱ Šœœ’—Žȱ Šȱ –˜’œž›ŽȱŒŠŽ˜›¢ǯȱ’—ȱ˜ȱ‘’œȱ‘¢™˜‘Žœ’œȱ’œȱ‘ŽȱŠŒȱ‘Šȱ‹˜‘ȱN. Œ˜––ž—’œȱœ›Š’—œȱ Ž›Žȱ’œ˜•ŠŽȱ›˜–ȱŠȱ™Ž›–Š—Ž—ȱ•Š”ŽǯȱŽŸŽ›‘Ž•Žœœǰȱ ‘Žȱ˜•Ž›Š—ŒŽȱ˜ȱ›Žœ’—ȱŒŽ••œȱ˜›ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ȱ’œȱŒ•ŽŠ›•¢ȱ ‘Š‹’ŠȬŽ™Ž—Ž—ȱ ‘’Œ‘ȱ ’—’ŒŠŽœȱ ‘Šȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ ˜ŒŒž››’—ȱ ’—ȱŽ››Žœ›’Š•ȱ‘Š‹’ŠœȱŠ›ŽȱŠŠ™Žȱ˜ȱ‘Žȱœ™ŽŒ’ęȱŒȱœ›ŽœœȱŠŒ˜›œȱ‘Ž¢ȱ

Stress tolerance of diatom resting cells 223 Ž—Œ˜ž—Ž›ȱ‘Ž›Žǯȱ’Š˜–œȱ’—‘Š‹’’—ȱ™Ž›–Š—Ž—ȱ ŠŽ›ȱ‹˜’Žœȱ˜—Ȃȱ ‘ŠŸŽȱ˜ȱ’—ŸŽœȱŽ—Ž›¢ȱ’—ȱ‘Žȱ™›˜žŒ’˜—ȱ˜ȱ™›˜ŽŒ’ŸŽȱ–ŽŠ‹˜•’Žœǰȱ ‘’Œ‘ȱ ˜ž•ȱ›Žœž•ȱ’—ȱ•˜ Ž›ȱ›ŽŽ£’—ȱŠ—ȱŽœ’ŒŒŠ’˜—ȱ˜•Ž›Š—ŒŽǯ ȱ Žœ’ŽœȱŠ••˜ ’—ȱŽ–™˜›Š•ȱ™Ž›œ’œŽ—ŒŽȱ˜ȱŽ››Žœ›’Š•ȱ’Š˜–ȱ ™˜™ž•Š’˜—œǰȱ ‘Žȱ ™›ŽœŽ—ŒŽȱ ˜ȱ œ›Žœœȱ ˜•Ž›Š—ȱ ›Žœ’—ȱ ŒŽ••œȱ ™›˜‹Š‹•¢ȱ ‘Šœȱ•Š›ŽȱŒ˜—œŽšžŽ—ŒŽœȱ˜›ȱ™ŠĴȱŽ›—œȱ˜ȱ’œ™Ž›œŠ•ǰȱŠ—ȱŒ˜—œŽšžŽ—•¢ȱ ˜›ȱ ™˜™ž•Š’˜—ȱ œ›žŒž›’—ȱ ǻ’žŽ›˜•Šȱ et al.ǰȱ ŘŖŖśǼȱ Š—ȱ Ž˜›Š™‘’Œȱ ’œ›’‹ž’˜—œȱ ǻ•ŸŽȱ ǭȱ ˜•œŽ’—ǰȱ ŘŖŗŖǼǰȱ œ’—ŒŽȱ ž›’—ȱ ’œ™Ž›œŠ•ȱ ‹¢ȱŠ’›ȱŒž››Ž—œȱ˜›ȱ˜—ȱŠ—’–Š•œȱ•˜ ȱ–˜’œž›Žȱ•ŽŸŽ•œȱŠ›Žȱ•’”Ž•¢ȱ˜ȱ‹Žȱ Ž—Œ˜ž—Ž›Žȱǻ ›’œ’Š—œŽ—ǰȱŗşşŜǼǯȱœȱœ˜–Žȱǻ›Žœ’—ǼȱŒŽ••œȱ˜ȱŽ››Žœ›’Š•ȱ ’Š˜–ȱ ™˜™ž•Š’˜—œȱ Š›Žȱ Š‹•Žȱ ˜ȱ œž›Ÿ’ŸŽȱ Šȱ •ŽŠœȱ œ‘˜›ȱ ™Ž›’˜œȱ ˜ȱ Žœ’ŒŒŠ’˜—ǰȱ ’œ™Ž›œŠ•ȱ ˜ŸŽ›ȱ ǻŠȱ •ŽŠœǼȱ œ‘˜›ȱ ’œŠ—ŒŽœȱ ǻ›˜ —ȱ et al.ǰȱ ŗşŜŚǼȱ˜›ȱ™›˜ŽŒŽȱ’—œ’ŽȱŠȱ•ž–™ȱ˜ȱŒ›žœŽȱœŽ’–Ž—ȱǻŸŠ—œǰȱŗşśŞǰȱ ŗşśşǼȱœ‘˜ž•ȱ‹Žȱ™˜œœ’‹•Žǰȱ ‘’Œ‘ȱ’œȱŽ–˜—œ›ŠŽȱ‹¢ȱ‘Žȱ›Ž™˜›œȱ˜ȱ Ÿ’Š‹•Žȱ’Š˜–ȱŒŽ••œȱ˜ȱŽ››Žœ›’Š•ȱŠ¡Šȱ˜ž—ȱ’—ȱŠ’›ȱ›Š™œȱǻŠ—ȱŸŽ›ŽŽ–ǰȱ ŗşřŝDzȱ Œ‘•’Œ‘’—ǰȱ ŗşŜŗDzȱ ›˜ —ȱ et al.ǰȱ ŗşŜŚDzȱ Œ‘•’Œ‘’—ǰȱ ŗşŜŚDzȱ ˜¢Ȭ Œ˜•Šȱ ǭȱ Š››Ž›Šǰȱ ŗşşřǼǯȱ ’Ÿ’—ȱ ŒŽ••œȱ ˜ȱ ŠšžŠ’Œȱ ’Š˜–ȱ œ™ŽŒ’Žœȱ Š›Žȱ Ž—Ž›Š••¢ȱ Š‹œŽ—ȱ ›˜–ȱ œžŒ‘ȱ Š’›ȱ ›Š™œǰȱ ‘’Œ‘ȱ –’‘ȱ ‹Žȱ ›Ž•ŠŽȱ ˜ȱ ‹˜‘ȱ Šȱ •˜ Ž›ȱ Œ‘Š—ŒŽȱ ˜ȱ ‹Ž’—ȱ ™’Œ”Žȱ ž™ȱ ‹¢ȱ ’—ȱ Š—ȱ ‹¢ȱ ‘Ž’›ȱ ‘’‘Ž›ȱœŽ—œ’’Ÿ’¢ȱ˜ȱŽœ’ŒŒŠ’˜—ǯȱ‘ŽœŽȱ‘’‘Ž›ȱ’œ™Ž›œŠ•ȱ›ŠŽœȱŠ–˜—ȱ Ž››Žœ›’Š•ȱ’Š˜–ȱ™˜™ž•Š’˜—œȱœ‘˜ž•ȱ›Žœž•ȱ’—ȱ•˜ Ž›ȱ’ěȱŽ›Ž—’Š’˜—ȱ ˜›ȱ —Žž›Š•ȱ –Š›”Ž›œȱ ‹Ž ŽŽ—ȱ ™˜™ž•Š’˜—œȱ ˜ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ ‘Š—ȱ ˜›ȱ ŠšžŠ’Œȱ ’Š˜–œȱ ˜ŸŽ›ȱ œ’–’•Š›ȱ œ™Š’Š•ȱ œŒŠ•Žœǯȱ ž›‘Ž›–˜›Žǰȱ ™Šž•’—ȱet al. ǻŘŖŗŖǼȱ‘¢™˜‘Žœ’£Žȱ‘Šȱ‘’œȱ ˜ž•ȱŠ•œ˜ȱ›Žœž•ȱ’—ȱ •Š›Žȱ Ž˜›Š™‘’Œȱ ›Š—Žœȱ ˜ȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ Š—ȱ •˜ Ž›ȱ •ŽŸŽ•œȱ˜ȱ Š••˜™Š›’Œȱ œ™ŽŒ’Š’˜—ǯȱ ˜ ŽŸŽ›ǰȱ Ž™Ž—’—ȱ ˜—ȱ ‘Žȱ Ž˜›Š™‘’ŒŠ•ȱ œŒŠ•Žȱ ˜ȱ ’œ™Ž›œŠ•ǰȱ ‘Žȱ ‘’‘Ž›ȱ ™˜œœ’‹’•’¢ȱ ˜›ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ ˜ȱ ž—Ž›˜ȱž—Œ˜––˜—ȱ•˜—ȱ’œŠ—ŒŽȱ’œ™Ž›œŠ•ȱŽŸŽ—œȱŒ˜ž•ȱ›Žœž•ȱ’—ȱ ŽŸŽ—ȱ‘’‘Ž›ȱ•ŽŸŽ•œȱ˜ȱŠ••˜™Š›’Œȱœ™ŽŒ’Š’˜—ȱǽŒŠ••Žȱ˜ž—Ž›ȱœ™ŽŒ’Š’˜—ȱ ‘Ž—ȱ‹ŠœŽȱ˜—ȱŠȱœ–Š••ȱ—ž–‹Ž›ȱ˜ȱŠ››’Ÿ’—ȱ’—’Ÿ’žŠ•œȱǻŽ–™•Ž˜—ǰȱ ŘŖŖŞǼǾȱ Œ˜–™Š›Žȱ ˜ȱ •ŠŒžœ›’—Žȱ ’Š˜–œǯȱ ȱ ˜ž•ȱ ‘Ž›Ž˜›Žȱ ‹Žȱ ‘’‘•¢ȱ’—Ž›Žœ’—ȱ˜ȱŒ‘ŽŒ”ȱ’ȱ™ŠĴȱŽ›—œȱ˜ȱ™˜™ž•Š’˜—ȱœ›žŒž›ŽȱŠ—ȱ Ž˜›Š™‘’ŒŠ•ȱ ’œ›’‹ž’˜—œȱ –ŠŒ‘ȱ ‘Žȱ ˜‹œŽ›ŸŽȱ ’ěȱŽ›Ž—’Š’˜—ȱ ’—ȱ œ›Žœœȱ˜•Ž›Š—ŒŽȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ‹Ž—‘’Œȱ’Š˜–œǯȱ

224 Stress tolerance of diatom resting cells Acknowledgments ‘’œȱ›ŽœŽŠ›Œ‘ȱ Šœȱęȱ—Š—Œ’Š••¢ȱœž™™˜›Žȱ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱ ŽœŽŠ›Œ‘ȱ Ȯȱ •Š—Ž›œȱ ǻȬ•Š—Ž›œǰȱ Ž•’ž–ǰȱ ž—’—ȱ ˜ȱ ȱ Š—ȱ Ǽǰȱ ‘Žȱ Ȭ™›˜“ŽŒȱ ř ȬŖśřřȬŖŝȱ ˜—ȱ Š¡˜—˜–’Œȱ ž›—˜ŸŽ›ȱ ’—ȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ ’Š˜–ȱ Œ˜––ž—’’Žœǰȱ Š—ȱ ‘Žȱ Ȭ™›˜“ŽŒȱ ř ȬŖŚŗşȬŖŞȱ˜—ȱ‘Ž›–Š•ȱŠŠ™Š’˜—ǯ

Stress tolerance of diatom resting cells 225

9. General discussion

9.1 Diatom biogeography 9.1.1 Geographical distribution patterns Given the controversial importance of historical factors for microbial distributions (reviewed in Martiny et al., 2006), several recent studies ‹ŠœŽȱ ˜—ȱ ŒŠ›Žž•ȱ –˜›™‘˜•˜’ŒŠ•ȱ ’—ŸŽœ’Š’˜—œȱ ‘ŠŸŽȱ ŠĴȱŽ–™Žȱ ˜ȱ disentangle the relative importance of historical factors and local factors on freshwater benthic diatom community structure and diversity (reviewed in Vanormelingen et al., 2008b). These showed that, on large spatial scales (hundreds to thousands of km), distance explains a substantial fraction of the variation in local community structure independent of environmental factors (Potapova & Charles, 2002; Soininen et al., 2004; Verleyen et al., 2009). This is mainly due to species with restricted distributions which are not readily explainable by environmental limitations. Moreover, local diversity is limited by habitat availability (Telford et al., 2006), and even regional genus diversity can be strongly limited in isolated regions, such as those found at high latitudes of the Southern hemisphere (Vyverman et al., 2007). This indicates that dispersal limitation is an important ŠŒ˜›ȱ ›Žœ›’Œ’—ȱ ’Š˜–ȱ ’œ›’‹ž’˜—œȱ ˜—ȱ ’ěȱŽ›Ž—ȱ œ™Š’Š•ȱ •ŽŸŽ•œǰȱ from incomplete local recruitment from the regional species pool to restrictions on geographical species ranges, and shows that reports ˜ȱŽ—Ž–’Œȱœ™ŽŒ’ŽœȱŒŠ——˜ȱœ˜•Ž•¢ȱ‹ŽȱŠĴȱ›’‹žŽȱ˜ȱ‘ŽȱŽ˜›Š™‘’ŒŠ••¢ȱ restricted occurrence of suitable habitat. In this thesis we gathered further evidence for the importance of historical factors for diatom distributions and the occurrence of endemic species in the (sub-)Antarctic based on morphological surveys. 1. First, we show that there is a high level of endemicity in lacustrine diatoms (27-63%, chapter 2), similar to the levels found for macroorganisms in the (sub-)Antarctic (Allegrucci et al., 2006; Stevens et al., 2006; Convey et al., 2008). Moreover, ‘Žȱ ęȱ—’—ȱ ˜ȱ Œ›¢™’Œȱ Œ˜—’—Ž—Š•ȱ —Š›Œ’Œȱ •’—ŽŠŽœȱ

General discussion 227 using molecular phylogenies in two of the cosmopolitan morphospecies (chapter 6) suggests that the percentage of (sub-)Antarctic endemic species is in fact (much) higher than ‘Žȱ Š‹˜ŸŽȬ–Ž—’˜—Žȱ ęȱž›Žœǯȱ •œ˜ȱ ‘Žȱ –Š’—ȱ ‹’˜Ž˜›Š™‘’Œȱ regions (the sub-, maritime and continental Antarctic, Chown & Convey, 2007) can be distinguished for lacustrine diatoms (chapter 2). Together, these strikingly congruent ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œȱœ‘˜ ȱ‘Šȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™›˜ŒŽœœŽœȱ Ž—Ž›Š’—ȱ‘Žȱ’œ›’‹ž’˜—ȱŠ—ȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ’Š˜–œȱ’—ȱ the (sub-) Antarctic operate at similar spatial and temporal scales as in macroscopic organisms. 2. Secondly, regional lacustrine diatom diversity in the Southern hemisphere is not only reduced (Vyverman et al., 2007) but is also imbalanced with an overrepresentation of predominantly terrestrial lineages and a general poverty of globally successful genera and planktonic lineages (chapter 2). This can only be explained by the presence of historical limitations in diatom lineage dispersal into the (sub-)Antarctic. 3. Finally, the low community similarity for both lacustrine and terrestrial diatoms among the sub-Antarctic island groups Crozet and Kerguelen as compared to the within-island similarities (chapter 3) indicate the presence of a geographic signal in diatom distributions, even within the sub-Antarctic. This is congruent with previous reports on species endemic to single islands or groups of islands in the sub-Antarctic (Van de Vijver et al., 2002; Van de Vijver et al., 2004; Van de Vijver & Mataloni, 2008; Van de Vijver et al., 2010), but it is still unclear ’ȱ‘ŽœŽȱŒ˜––ž—’¢ȱ’ěȱŽ›Ž—’Š’˜—œȱŠ›ŽȱžŽȱ˜ȱŽ—Ÿ’›˜—–Ž—Š•ȱ ’ěȱŽ›Ž—ŒŽœȱ‹Ž ŽŽ—ȱ‘Žȱ ˜ȱŠ›Œ‘’™Ž•Š˜œȱŠ—ȱœ™ŽŒ’Žœȱœ˜›’—ǰȱ or to other factors including dispersal limitation and priority ŽěȱŽŒœǯ

9.1.2 Terrestrial vs. lacustrine diatoms As mentioned in the introduction, we hypothesized that terrestrial diatoms have wider geographical ranges compared to their aquatic counterparts resulting from higher dispersal probabilities due to the less fragmented terrestrial habitat (Spaulding et al., 2010), a higher probability of being picked up by wind, and their assumed higher tolerance for desiccation and temperature extremes than aquatic taxa (Schlichting, 1969; Ehresmann & Hatch, 1975), which was Œ˜—ęȱ›–Žȱ‹¢ȱ˜ž›ȱŽ¡™Ž›’–Ž—œȱǻchapters 7 and 8). In line with our

228 General discussion expectations, community similarity analyses on a dataset covering the sub-Antarctic island groups Crozet and Kerguelen indicated that terrestrial diatom communities were more similar within and between islands than the lacustrine communities on an intermediate scale (ca. 1,500 km) (chapter 3), indicating higher dispersal rates within and between islands for terrestrial taxa. However, while these two islands are similar in terms of climate and geology, we ’ȱ —˜ȱ Ž¡™•’Œ’•¢ȱ ŠœœŽœœȱ ‘Žȱ ’—ĚȱžŽ—ŒŽȱ ˜ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ ŸŠ›’Š‹•Žœȱ ˜—ȱ‘Žȱ˜‹œŽ›ŸŽȱ™ŠĴȱŽ›—œǰȱŠ—ȱ’ȱ‘Ž›Ž˜›Žȱ›Ž–Š’—œȱ™˜œœ’‹•Žȱ‘Šȱ‘Žȱ higher community similarities found for terrestrial communities were a result of higher dispersal, wider realized niches for terrestrial species or less environmental variability in the terrestrial habitat. ȱ’œȱŠȱŽ—Ž›Š•ȱ™ŠĴȱŽ›—ȱ‘ŠȱŒ˜––ž—’¢ȱœ’–’•Š›’’Žœȱ˜ȱŽ››Žœ›’Š•ȱ organisms show less distance decay than those of aquatic organisms, Š—ȱ ‘’œȱ ‘Šœȱ ‹ŽŽ—ȱ ŠĴȱ›’‹žŽȱ ˜ȱ ‘Žȱ •Žœœȱ ›Š–Ž—Žȱ Œ˜—ęȱž›Š’˜—ȱ of terrestrial habitats (Soininen et al., 2007). However, also higher dispersal capacities and wider realized niches could contribute to ‘’œȱ ™ŠĴȱŽ›—ǰȱ Š—ȱ –˜›Žȱ ’—ȬŽ™‘ȱ œž’Žœȱ œŽ™Š›Š’—ȱ ‘Žȱ ’—ĚȱžŽ—ŒŽœȱ of environmental and spatial variables are needed to fully interpret the observed decreases in community similarity with distance (Legendre et al., 2005; Soininen et al., 2007). At the same time, even Ž››Žœ›’Š•ȱ’Š˜–œȱ˜ȱœ‘˜ ȱœ›˜—ȱŽ˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œȱ˜ŸŽ›ȱ•Š›Žȱ spatial scales. First, terrestrial community similarities decreased œ’—’ęȱŒŠ—•¢ȱ˜ŸŽ›ȱ‘Žȱ˜ž‘ȱ —’Š—ȱŒŽŠ—ȱŠ—ȱ˜ž‘ȱ•Š—’ŒȱŒŽŠ—ȱ (chapter 3). Secondly, the Antarctic strains of Pinnularia borealis and Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œȱ Ž›ŽȱŽ—Ž’ŒŠ••¢ȱŠ—ȱ‘Ž›–Š••¢ȱ’ěȱŽ›Ž—’ŠŽȱ from the non-Antarctic strains (chapter 6). While lacustrine and Ž››Žœ›’Š•ȱ’Š˜–œȱ‘žœȱŠ›ŽȱœžŽœŽȱ˜ȱ‘ŠŸŽȱ’ěȱŽ›Ž—ȱŽ˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—œȱŠȱœ–Š••Ž›ȱœ™Š’Š•ȱœŒŠ•Žœȱǻž™ȱ˜ȱŗǰśŖŖȱ”–Ǽǰȱ‘Ž¢ȱŠ›Žȱœ’–’•Š›ȱ Šȱ•Š›Ž›ȱœŒŠ•Žœǯȱ‘ŽœŽȱ™ŠĴȱŽ›—œȱŠ›Žȱ’œŒžœœŽȱ’—ȱ‘Žȱ•’‘ȱ˜ȱ’œ™Ž›œŠ•ȱ probabilities and stress tolerance further below in section 9.3.

9.2 Species diversity and speciation in the (sub-)Antarctic (Pseudo)cryptic species diversity is widespread in diatoms, with sometimes tens of species discovered in a single species complex (Behnke et al., 2004; Kooistra et al., 2005; Sarno et al., 2005; Beszteri et al., 2007; Mann & Evans, 2007; Vanormelingen et al., 2008a; Evans et al., 2009; Trobajo et al., 2009; Vanelslander et al.ǰȱŘŖŖşǼǰȱŠ—ȱŒ˜—ęȱ›–œȱ‘Žȱ predictions of Mann & Droop (1996). Almost at the same time as these

General discussion 229 ęȱ—’—œǰȱŠȱ›Ž—ȱ˜ȱŠĴȱ›’‹žŽȱœž‹•Žȱ–˜›™‘˜•˜’ŒŠ•ȱŸŠ›’Š’˜—ȱ™ŠĴȱŽ›—œȱ to phenotypic plasticity has reversed and thousands of new species have been described including lots of potential endemics, many of which would previously be regarded to be part of a morphological continuum within species (reviewed in Vanormelingen et al., 2008b). The current study on P. borealis and ǯȱŠ–™‘’˜¡¢œ (chapter 6) shows that species diversity is still underestimated even when applying Šȱ ęȱ—ŽȬ›Š’—Žȱ –˜›™‘˜•˜’ŒŠ•ȱ œ™ŽŒ’Žœȱ Œ˜—ŒŽ™ȱ ǻcf. chapter 2). The P. borealis lineage has an estimated age of no less than 42 Ma, and ‘Žȱ ˜•Žœȱ ›Ž™˜›Žȱ •’—ŽŠŽȱ œ™•’Ĵȱ’—ȱ ˜ŒŒž››Žȱ Šȱ •ŽŠœȱ ŘŘȱ Šȱ Š˜ǰȱ making it the oldest known cryptic diatom species complex known to date. Estimated lineage divergence times for the marine diatom œŽž˜Ȭ—’ĵȱœŒ‘’Šȱ™ž—Ž—œ were 0.5-0.9 Ma (Casteleyn et al., 2010) and the age of the Ž••Š™‘˜›Šȱ™ž™ž•ŠȬ‹ŠŒ’••ž– complex is at least 12 Ma (Evans et al., 2008). The high species diversity encountered calls for studies into diatom speciation. It is currently not well known what the contribution of various historical and ecological processes is for ’Š˜–ȱ ’ŸŽ›œ’ęȱŒŠ’˜—ǰȱ ‘’•Žȱ Š•œ˜ȱ ˜‘Ž›ȱ ŠŒ˜›œȱ –’‘ȱ ™•Š¢ȱ Šȱ ›˜•Žǯȱ —ȱ‹’›œȱ˜›ȱ’—œŠ—ŒŽǰȱ–˜›Žȱ’ŸŽ›œŽȱ‹’›ȱŠ–’•’Žœȱ‘ŠȱŠȱœ’—’ęȱŒŠ—•¢ȱ higher synonymous mutation rates compared to the less diverse families based on phylogenetic analyses, indicating that there could ‹ŽȱŠȱŒŠžœŠ•ȱ•’—”ȱ‹Ž ŽŽ—ȱ–žŠ’˜—ȱ›ŠŽœȱŠ—ȱ—Žȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱǻi.e. speciation minus extinction) (Lanfear et al.ǰȱŘŖŗŖǼǯȱ—Žȱ›ŽŒŽ—ȱœž¢ȱ on polyploidy speciation in a marine planktonic diatom highlighted the potential importance of polyploidization (Koester et al., 2010), known to be involved in 15% of plant speciation and 31% of fern speciation events (Wood et al., 2009). The high percentage of diatom species endemic to (parts of) the (sub-)Antarctic suggests that there is ample opportunity for allopatric speciation in the region (chapters 2 and 6). Molecular phylogenies are not only useful for (cryptic) species delimitation but ŒŠ—ǰȱ ‘Ž—ȱœžĜȱȱŒ’Ž—•¢ȱ›Žœ˜•ŸŽȱŠ—ȱ’–ŽȬŒŠ•’‹›ŠŽȱžœ’—ȱ˜œœ’•ȱŠŠǰȱ ™›˜Ÿ’ŽȱŠ—ȱ’ŽŠȱ˜ȱ‘Žȱ›ŽšžŽ—Œ¢ǰȱ’–’—ȱŠ—ȱ˜›Ž›ȱ˜ȱ•’—ŽŠŽȱœ™•’Ĵȱ’—ǯȱ When combined with data on ecological niches and geographical distributions, they allow to reconstruct the evolutionary history of taxa and thus get an idea of the driving (historical and ecological) forces behind lineage splits (see Žǯǯ Darling et al., 2007; Verbruggen et al., 2009; Casteleyn et al., 2010). Darling et al. (2007), for instance, reconstructed the evolutionary history of the polar planktonic foraminifera species complex Ž˜•˜‹˜šžŠ›’—Šȱ™ŠŒ‘¢Ž›–Š sinistral using time-calibrated molecular phylogenies and geographic

230 General discussion ’œ›’‹ž’˜—œȱ ˜ȱ ‘Žȱ ’ěȱŽ›Ž—ȱ •’—ŽŠŽœǯȱ ‘’œȱ œ‘˜ Žȱ Šȱ œŽ™ ’œŽȱ ™›˜›Žœœ’˜—ȱ˜ȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱœŠ›’—ȱ ’‘ȱ‘ŽȱŠ••˜™Š›’Œȱ’œ˜•Š’˜—ȱ˜ȱ Atlantic Arctic and Antarctic populations 1.5 - 1.8 Ma ago. Further ’ŸŽ›œ’ęȱŒŠ’˜—ȱ’—ȱ‘Žȱ˜ž‘Ž›—ȱ Ž–’œ™‘Ž›Žǰȱ’—Œ•ž’—ȱ‘ŽȱŽŸ˜•ž’˜—ȱ of an extreme polar lineage capable of living in the sea ice and a currently isolated lineage in the Benguela upwelling system, could be linked to glacial-interglacial climate dynamics. Together with other such studies, a rather complete picture is emerging on the biogeography of planktonic foraminifers (reviewed in Darling & Wade, 2008). While it is clear that we are still far from achieving such a goal for freshwater or terrestrial diatoms in general and more œ™ŽŒ’ęȱŒŠ••¢ȱ ’—ȱ ‘Žȱ ǻœž‹ȬǼ—Š›Œ’Œǰȱ œ˜–Žȱ ’–™˜›Š—ȱ ™›˜›Žœœȱ ‘Šœȱ been made towards achieving this goal with this PhD-thesis. These are (1) the reconstruction of a time-calibrated molecular phylogeny of the globally important diatom genus Pinnularia, allowing to date lineage splits for any sampled taxon in this genus (chapter 4 and chapter 5), (2) the construction of a molecular phylogeny for the globally distributed diatom Pinnularia borealis (chapter 6) showing the presence of a number of distinct lineages including a continental Antarctic lineage with an estimated split from a northern temperate lineage 7.7 Ma ago, remarkably similar to divergence times of Antarctic lineages of some other organism groups (Stevens et al., 2006; Mortimer et al., 2011), and (3) an assessment of temperature preferences of these lineages showing that Antarctic P. borealis has a preference for relatively low temperatures but not to an extreme extent, similar to the Antarctic lineage of ǯȱ Š–™‘’˜¡¢œ (chapter 6Ǽǯȱž›‘Ž›ȱŽěȱ˜›œȱœ‘˜ž•ȱ‹Žȱ’›ŽŒŽȱŠȱ•’—ŽŠŽȱ’œŒ˜ŸŽ›¢ȱ’—ȱ˜‘Ž›ȱ geographic areas (especially in the (sub-)Antarctic), at the same time assessing the geographic distribution of these lineages, and further niche characterization. Together, this will allow a reconstruction of the evolutionary history of P. borealis and potentially other Pinnularia lineages in the Southern Hemisphere, including a view ˜—ȱ‘Žȱ›’Ÿ’—ȱ˜›ŒŽœȱ‹Ž‘’—ȱ›Žœ‘ ŠŽ›ȱ’Š˜–ȱ’ŸŽ›œ’ęȱŒŠ’˜—ǯ

9.3 Stress tolerance and consequences for dispersal and biogeography ˜ȱŽěȱŽŒ’ŸŽ•¢ȱ’œ™Ž›œŽȱŠ—ȱŒ˜•˜—’£ŽȱŠȱ—Ž ȱ™ŠŒ‘ǰȱ™›˜™Šž•Žœȱ‘ŠŸŽȱ to survive the transport. The survival probability of dispersal depends on the tolerance levels of the species and individual cells

General discussion 231 for the adverse conditions encountered during transport. This critical point in dispersal is not easy to quantify. First, the conditions ž›’—ȱ›Š—œ™˜›ȱĚȱžŒžŠŽȱ’—ȱ’–ŽȱŠ—ȱœ™ŠŒŽȱŠ—ȱŠ›ŽȱŽŽ›–’—Žȱ‹¢ȱ several factors (Isard & Gage, 2001). For example, desiccation rates during external transport by birds or by wind will depend on the relative humidity and temperature of the air, the wind rate and solar incidence, next to the presence of mud around the cells and the presence of protecting grooves in the feet epidermis of ducks. It is therefore not easy to set up experimental conditions that cover the range of possible conditions, while at the same time covering a whole range of taxa. Second, to quantify propagule viability in natural transport conditions, knowledge on starting densities are —ŽŽŽȱ Š—ǰȱ Šœȱ œŠŽȱ ŽŠ›•’Ž›ǰȱ Ÿ’Š‹’•’¢ȱ ’••ȱ ŸŠ›¢ȱ ž—Ž›ȱ ’ěȱŽ›Ž—ȱ —Šž›Š•ȱ Œ˜—’’˜—œǯȱ ‘’›ǰȱ ‹ŽŒŠžœŽȱ ‘Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ ŸŠ›’Š’˜—œȱ ’—ȱ viabilities are equally important as the viability level itself, it is important to assess the tolerance of as many species as possible. In our experiments (chapters 7 and 8), we decided to put more weight on the number of taxa instead of the number of conditions, mainly ‹ŽŒŠžœŽȱ ’ȱ ’œȱ ŸŽ›¢ȱ ’ĜȱȱŒž•ȱ ˜ȱ Œ˜ŸŽ›ȱ ‘Žȱ ‘˜•Žȱ ›Š—Žȱ ˜ȱ ™˜Ž—’Š•ȱ Œ˜—’’˜—œȱ ‘’•Žȱ’—Ž›œ™ŽŒ’ęȱŒȱŠ—ȱ’—›Šœ™ŽŒ’ęȱŒȱŸŠ›’Š’˜—œȱ ’••ȱœ’••ȱ‹Žȱ detected using a low number of stress conditions, and because our ™›’—Œ’™Š•ȱŠ’–ȱ Šœȱ˜ȱ›Ž›’ŽŸŽȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱ˜•Ž›Š—ŒŽȱ•ŽŸŽ•ȱ‹Ž ŽŽ—ȱ terrestrial and aquatic species. Two main results came out of our stress tolerance experiments on lacustrine and terrestrial diatoms. First, vegetative cells are very sensitive for desiccation and extreme temperatures (chapter 7). Second, also resting stages are very sensitive to these stresses, except the resting stages of typical terrestrial diatoms which can survive short-term (5 minutes) desiccation, albeit generally with low survival percentages (chapter 8). This has important consequences for diatom dispersal rates, and consequently also for population structures, speciation and geographical distributions. First, freshwater diatoms inhabit aquatic “islands” in an “ocean of inhospitable land”, and dispersal among such “islands” might not be very common given the general low desiccation tolerance of both vegetative and resting diatom cells and the resulting extremely low probabilities of transport of viable cells by air. Even if the conditions encountered ž›’—ȱ —Šž›Š•ȱ ›Š—œ™˜›ȱ ’ěȱŽ›ȱ œ˜–Ž ‘Šȱ ›˜–ȱ ‘Žȱ Ž¡™Ž›’–Ž—Š•ȱ conditions we used (chapters 7 and 8), desiccation is known to be a key factor during both wind and bird transport (Schlichting, 1960; Ehresmann & Hatch, 1975; Kristiansen, 1996; Figuerola & Green,

232 General discussion 2002). The absence of resistant dispersal stages in aquatic diatoms is in agreement with the single microsatellite study on freshwater diatoms (and even microalgae), showing that populations separated ‹¢ȱ —˜ȱ –˜›Žȱ ‘Š—ȱ œ˜–Žȱ ‘ž—›Žœȱ ˜ȱ ”’•˜–ŽŽ›œȱ ’ěȱŽ›ȱ œ›˜—•¢ȱ ’—ȱ microsatellite allele frequencies, indicative of a very low connectivity between populations (Evans et al., 2009). Current microsatellite studies on freshwater diatoms are directed at pinpointing at exactly how small the spatial scale is at which connectivity breaks down (pers. comm. P. Vanormelingen). Interestingly, marine diatom populations œ‘˜ ȱ ˜—ȱ ‘Žȱ œŠ–Žȱ œ™Š’Š•ȱ œŒŠ•Žȱ —˜ȱ ˜›ȱ –žŒ‘ȱ •˜ Ž›ȱ ’ěȱŽ›Ž—’Š’˜—ȱ (Casteleyn et al., 2009; Casteleyn et al., 2010; Godhe & Harnström, 2010), but additional studies are necessary to assess the generality of ‘’œȱ™ŠĴȱŽ›—ǯȱ˜›Ž˜ŸŽ›ǰȱ’ŸŽ—ȱ‘Žȱ’ěȱŽ›Ž—ŒŽȱ’—ȱŽœ’ŒŒŠ’˜—ȱ˜•Ž›Š—ŒŽȱ between aquatic and terrestrial diatoms it can be hypothesized that Ž››Žœ›’Š•ȱ’Š˜–ȱ™˜™ž•Š’˜—œȱœ‘˜ ȱ•Žœœȱ™˜™ž•Š’˜—ȱ’ěȱŽ›Ž—’Š’˜—ȱ than aquatic diatoms at the same spatial scale. Secondly, dessication and freezing tolerant resting stages were only present in terrestrial and not in aquatic taxa (chapter 8) œ‘˜ ’—ȱ‘Šȱ’Š˜–œȱŠ›Žȱœ™ŽŒ’ęȱŒŠ••¢ȱŠŠ™Žȱ˜ȱ‘Ž’›ȱ‘Š‹’Šǯȱ‘’œȱ ™ŠĴȱŽ›—ȱ’œȱŠ•œ˜ȱ˜ž—ȱ’—ȱ˜‘Ž›ȱŠ¡Šȱ ’‘ȱ‹˜‘ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ representatives, such as in green algae (Zoe et al., 2008). Furthermore, the tolerance of these terrestrial resting stages to desiccation will enhance their survival probabilities of dispersal by animals and ‘›˜ž‘ȱ‘ŽȱŠ’›ǰȱ’—’ŒŠ’—ȱ‘ŠȱŽ››Žœ›’Š•ȱŠ¡ŠȱŠ›Žȱ‹ŽĴȱŽ›ȱŠŠ™Žȱ˜ȱ dispersal by wind than aquatic taxa. It should be noted however that it is not clear how desiccation survival depends on the desiccation period, since cultures were only desiccated for 5 minutes, which is of course critical for determining the distances over which dispersal can take place. In any case, the tolerance of only terrestrial diatoms ˜ȱŽœ’ŒŒŠ’˜—ȱŠ›ŽŽœȱ ’‘ȱ‘Žȱęȱ—’—œȱ‘Šȱ™›Ž˜–’—Š—•¢ȱŽ››Žœ›’Š•ȱ –’Œ›˜Š•ŠŽȱ Š›Žȱ ›Ž›’ŽŸŽȱ Š•’ŸŽȱ ’—ȱ Š’›ȱ ›Š™œȱ ǻŠ—ȱ ŸŽ›ŽŽ–ǰȱ ŗşřŝDzȱ Schlichting, 1961; Brown et al.ǰȱŗşŜŚDzȱ˜¢ȬŒ˜•ŠȱǭȱŠ››Ž›ŠǰȱŗşşřǼǰȱ albeit this is most likely a combination of the higher susceptibility of terrestrial material to get suspended in the air, and the desiccation survival of terrestrial diatom resting stages. The observed higher presence of terrestrial diatoms in the air also corresponds to the observation that terrestrial diatom community similarities might decrease less over intermediate distance (within islands and up to 1,500 km) compared to the aquatic communities (chapter 3, Soininen et al.ǰȱŘŖŖŝǼǯȱ ˜ ŽŸŽ›ǰȱ‘’œȱŽ—Ž›Š•ȱ™ŠĴȱŽ›—ȱŒ˜ž•ȱ‹ŽȱŠȱ›Žœž•ȱ of the combination of three mutually non-exclusive factors: the less

General discussion 233 fragmented terrestrial habitat, the higher susceptibility of terrestrial organisms to get picked up by air currents or to disperse over land, and the adaptation of terrestrial organisms to a terrestrial life-style with its requirements of tolerance to at least desiccation. Thirdly, the desiccation tolerance of terrestrial diatom resting cells (chapter 8) emphasizes the importance of resting stages for dispersal. Resting stages are widely known to be the dominant dispersal stages in several organism groups (Hutchinson, 1967; Levins, 1969; Sutherland et al., 1979; Vleeshouwers et al., 1995; Nicholson et al.ǰȱ ŘŖŖŖDzȱ —Ž›œ˜—ǰȱ ŘŖŗŖǼȱ Š—ȱ ˜Ž—ȱ ‘ŠŸŽȱ œ™ŽŒ’ęȱŒȱ enhancing dispersal, such as wings or sticky hairs on the seeds of higher plants, a protective outer ectocarp, or the thick-walled protective ephippium enclosing the resting eggs of zooplankton. Besides for dispersal through space, resting stages are also very important as “seed bank” to overcome adverse conditions in time (Vleeshouwers et al., 1995; Figuerola et al., 2003; Poulícková et al.ǰȱŘŖŖŞDzȱ ˜—ŽœȱǭȱŽ——˜—ǰȱŘŖŗŖǼǰȱŠ—ȱ‘Ž¢ȱ‘Ž›Ž˜›Žȱž•ęȱ••ȱŠȱ”Ž¢ȱ role in the long-term persistence of populations and species (Jones & Lennon, 2010). For marine and freshwater planktonic diatom populations the importance of resting cells and spores to overcome seasonally unfavorable light, nutrient and temperature conditions is well-established (Gran, 1912; Hargraves & French, 1975, 1983; McQuoid & Hobson, 1995, 1996). Terrestrial habitats are subjected to •Š›ŽȱŠ’•¢ȱŠ—ȱœŽŠœ˜—Š•ȱĚȱžŒžŠ’˜—œȱ’—ȱŽ–™Ž›Šž›ŽȱŠ—ȱ‘ž–’’¢ȱ (Starks et al., 1981; Gao et al., 2008), and the overall higher stress tolerance of terrestrial diatom resting cells compared to vegetative cells (chapter 8) indicates that they are important for population persistence under unfavorable conditions. However, there are no data on the population dynamics of terrestrial diatoms, and it is therefore not known whether terrestrial diatom populations show a metapopulation structure with frequent extinctions and recolonizations from other populations in the metapopulation once the habitat patch becomes suitable again, or whether a local seed bank guarantees long-term population survival. The presence of resistant resting stages, however, does indicate that both a metapopulation structure with regular exchange between patches and the presence of a local seed bank are possible.

234 General discussion 9.4 Biogeographical patterns of terrestrial and aquatic diatoms In line with their higher tolerance to desiccation compared to aquatic taxa (chapter 8Ǽǰȱ ˜ž›ȱ ęȱ›œȱ ›Žœž•œȱ Œ˜–™Š›’—ȱ ‘Žȱ œ™Š’Š•ȱ ž›—˜ŸŽ›ȱ of diatom communities in aquatic and terrestrial habitats indicate that terrestrial diatom communities tend to have a lower decrease in community similarity over distances up to 1,500 km (chapter 3), Š—ȱ Šȱ œ’—’ęȱŒŠ—•¢ȱ •˜ Ž›ȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ ’‘’—ȱ ’œ˜•ŠŽȱ ’œ•Š—œȱ than aquatic communities (chapter 3). At larger spatial scales this community similarity decreases strongly in a way similar to the aquatic communities (chapter 3). We therefore hypothesize that Ž››Žœ›’Š•ȱ’Š˜–œȱŠ›Žȱ‹ŽĴȱŽ›ȱ’œ™Ž›œŽ›œȱ‘Š—ȱŠšžŠ’Œȱ’Š˜–œȱ˜ŸŽ›ȱ shorter distances due to a certain degree of desiccation tolerance (chapter 8), a higher susceptibility for wind dispersal and a less fragmented terrestrial habitat on a within-island scale, but that this ’ěȱŽ›Ž—ŒŽȱ‹Ž ŽŽ—ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ’Š˜–œȱŠŽœȱ˜ŸŽ›ȱ•˜—Ž›ȱ distances. This might be due to the fact that such long-distance dispersal is extremely rare also for terrestrial diatoms, resulting in very large community dissimilarities. However, further research ’œȱ —ŽŽŽȱ ˜—ȱ ‘’œȱ ’ěȱŽ›Ž—’Š’˜—ȱ ‹Ž ŽŽ—ȱ ŠšžŠ’Œȱ Š—ȱ Ž››Žœ›’Š•ȱ ’Š˜–ȱŒ˜––ž—’’Žœǯȱ‘’•Žȱ’ěȱŽ›Ž—ŒŽœȱ’—ȱŽ—Ÿ’›˜—–Ž—Š•ȱŒ˜—’’˜—œȱ seem similar for both types of habitats within and between the sub- Antarctic islands studied, it can’t be excluded that terrestrial habitats –’‘ȱ‹Žȱ•Žœœȱ’ěȱŽ›Ž—’ŠŽȱ’—ȱŽ—Ÿ’›˜—–Ž—Š•ȱŸŠ›’Š‹•ŽœȱŒ˜–™Š›Žȱ˜ȱ lakes, or that terrestrial diatoms have wider niches.

9.5 studying dispersal During this thesis, we gathered data indicating that diatom distributions are similar to those recorded for macroorganisms (chapter 2), that presumed cosmopolitan diatom species may not be cosmopolitan after all (chapter 6), and that both vegetative and resting cells of diatoms are very sensitive to desiccation (chapters 7 and 8). However, while the initial subject of this thesis was “dispersal” of diatoms, we did not estimate dispersal rates between natural populations. We therefore present three more or less feasible approaches to further study natural diatom dispersal, each with its strengths and weaknesses. Ideally, they are combined to provide a complete view on dispersal.

General discussion 235 1. Finding dispersing cells. By sampling and quantifying the •’Ÿ’—ȱ ’Š˜–ȱ Ěȱ˜›Šȱ ™›ŽœŽ—ȱ ’—ȱ ˜›ȱ ˜—ȱ ’œ™Ž›œŠ•ȱ ŸŽŒ˜›œȱ œžŒ‘ȱ as animals and air currents, we can further improve our knowledge on dispersed taxa and abundances. Previous knowedge has been summarized in section 1.4.2, but we still lack quantitative information on species-level. It should be stressed that directly oxidizing the transported diatom material renders it useless since it doesn’t allow to distinguish living cells from dead frustules, which are well-known to be easily taken up by air and water currents and deposited away from their origin. Therefore, culture-based methods or decent ęȱ¡Š’˜—ȱ–Ž˜œȱŠ›Žȱ—ŽŽŽǯȱ‘’•Žȱ‘’œȱ–Ž‘˜ȱŒŠ—ȱ™›˜Ÿ’ŽȱŠ—ȱ ’ŽŠȱ˜ȱ’œ™Ž›œŠ•ȱ›ŠŽœȱ‘›˜ž‘ȱ’ěȱŽ›Ž—ȱŸŽŒ˜›œȱ ‘Ž—ȱ’œ™Ž›œŠ•ȱ ’œȱŒ˜––˜—ǰȱ’ȱ’œȱ’ĜȱȱŒž•ȱ˜ȱ’–™˜œœ’‹•Žȱ˜ȱŽŽŒȱ‘Žȱ›Š›Žȱ•˜—Ȭ distance dispersal events which might be responsible for the colonization of new habitats. 2. Colonization and transplant experiments. The only way to prove (but not disprove) dispersal limitation in diatoms is a “transplant” experiment. This involves placing diatoms from one area to a geographically separated, ecologically similar, area and assess if the transplanted diatoms can establish populations in that new area, which would imply that the only factor previously preventing those diatoms from occurring in the other area was dispersal limitation. While this is ethically —˜ȱ Š• Š¢œȱ “žœ’ęȱŠ‹•Žǰȱ ‘Ž›Žȱ Š›Žȱ Š•›ŽŠ¢ȱ œ˜–Žȱ ŠŒŒ’Ž—Š•ȱ ›Š—œŽ›œȱ˜ȱ’Š˜–œȱ ‘’Œ‘ȱŒ˜ž•ȱ‘ŠŸŽȱ‹ŽŽ—ȱ‹ŽĴȱŽ›ȱœž’Žǰȱ˜›ȱ Œ˜ž•ȱ‹Žȱ‹ŽĴȱŽ›ȱ–˜—’˜›Žȱ’—ȱ‘Žȱžž›ŽȱǽœŽŽȱŽǯǯ the transfer of organisms with ballast water of oceanic ships, or the transfer ˜ȱ Œ˜––Ž›Œ’Š•ȱ –ŠŒ›˜™‘¢Žœȱ ˜›ȱ ęȱœ‘ȱ ǻ Š••Ž›ŠŽěȱȱ ǭȱ ˜•Œ‘ǰȱ 1992; Klein et al. 2010)]. In a colonization experiment, a new habitat is created and the build-up of diversity is followed. This way, it can be determined how long it takes before new communities are saturated with species, and thus how long dispersal limitation plays a role in these communities. It should be noted however that decent control communities are necessary in which dispersal limitation is prevented by Š›’ęȱŒ’Š•ȱ’—›˜žŒ’˜—œǯ 3. ž’Žœȱ ˜ȱ ™˜™ž•Š’˜—ȱ ’ěȱŽ›Ž—’Š’˜—ǯȱ ’ěȱŽ›Ž—ŒŽœȱ ‹Ž ŽŽ—ȱ populations in allele frequencies for neutral molecular markers (Žǯǯ microsatellites) can be used to infer the current level of Ž—ŽȱĚȱ˜ ȱ‹Ž ŽŽ—ȱ‘ŽœŽȱ™˜™ž•Š’˜—œǯȱ‘’œȱ’œȱ‹ŽŒŠžœŽǰȱ ‘Ž—ȱŠ—ȱ

236 General discussion Žšž’•’‹›’ž–ȱ‹Ž ŽŽ—ȱ›’ȱŠ—ȱŽ—ŽȱĚȱ˜ ȱ’œȱ›ŽŠŒ‘Žǰȱ‘Žȱ•ŽŸŽ•ȱ˜ȱ ’ěȱŽ›Ž—’Š’˜—ȱ‹Ž ŽŽ—ȱ™˜™ž•Š’˜—œȱ’œȱ’›ŽŒ•¢ȱŽ™Ž—Ž—ȱ˜—ȱ ‘Žȱ—ž–‹Ž›ȱ˜ȱŽěȱŽŒ’ŸŽȱ–’›Š’—ȱ’—’Ÿ’žŠ•œȱ‹Ž ŽŽ—ȱ‘˜œŽȱ ™˜™ž•Š’˜—œȱǻ ›’Ĝȱȱ‘œȱet al., 1996). For such interpretations to be made, it is absolutely necessary that neutral markers are used and that these are not linked to genes under selection (which would be the case when more than one, cryptic, species is included in the study). In such a case, natural selection (species sorting) will contribute to the observed “population” ’ěȱŽ›Ž—’Š’˜—ȱŠ—ȱ—˜ȱ’—Ž›Ž—ŒŽȱŒŠ—ȱ‹Žȱ–ŠŽȱŠ‹˜žȱ’œ™Ž›œŠ•ȱ ›ŠŽœǯȱ—Žȱ˜‘Ž›ȱ™˜Ž—’Š•ȱŽ¡™•Š—Š’˜—ȱ˜›ȱ˜‹œŽ›ŸŽȱ™˜™ž•Š’˜—ȱ ’ěȱŽ›Ž—’Š’˜—ȱ ˜›ȱ —Žž›Š•ȱ –Š›”Ž›œȱ Š›Žȱ ™Ž›œ’œŽ—ȱ ˜ž—Ž›ȱ ŽěȱŽŒœȱǻ‘ŽȱŽšž’•’‹›’ž–ȱ‹Ž ŽŽ—ȱ›’ȱŠ—ȱŽ—ŽȱĚȱ˜ ȱ’œȱ—˜ȱ¢Žȱ reached), which may be quite common in various freshwater organisms (see De Meester et al., 2002). However, when one ’œȱ œžĜȱȱŒ’Ž—•¢ȱ Š Š›Žȱ ˜ȱ ‘Žȱ ™˜Ž—’Š•ȱ Œ˜–™•’ŒŠ’˜—œǰȱ ‘’œȱ ’œȱ Šȱ highly valuable method to get an idea of the actual dispersal rates and dispersal scales of diatoms.

9.6 Final thoughts ȱ ‘’•Žȱ Ž—˜ž‘ȱ ŠŠȱ Š›Žȱ ŠŸŠ’•Š‹•Žȱ —˜ ȱ ˜ȱ Œ˜—ęȱ›–ȱ ‘Šȱ ’Š˜–ȱ biogeographies are shaped by both species sorting and historical factors, many questions remain. First of all, as stated by Green & Bohannan (2006) we can shift from the question “is microbial ‹’˜Ž˜›Š™‘¢ȱž—Š–Ž—Š••¢ȱ’ěȱŽ›Ž—•¢ȱ›Žž•ŠŽȱ‘Š—ȱ‘˜œŽȱ›˜–ȱ macroorganisms”, towards the question “on which spatial scale and using which taxonomical resolution microbial biogeography Š™™›˜ŠŒ‘Žœȱ ‘’œȱ ˜ȱ –ŠŒ›˜˜›Š—’œ–œȄǯȱ žŠ—’ęȱŒŠ’˜—ȱ ˜ȱ œ™Š’Š•ȱ turnover will thus be important in the future, and this also applies for diatom research. Local abundances of (living) terrestrial diatoms and seasonal dynamics of population density are unknown. Dispersal rates and scales, and speciation rates and mechanisms are all needed to infer the threshold levels at which speciation will occur between populations. Microsatellite studies and the frequencies ˜ȱ —Žž›Š•ȱ ŸŠ›’Š’˜—ȱ ‹Ž ŽŽ—ȱ ™˜™ž•Š’˜—œȱ ˜ěȱŽ›ȱ ęȱ›œȱ Žœ’–ŠŽœȱ ˜ȱ ŽěȱŽŒ’ŸŽȱ’œ™Ž›œŠ•ȱ›ŠŽœȱ‹Ž ŽŽ—ȱ™˜™ž•Š’˜—œȱŠ—ȱ‘ŽȱœŒŠ•ŽȱŠȱ ‘’Œ‘ȱ dispersal occurs, provided that a correct single genetic lineage is used (i.e. a single species) and that distinctions are made within species Œ˜–™•Ž¡Žœȱ ǽœŽŽȱ ˜›ȱ Ž¡Š–™•Žȱ ‘Žȱ ™›˜‹•Ž–œȱ ›Ž•ŠŽȱ ’‘ȱ ’¢•ž–ȱ ‹›’‘ Ž••’’ (Rynearson et al., 2009)]. While only a single microsatellite

General discussion 237 œž¢ȱ’œȱŠŸŠ’•Š‹•Žȱ˜›ȱŠȱ›Žœ‘ ŠŽ›ȱ’Š˜–ȱǽŽ••Š™‘˜›ŠȱŒŠ™’ŠŠ (Evans et al., 2009)] and a second and third are under way (pers. comm. P. Vanormelingen), terrestrial diatoms remain unexplored. Compared to aquatic diatoms, much less is known about the ecology of terrestrial diatoms, but their life style and population dynamics are as much intriguing. Several questions concerning terrestrial diatoms have been put forward in the previous sections. ˜™ž•Š’˜—Ȭ•ŽŸŽ•ȱœž’ŽœȱŠ›Žȱ—ŽŽŽȱ˜ȱ‹ŽĴȱŽ›ȱž—Ž›œŠ—ȱ‘Žȱ—ŽŽœȱ of terrestrial diatoms to overcome adverse conditions and the mechanisms they use, besides the importance of resting stages. Despite the fact that terrestrial diatoms have been thriving under our feet since we evolved, they are in many perspectives still a closed book.

238 General discussion References

Abbott, R.J., Smith, L.C., Milne, R.I., Crawford, R.M.M., Wolff, K. & Balfour, J. (2000) MAbbott, R.J., Smith, L.C., Milne, R.I., Crawford, R.M.M., Wolff, K. & Balfour, J. (2000) Molecular analysis of plant migration and refugia in the Arctic. Science, 289, 1343-1346 Abbott, R.J. & Brochmann, C. (2003) History and evolution of the Arctic ÀRUDLQWKHIRRWVWHSVRI(ULF+XOWHQ0ROHFXODU(FRORJ\, 12, 299-313 Admiraal, W., Peletier, H. & Brouwer, T. (1984) The seasonal succession SDWWHUQVRIGLDWRPVSHFLHVRQDQLQWHUWLGDOPXGÀDWDQH[SHULPHQWDODQDO\VLV Oikos, 42, 30-40 Allegrucci, G., Carchini, G., Todisco, V., Convey, P. & Sbordoni, V. (2006) A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biology, 29, 320-326 $OYH( *ROGVWHLQ67  'LVSHUVDOVXUYLYDODQGGHOD\HGJURZWKRI benthic foraminiferal propagules. Journal of Sea Research, 63, 36-51 $OYHUVRQ$-&DQQRQH--*XWHOO55 7KHULRW(&  7KH evolution of elongate shape in diatoms. Journal of Phycology, 42, 655-668 Alverson, A.J. (2008) Molecular systematics and the diatom species. Protist, 159, 339-353 Anderson, O.R. (1975) Ultrastructure and cytochemistry of resting cell formation in Amphora coffaeformis (Bacillariophyceae). Journal of Phycology, 11, 272-281 Anderson, O.R. (2010) Field and laboratory studies of encysted and trophic stages of naked amoebae, including a perspective on population life cycle dynamics. Acta Protozoologica, 49, 1-8 Arrhenius, O. (1921) Species and area. -RXUQDORI(FRORJ\, 9, 95-99 $WNLQVRQ.0  )XUWKHUH[SHULPHQWVLQGLVSHUVDORISK\WRSODQNWRQE\ birds. Wildfowl, 22, 98-99 $WNLQVRQ.0  ([SHULPHQWVLQGLVSHUVDORISK\WRSODQNWRQE\GXFNV British Phycological Journal, 15, 49-58 Atkinson, K.M. (1988) The initial development of net phytoplankton in Con *UHHQ5HVHUYRLU 8SSHU7HHVGDOH DQHZLPSRXPHQWLQ1RWKHUQ(QJODQGAlgae and the aquatic environment HGE\)(5RXQG SS%LRSUHVV%ULVWRO Avise, J.C. (2000) 3K\ORJHRJUDSK\WKHKLVWRU\DQGIRUPDWLRQRIVSHFLHV. Harvard University Press, Cambridge. $\ORU'(  $IUDPHZRUNIRUH[DPLQLQJLQWHUUHJLRQDODHULDOWUDQVSRUW of fungal spores. Agricultural and Forest Meteorology, 38, 263-288 $]RYVN\$,  6L]HGHSHQGHQWVSHFLHVDUHDUHODWLRQVKLSVLQEHQWKRV is the world more diverse for microbes? (FRJUDSK\, 25, 273-282 Baas-Becking, L.G.M. (1934) Geobiologie of inleiding tot de miliekunde. 9DQ6WRFNNXP =RRQ'HQ+DDJ

References 241 %DNHU3' %HOOLIHPLQH'  (QYLURQPHQWDOLQÀXHQFHVRQ akinete germination of Anabaena circinalis and implications for management of cyanobacterial blooms. Hydrobiologia, 427, 65-73 %DUNHU3) 7KRPDV(  2ULJLQVLJQDWXUHDQGSDODHRFOLPDWLF LQÀXHQFHRIWKH$QWDUFWLF&LUFXPSRODU&XUUHQW(DUWK6FLHQFH5HYLHZV, 66, 143- 162 %DUQHV'.$+RGJVRQ'$&RQYH\3$OOHQ&6 &ODUNH$   ,QFXUVLRQDQGH[FXUVLRQRI$QWDUFWLFELRWDSDVWSUHVHQWDQGIXWXUHGlobal (FRORJ\DQG%LRJHRJUDSK\, 15, 121-142 Bayley, M., Petersen, S.O., Knigge, T., Kohler, H.R. & Holmstrup, M. (2001) 'URXJKWDFFOLPDWLRQFRQIHUVFROGWROHUDQFHLQWKHVRLOFROOHPERODQFolsomia candida. Journal of Physiology, 47, 1197-1204 %HKQNH$)ULHGO7&KHSXUQRY9$ 0DQQ'*  5HSURGXFWLYH FRPSDWLELOLW\DQGU'1$VHTXHQFHDQDO\VHVLQWKHSellaphora pupula species FRPSOH[ %DFLOODULRSK\WD Journal of Phycology, 40, 193-208 %HLMHULQFN0:  'HLQIXVLHVHQGHRQWGHNNLQJGHUEDNWHULsQ Jaarboek van de Koninklijke Akademie van Wetenschappen. Müller, Amsterdam. %HQ$OL$'H%DHUH59DQ'HU$XZHUD*'H:DFKWHU5 9DQ'H Peer, Y. (2001) Phylogenetic relationships among algae based on complete large- subunit rRNA sequences. ,QWHUQDWLRQDO-RXUQDORI6\VWHPDWLFDQG(YROXWLRQDU\ Microbiology, 51, 737-749 Berney, C. & Pawlowski, J. (2006) A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proceedings of the Royal Society B-Biological Sciences, 273, 1867-1872 Beszteri, B., John, U. & Medlin, L.K. (2007) An assessment of cryptic genetic diversity within the Cyclotella meneghinianaVSHFLHVFRPSOH[ %DFLOODULRSK\WD EDVHGRQQXFOHDUDQGSODVWLGJHQHVDQGDPSOL¿HGIUDJPHQW length polymorphisms. (XURSHDQ-RXUQDORI3K\FRORJ\, 42, 47-60 %LHUNHQV-9DQ'H3HUUH: 0DHV-  (IIHFWRIGLIIHUHQW environmental variables on the synthesis of Hsp70 in Raphidocelis subcapitata. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology, 120, 29-34 %LWWQHU/3D\UL&(&RXORX[$&UXDXG&'H5HYLHUV% 5RXVVHDX )  0ROHFXODUSK\ORJHQ\RIWKH'LFW\RWDOHVDQGWKHLUSRVLWLRQZLWKLQWKH 3KDHRSK\FHDHEDVHGRQQXFOHDUSODVWLGDQGPLWRFKRQGULDO'1$VHTXHQFHGDWD 0ROHFXODU3K\ORJHQHWLFVDQG(YROXWLRQ, 49, 211-226 %OHLGRUQ&+LOO1(UVHXV& 7LHGHPDQQ5  2QWKHUROH RIFKDUDFWHUORVVLQ2UELQLLGSK\ORJHQ\ $QQHOLGD 0ROHFXOHVvs. morphology. 0ROHFXODU3K\ORJHQHWLFVDQG(YROXWLRQ, 52, 57-69 %ORFN:6PLWK5,/ .HQQHG\$'  6WUDWHJLHVRIVXUYLYDODQG UHVRXUFHH[SORLWDWLRQLQWKH$QWDUFWLFIHOO¿HOGHFRV\VWHPBiological Reviews, 84, 449-484 Boenigk, J., Pfandl, K., Garstecki, T., Harms, H., Novarino, G. & Chatzinotas, $  (YLGHQFHIRUJHRJUDSKLFLVRODWLRQDQGVLJQVRIHQGHPLVPZLWKLQD protistan morphospecies. $SSOLHGDQG(QYLURQPHQWDO0LFURELRORJ\, 72, 5159-5164 %RHQLJN--RVW66WRHFN7 *DUVWHFNL7  'LIIHUHQWLDOWKHUPDO adaptation of clonal strains of a protist morphospecies originating from different climatic zones. (QYLURQPHQWDO0LFURELRORJ\, 9, 593-602 %RQQHW( 9DQ'H3HHU<  ]WDVRIWZDUHWRROIRUVLPSOHDQG partial Mantel tests. Journal of Statistical Software, 7, 1-12

242 References Boo, S.M., Kim, H.S., Shin, W., Boo, G.H., Cho, S.M., Jo, B.Y., Kim, J.H.,

References 243 Bruder, K. & Medlin, L.K. (2008) Morphological and molecular investigations of naviculoid diatoms. II. Selected genera and families. 'LDWRP5HVHDUFK, 23, 283- 329 Bruder, K., Sato, S. & Medlin, L.K. (2008) Morphological and molecular investigations of naviculoid diatoms IV. Pinnularia vs. Caloneis. 'LDWRP, 24, 8-24 Brzezinski, M.A., Olson, R.J. & Chisholm, S.W. (1990) Silicon availablility and cell-cycle progression in marine diatoms. 0DULQH(FRORJ\3URJUHVV6HULHV, 67, 83-96 %XNKWL\DURYD/ 5RXQG)(  5HYLVLRQRIWKHJHQXVAchnanthes s.l.DQHZJHQXVEDVHGRQA. marginulatum. 'LDWRP5HVHDUFK, 11, 1-30 %XQW-62ZHQV29+ +RFK*  ([SORUDWRU\VWXGLHVRQ physiology and ecology of a psychrophilic marine diatom. Journal of Phycology, 2, 96-& %XVKQHOO-+ 5DR.6  'RUPDQWRUTXLHVFHQWVWDJHVDQG structures among (FWRSURFWD. Physical and chemical factors affecting viability and germination of statoblasts. Transactions of the American Microscopical Society, 93, 524-543 %XWWHUZLFN&+HDQH\6, 7DOOLQJ-)  'LYHUVLW\LQWKHLQÀXHQFH of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology, 50, 291-300 &DVWHOH\Q*(YDQV.0%DFNHOMDX7'¶+RQGW6&KHSXUQRY9 Sabbe, K. & Vyverman, W. (2009) Lack of population genetic structuring in the marine planktonic diatom Pseudo-nitzschia pungens (Bacillariophyceae) in a heterogeneous area in the Southern Bight of the North Sea. Marine Biology, 156, 1149-1158 &DVWHOH\Q*/HOLDHUW)%DFNHOMDX7'HEHHU$(.RWDNL<5KRGHV //XQGKROP16DEEH. 9\YHUPDQ:  /LPLWVWRJHQHÀRZLQD cosmopolitan marine planktonic diatom. Proceedings of the National Academy of Sciences of the United States of America, 107, 12952-12957 &KDFRQ%DFD(%HUDOGL&DPSHVL+&HYDOORV)HUUL]656.QROO$+  *ROXELF6  0DQRQPDULQHGLDWRPVIURPQRUWKHUQ0H[LFRGeology, 30, 279-281 Chalmers, M.O., Harper, M.A. & Marshall, W.A. (1996) An illustrated catalogue of airborne microbiota from the Maritime Antarctic. British Antarctic Survey, Cambridge. Chambers, P.M. (1966) Late Cretaceous and Palaeocene marine diatom ÀRUDV,QS8QLYHUVLW\&ROOHJH/RQGRQ/RQGRQ Charalambidou, I. & Santamaria, L. (2002) Waterbirds as endozoochorous GLVSHUVHUVRIDTXDWLFRUJDQLVPVDUHYLHZRIH[SHULPHQWDOHYLGHQFHActa 2HFRORJLFD,QWHUQDWLRQDO-RXUQDORI(FRORJ\, 23, 165-176 Chen, G.F., Wang, G.C., Zhang, B.Y. & Fan, X.L. (2007) Morphological and phylogenetic analysis of Skeletonema costatum-like diatoms (Bacillariophyta) from the China Sea. (XURSHDQ-RXUQDORI3K\FRORJ\, 42, 163-175 &KHSLO:6  ,QÀXHQFHVRIPRLVWXUHRQHURGLELOLW\RIVRLOE\ZLQG Soil Science Society of America Proceedings, 20, 288-292 &KHSXUQRY9$0DQQ'*6DEEH. 9\YHUPDQ:   ([SHULPHQWDOVWXGLHVDQVH[XDOUHSURGXFWLRQLQGLDWRPVInternational Review of Cytology - a Survey of Cell Biology, Vol. 237SS(OVHYLHU$FDGHPLF3UHVV ,QF6DQ'LHJR

244 References Cho, J.C. & Tiedje, J.M. (2000) Biogeography and degree of endemicity of ÀXRUHVFHQWPseudomonas strains in soil. $SSOLHGDQG(QYLURQPHQWDO0LFURELRORJ\, 66, 5448-5456 &KRZQ6/*UHPPHQ1-0 *DVWRQ.-  (FRORJLFDO ELRJHRJUDSK\RIVRXWKHUQRFHDQLVODQGV6SHFLHVDUHDUHODWLRQVKLSVKXPDQ impacts, and conservation. American Naturalist, 152, 562-575 Chown, S.L. & Convey, P. (2007) Spatial and temporal variability across OLIH¶VKLHUDUFKLHVLQWKHWHUUHVWULDO$QWDUFWLFPhilosophical Transactions of the Royal Society B-Biological Sciences, 362, 2307-2331 Cleve, P.T. (1894) Synopsis of the naviculoid diatoms. Part I. Kongliga Svenska Vetenskapsakademiens Handlingar, 26, 1-194 Cleve, P.T. (1895) Synopsis of the naviculoid diatoms. Part 2. Kongliga Svenska Vetenskapsakademiens Handlingar, 27, 1-219 &OHYH(XOHU$  'LH'LDWRPHHQYRQ6FKZHGHQXQG)LQQODQG Kungl. Svenska Vetenskaps Akad. Handl., 1-153 Cofey, B.T. & Miller, S.T. (1988) Hydrodictyon reticulatum (L.) Lagerheim &KORURSK\WD DQHZJHQXVUHFRUGHGIURP1HZ=HDODQGNew Zealand Journal of Botany, 26 &RQGLW53LWPDQ1/HLJK(*&KDYH-7HUERUJK-)RVWHU5% 1XQH]3$JXLODU69DOHQFLD59LOOD*0XOOHU/DQGDX+&/RVRV(  Hubbell, S.P. (2002) Beta-diversity in tropical forest trees. Science, 295, 666-669 &RQVDOYH\03HUNLQV5*3DWHUVRQ'0 8QGHUZRRG*-&   3DPÀXRUHVFHQFH$EHJLQQHUVJXLGHIRUEHQWKLFGLDWRPLVWV'LDWRP5HVHDUFK, 20, 1-22 Convey, P. & Stevens, M.I. (2007) Antarctic biodiversity. Science, 317, 1877-1878 &RQYH\3*LEVRQ-$(+LOOHQEUDQG&'+RGJVRQ'$3XJK3-$ Smellie, J.L. & Stevens, M.I. (2008) Antarctic terrestrial life - challenging the history of the frozen continent? Biological Reviews, 83, 103-117 Cook, O.F. (1906) Factors of species-formation. Science, 23, 506-507 &RRN2)  (YROXWLRQZLWKRXWLVRODWLRQAmerican Naturalist, 42, 727-731 Cottenie, K. (2005) Integrating environmental and spatial processes in ecological community dynamics. (FRORJ\/HWWHUV, 8, 1175-1182 &R[(-  7KHXVHRIFKORURSODVWVDQGRWKHUIHDWXUHVRIWKHOLYLQJ FHOOLQWKHWD[RQRP\RIQDYLFXORLGGLDWRPVProceedings of the 6th International Symposium on recent and fossil diatoms, Budapest, 1980, pp. 115-133. &R[(- 5RVV5  7KHVWULDHRISHQQDWHGLDWRPVProceedings of the 6th International Symposium on recent and fossil diatoms, Budapest, 1980 pp. 267-278. &R[(-  9DULDWLRQZLWKLQWKHJHQXVPinnularia(KUHQEIXUWKHU evidence for the use of live material in diatom systematics? Proceedings of the 9th ,QWHUQDWLRQDO'LDWRP6\PSRVLXP%ULVWRO, pp. 437-447. &R[(-  9DULDWLRQLQSDWWHUQVRIYDOYHPRUSKRJHQHVLVEHWZHHQ UHSUHVHQWDWLYHVRIVL[ELUDSKLGGLDWRPJHQHUD %DFLOODULRSK\FHDH Journal of Phycology, 35, 1297-1312 &R[(- :LOOLDPV'0  6\VWHPDWLFVRIQDYLFXORLGGLDWRPVWKH LQWHUUHODWLRQVKLSVRIVRPHWD[DZLWKDVWDXURV(XURSHDQ-RXUQDORI3K\FRORJ\, 35, 273-282

References 245 &R[(-  :KDWFRQVWLWXWHVDVWDXURV"$PRUSKRJHQHWLFSHUVSHFWLYH Festschrift für H. Lange-Bertalot. (ed. by R. Jahn, A. Witkowski and P. Compère), pp. 303-316. &R[(-  'LDWRPV±WKHHYROXWLRQRIPRUSKRJHQHWLFFRPSOH[LW\LQ single-celled plants. 'HYHORSPHQWDOJHQHWLFVDQGSODQWHYROXWLRQ (ed. by Q.C.B. Cronk, R.M. Bateman and J.A. Hawkins), pp. 459-492. Taylor & Francis, London. &R[(- 5HLG*  *HQHULFUHODWLRQVKLSVZLWKLQWKH1DYLFXOLQHDH ±DSUHOLPLQDU\FODGLVWLFDQDO\VLV3URFHHGLQJVRIWKHWK,QWHUQDWLRQDO'LDWRP Symposium., pp. 49-62. Biopress Ltd, Bristol. &R[(- :LOOLDPV'0  6\VWHPDWLFVRIQDYLFXORLGGLDWRPV %DFLOODULRSK\WD DSUHOLPLQDU\DQDO\VLVRISURWRSODVWDQGIUXVWXOHFKDUDFWHUVIRU IDPLO\DQGRUGHUOHYHOFODVVL¿FDWLRQSystematics and Biodiversity, 4, 385-399 &R[(-  0RUSKRJHQHWLFLQIRUPDWLRQDQGWKHVHOHFWLRQRIWD[RQRPLF characters for raphid diatom systematic. 3ODQW(FRORJ\DQG(YROXWLRQ, 143, 271- 277 Coyne, J.A. (1992) Genetics and speciation. Nature, 355, 511-515 Coyne, J.A. & Orr, R.J.S. (2004) Speciation. Sinauer Associates, Sunderlands. &XQQLQJKDP&:2PODQG.( 2DNOH\7+  5HFRQVWUXFWLQJ DQFHVWUDOFKDUDFWHUVWDWHVDFULWLFDOUHDSSUDLVDO7UHQGVLQ(FRORJ\ (YROXWLRQ, 13, 361-366 &XUULH'& $GOHU3+  *OREDOGLYHUVLW\RIEODFNÀLHV 'LSWHUD Simuliidae) in freshwater. Hydrobiologia, 595, 469-475 'DUOLQJ.).XFHUD0 :DGH&0  *OREDOPROHFXODU phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist. Proceedings of the National Academy of Sciences of the United States of America, 104, 5002-5007 'DUOLQJ.) :DGH&$  7KHJHQHWLFGLYHUVLW\RISODQNWLF foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology, 67, 216-238 'DUZLQ&  The voyage of the Beagle. Chpater I. St. Jago - Cape de Verde Islands. John Murray, London. 'DXJEMHUJ1 $QGHUVHQ5$  $PROHFXODUSK\ORJHQ\RIWKH heterokont algae based on analyses of chloroplast-encoded rbcL sequence data. Journal of Phycology, 33, 1031-1041 'DYH\0&  7KHVHDVRQDOSHULRGLFLW\RIDOJDHRQ$QWDUFWLFIHOO¿HOG soils. +RODUFWLF(FRORJ\, 14, 112-120 GH&DQGROOH$3  (VVDLpOpPHQWDLUHGHJpRJUDSKLHERWDQLTXH 'LFWLRQQDLUHGHVVFLHQFHVQDWXUHOOHV. Flevrault, Strasbourg. de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879-886 de Vargas, C., Norris, R., Zaninetti, L., Gibb, S.W. & Pawlowski, J. (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences of the United States of America, 96, 2864-2868 'H:HYHU$/HOLDHUW)9HUOH\HQ(9DQRUPHOLQJHQ39DQGHU *XFKW.+RGJVRQ'$6DEEH. 9\YHUPDQ:  +LGGHQOHYHOVRI SK\ORGLYHUVLW\LQ$QWDUFWLFJUHHQDOJDHIXUWKHUHYLGHQFHIRUWKHH[LVWHQFHRIJODFLDO refugia. Proceedings of the Royal Society B-Biological Sciences, 276, 3591-3599

246 References 'HQN7 *ULPP*:  7KHELRJHRJUDSKLFKLVWRU\RIEHHFKWUHHV Review of Palaeobotany and Palynology, 158, 83-100 'HVLNDFKDU\79 6UHHODWKD30  Oamaru diatoms. J. Cramer, Stuttgart. 'RGGV:.*XGGHU'$ 0ROOHQKDXHU'  7KHHFRORJ\RINostoc. Journal of Phycology, 31, 2-18 'RQJ<: 6RPHUR*1  7HPSHUDWXUHDGDSWDWLRQRIF\WRVROLF malate dehydrogenases of limpets (genus Lottia GLIIHUHQFHVLQVWDELOLW\DQG function due to minor changes in sequence correlate with biogeographic and vertical distributions. -RXUQDORI([SHULPHQWDO%LRORJ\, 212, 169-177 'RQRJKXH3&- %HQWRQ0-  5RFNVDQGFORFNVFDOLEUDWLQJWKH Tree of Life using fossils and molecules. 7UHQGVLQ(FRORJ\ (YROXWLRQ, 22, 424- 431 'UDNH-$  &RPPXQLW\DVVHPEO\PHFKDQLFVDQGWKHVWUXFWXUHRIDQ H[SHULPHQWDOVSHFLHVHQVHPEOHAmerican Naturalist, 137, 1-26 'URRS6-00DQQ'* /RNKRUVW*0  6SDWLDODQGWHPSRUDO stability of demes in 'LSORQHLVVPLWKLL'IXVFD (Bacillariophyta) supports a narrow species concept. Phycologia, 39, 527-546 'UXP5 +RSNLQV-  'LDWRPORFRPRWLRQ$QH[SODQDWLRQ Protoplasma, 62, 1-33 'UXPPRQG$- 5DPEDXW$  %($67%D\HVLDQHYROXWLRQDU\ analysis by sampling trees. %PF(YROXWLRQDU\%LRORJ\, 7, 8 'XQODS&$(YDQV.27KHHOHQ%%RHNKRXW7 6FKLVOHU'$   2VPRWLFVKRFNWROHUDQFHDQGPHPEUDQHÀXLGLW\RIFROGDGDSWHG Cryptococcus ÀDYHVFHQV OH 182.9, previously reported as C. nodaensis, a biocontrol agent of Fusarium head blight. Fems Yeast Research, 7, 449-458 (GJDU/$ 3LFNHWW+HDSV-'  'LDWRPORFRPRWLRQProgress in Phycology Research, 3, 47-88 (GJDU60 7KHULRW(&  3K\ORJHQ\RIAulacoseira (Bacillariophyta) based on molecules and morphology. Journal of Phycology, 40, 772-788 (KUHQEHUJ&*  0LWWKHLOXQJHQEUHQHXHDVLVWLVFKH/DJHUIRVVLOHU ,QIXVRULH(UGHQDXVGHPUXVVLVFKHQ7UDQV.DXNDVLHQ *UXVLHQ XQG6LEHULHQBe. Bekanntm. Verh. Königl. Preuss. Akad. Wiss. Berlin, 1834, 43-49 (KUHVPDQQ': +DWFK07  (IIHFWRIUHODWLYHKXPLGLW\RQ survival of airborn unicellular algae. Applied Microbiology, 29, 352-357 (OVWHU-'HJPD3.RYDFLN/9DOHQWRYD/6UDPNRYD. 3HUHLUD$%  )UHH]LQJDQGGHVLFFDWLRQLQMXU\UHVLVWDQFHLQWKH¿ODPHQWRXVJUHHQDOJD Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia, 63, 843-851 (WWO+  'LH*DWWXQJChlamydomonas(KUHQEHUJNova Hedwigia Beihefte, 49, 1-1122 (WWO+ *lUWQHU*  Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fisher Verlag, Stuttgart. (YDQV-+  7KHVXUYLYDORIIUHVKZDWHUDOJDHGXULQJGU\SHULRGV An investigation of the algae of 5 small ponds. -RXUQDORI(FRORJ\, 46, 149-167 (YDQV-+  7KHVXUYLYDORIIUHVKZDWHUDOJDHGXULQJGU\SHULRGV 'U\LQJH[SHULPHQWV6WUDWL¿FDWLRQRIDOJDHLQSRQGPDUJLQOLWWHUDQGPXG -RXUQDORI(FRORJ\, 47, 55-81

References 247 (YDQV.0:RUWOH\$+ 0DQQ'*  $QDVVHVVPHQWRISRWHQWLDO diatom “barcode” genes (FR[1, rbc/6DQG,76U'1$ DQGWKHLUHIIHFWLYHQHVVLQ determining relationships in Sellaphora (Bacillariophyta). Protist, 158, 349-364 (YDQV.0:RUWOH\$+6LPSVRQ*(&KHSXUQRY9$ 0DQQ'*  $PROHFXODUV\VWHPDWLFDSSURDFKWRH[SORUHGLYHUVLW\ZLWKLQWKHSellaphora pupula VSHFLHVFRPSOH[ EDFLOODULRSK\WD Journal of Phycology, 44, 215-231 (YDQV.0&KHSXUQRY9$6OXLPDQ+-7KRPDV6-6SHDUV%0 0DQQ'*  +LJKO\GLIIHUHQWLDWHGSRSXODWLRQVRIWKHIUHVKZDWHUGLDWRP Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist, 160, 386-396 )DUULV-6  3KHQHWLFVLQFDPRXÀDJHCladistics-the International Journal of the Willi Hennig Society, 6, 91-100 Fawley, M.W., Fawley, K.P. & Buchheim, M.A. (2004) Molecular diversity among communities of freshwater microchlorophytes. 0LFURELDO(FRORJ\, 48, 489- 499 )HOVHQVWHLQ-  &RQ¿GHQFHOLPLWVRQSK\ORJHQLHVDQDSSURDFKXVLQJ the bootstrap. (YROXWLRQ, 39, 783-791 Felsenstein, J. (2004) Inferring phylogenies. Sinauer Associates, Sunderland. Fiala, M. & Oriol, L. (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biology, 10, 629-636 )LJXHUROD- *UHHQ$-  'LVSHUVDORIDTXDWLFRUJDQLVPVE\ ZDWHUELUGVDUHYLHZRISDVWUHVHDUFKDQGSULRULWLHVIRUIXWXUHVWXGLHVFreshwater Biology, 47, 483-494 Figuerola, J., Green, A.J. & Santamaria, L. (2003) Passive internal transport RIDTXDWLFRUJDQLVPVE\ZDWHUIRZOLQ'RQDQDVRXWKZHVW6SDLQ*OREDO(FRORJ\ and Biogeography, 12, 427-436 )LJXHUROD-*UHHQ$- 0LFKRW7&  ,QYHUWHEUDWHHJJVFDQÀ\ (YLGHQFHRIZDWHUIRZOPHGLDWHGJHQHÀRZLQDTXDWLFLQYHUWHEUDWHVAmerican Naturalist, 165, 274-280 Finlay, B.J. (2002) Global dispersal of free-living microbial eukaryote species. Science, 296, 1061-1063 )LQOD\%-0RQDJKDQ(% 0DEHUO\6&  +\SRWKHVLV7KHUDWH and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist, 153, 261-273 )LQOD\%- (VWHEDQ*)  8ELTXLWRXVGLVSHUVDORIIUHHOLYLQJ microorganisms. Microbial diversity and bioprospecting (ed. by A.T. Bull), pp. 216- $603UHVV:DVKLQJWRQ'& Flechtner, V.R., Johansen, J.R. & Clark, W.H. (1998) Algal composition of PLFURELRWLFFUXVWVIURPWKH&HQWUDO'HVHUWRI%DMD&DOLIRUQLD0H[LFRGreat Basin Naturalist, 58, 295-311 Flower, B.P. & Kennett, J.P. (1994) The middle Miocene climatic transition (DVW$QWDUFWLFLFHVKHHWGHYHORSPHQWGHHSRFHDQFLUFXODWLRQDQGJOREDOFDUERQ cycling. Palaeogeography Palaeoclimatology Palaeoecology, 108, 537-555 Frenot, Y., Gloaguen, J.C., Cannavacciuolo, M. & Bellido, A. (1998) Primary succession on glacier forelands in the subantarctic Kerguelen Islands. Journal of Vegetation Science, 9, 75-84 Frenot, Y., Gloaguen, J.C., Masse, L. & Lebouvier, M. (2001) Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biological Conservation, 101, 33-50

248 References )U\HU*  'LDSDXVHDSRWHQWIRUFHLQWKHHYROXWLRQRIIUHVKZDWHU crustaceans. Hydrobiologia, 320, 1-14 Gao, Z., Horton, R., Wang, L., Liu, H. & Wen, J. (2008) An improved force- restore method for soil temperature prediction. (XURSHDQ-RXUQDORI6RLO6FLHQFH, 59, 972-981 *DUFLOODQ33 (]FXUUD(  %LRJHRJUDSKLFUHJLRQVDQGEHWDGLYHUVLW\ of woody dryland legumes in the Baja California peninsula. Journal of Vegetation Science, 14, 859-868 *HLVVOHU8 *HUORII-  'DVYRUNRPPHQYRQ'LDWRPHHQLQ menschlichen Organen und in der Luft. Nova Hedwigia, 10, 565-577 *HLWOHU/  $EKlQJLJNHLWGHU0HPEUDQELOGXQJYRQGHU=HOOWHLOXQJEHL 'LDWRPHHQXQGGLIIHUQWLHOOH7HLOXQJHQLP]XVDPPHQKDQJPLWGHU,QQHQVFKDOHQ Planta, 43, 75-82 *HLWOHU/  'LHLQlTXDOH7HLOXQJEHLGHU%LOGXQJGHU,QQHQVFKDOHQ von Meridion circulare. Osterreichesche Botanische Zeitschrift, 119, 442-446 *HR9ODDQGHUHQ  'LJLWDOVRLOPDSRI)ODQGHUV85/DYDLODEOHDW KWWSZZZDJLYEHJLV *HUODFK'  %RWDQLVFKH0LNURWHFKQLN(LQH(LQIKUXQJ. Georg Thieme Verlag, Stuttgart. *HUVRQGH5 +DUZRRG'0  /RZHU&UHWDFHRXVGLDWRPVIURP 2'3/HJVLWH :HGGHOO6HD 3DUWYHJHWDWLYHFHOOVProceedings of the 2FHDQ'ULOOLQJ3URJUDP6FLHQWL¿F5HVXOWV, pp. 365-402. *LOEHUW-- 6FKUHLEHU'.  ,QGXFWLRQRIGLDSDXVLQJDPLFWLFHJJV in Synchaeta pectinata. Hydrobiologia, 313, 345-350 *LOODUG-'HYRV9+X\VPDQ0--'H9H\OGHU/'¶+RQGW60DUWHQV &9DQRUPHOLQJHQ39DQQHUXP.6DEEH.&KHSXUQRY9$,Q]H' Vuylsteke, M. & Vyverman, W. (2008) Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiology, 148, 1394-1411 Giribet, G. (2010) A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zoologica, 91, 11-19 *ORFNQHU)2=DLFKLNRY(%HONRYD1'HQLVVRYD/3HUQWKDOHU- Pernthaler, A. & Amann, R. (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. $SSOLHGDQG(QYLURQPHQWDO0LFURELRORJ\, 66, 5053-+ Godhe, A. & Harnström, K. (2010) Linking the planktonic and benthic KDELWDWJHQHWLFVWUXFWXUHRIWKHPDULQHGLDWRPSkeletonema marinoi. Molecular (FRORJ\, 19, 4478-4490 Goloboff, P.A., Mattoni, C.I. & Quinteros, A.S. (2006) Continuous characters analyzed as such. Cladistics, 22, 589-601 *RQ]DOH]-RVH5(VFDSD,1HYHV:$&XQHR5 3XFFLDUHOOL+0 (2008) Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature, 453, 775-U4 Gran, H.H. (1912) Pelagic plant life. The depths of the ocean (ed. by J. Murray and J. Hjort). Macmillan, London. *UD\':/HZLV/$ &DUGRQ=*  3KRWRV\QWKHWLFUHFRYHU\ following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. 3ODQW&HOODQG(QYLURQPHQW, 30, 1240-1255

References 249 *UHHQ-/+ROPHV$-:HVWRE\02OLYHU,%ULVFRH''DQJHU¿HOG M., Gillings, M. & Beattie, A.J. (2004) Spatial scaling of microbial eukaryote diversity. Nature, 432, 747-750 Green, A.J. & Figuerola, J. (2005) Recent advances in the study of long- distance dispersal of aquatic invertebrates via birds. 'LYHUVLW\DQG'LVWULEXWLRQV, 11, 149-156 Green, J. & Bohannan, B.J.M. (2006) Spatial scaling of microbial biodiversity. 7UHQGVLQ(FRORJ\ (YROXWLRQ, 21, 501-507 Greenslade, P. (1995) Collembola from the Scotia Arc and Antarctic Peninsula including descriptions of two new species and notes on biogeography. 3ROVNLH3LVPR(QWRPRORJLF]QH, 64, 305-319 Greve, M., Gremmen, N.J.M., Gaston, K.J. & Chown, S.L. (2005) 1HVWHGQHVVRI6RXWKHUQ2FHDQLVODQGELRWDVHFRORJLFDOSHUVSHFWLYHVRQD biogeographical conundrum. Journal of Biogeography, 32, 155-168 *ULI¿WKV$-)0LOOHU-)6X]XNL'7/HZRQWLQ5& *HOEDUW:0 (1996). Introduction to Genetic AnalysisWK(GLWLRQ:+)UHHPDQ1HZ

250 References +DUZRRG'0 *HUVRQGH5  /RZHU&UHWDFHRXVGLDWRPVIURP 2'3/HJ6LWH :HGGHOO6HD 3DUWUHVWLQJVSRUHVFKU\VRSK\FHDQF\VWV DQHQGRVNHOHWDOGLQRÀDJHOODWHDQGQRWHVRQWKHRULJLQRIGLDWRPVProceedings of WKH2FHDQ'ULOOLQJ3URJUDP6FLHQWL¿F5HVXOWV, 113, 403-425 +D\ZDUG6$/5LQHKDUW-36DQGUR/+/HH5( 'HQOLQJHU '/  6ORZGHK\GUDWLRQSURPRWHVGHVLFFDWLRQDQGIUHH]HWROHUDQFHLQWKH Antarctic midge Belgica antarctica. -RXUQDORI([SHULPHQWDO%LRORJ\, 210, 836-844 +HEHUW3'15DWQDVLQJKDP6 GH:DDUG-5  %DUFRGLQJDQLPDO OLIHF\WRFKURPHFR[LGDVHVXEXQLWGLYHUJHQFHVDPRQJFORVHO\UHODWHGVSHFLHV Proceedings of the Royal Society of London Series B-Biological Sciences, 270, S96-S99 Hennig, W. (1965) Phylogenetic systematics. $QQ5HY(QWRPRO, 10, 97- 116 Hennig, W. (1966) Phylogenetic Systematics. University of Illinois Press, Urbana. +pULEDXG-  /HVGLDWRPpHVIRVVLOHVG¶$XYHUJQH, Clermont-Ferrand. Hillebrand, H., Watermann, F., Karez, R. & Berninger, U.G. (2001) 'LIIHUHQFHVLQVSHFLHVULFKQHVVSDWWHUQVEHWZHHQXQLFHOOXODUDQGPXOWLFHOOXODU organisms. Oecologia, 126, 114-124 Ho, S.Y.W. & Phillips, M.J. (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58, 367-380 +REDQ0$)U\[HOO*$ %XFN.5  %LGGXOSKLRLGGLDWRPV resting spores in Antarctic (XFDPSLD and Odontella. Journal of Phycology, 16, 591-602 +RGJVRQ$(YDQV'-%URZQ05: *LOEHUW3  ,QYROYHPHQW of cellular division cycle in the susceptibility of (VFKHULFKLDFROL to cold-shock and osmotic shock. Microbios, 72, 175-182 +RGJVRQ'$9HUOH\HQ(6DEEH.6TXLHU$+.HHO\%-/HQJ M.J., Saunders, K.M. & Vyverman, W. (2005) Late Quaternary climate-driven HQYLURQPHQWDOFKDQJHLQWKH/DUVHPDQQ+LOOV(DVW$QWDUFWLFDPXOWLSUR[\ evidence from a lake sediment core. Quaternary Research, 64, 83-99 Hoffmann, L. (1996) Geographic distribution of freshwater blue-green algae. Hydrobiologia, 336, 33-40 +ROOLEDXJK-76HLEHUW'/5 7KRPDV:+  2EVHUYDWLRQV on the survival and germination of resting spores of 3 (Bacillariophyceae) species. Journal of Phycology, 17, 1-9 +ROPVWUXS0+HGOXQG. %RULVV+  'URXJKWDFFOLPDWLRQDQG composition in Folsomia candidaLPSOLFDWLRQVIRUFROGVKRFNKHDWVKRFNDQG acute desiccation stress. Journal of Insect Physiology, 48, 961-970 Hori, K., Okamoto, J., Tanji, Y. & Unno, H. (2003) Formation, sedimentation and germination properties of Anabaena akinetes. %LRFKHPLFDO(QJLQHHULQJ Journal, 14, 67-73 +RUQHU'HYLQH0&/DJH0+XJKHV-% %RKDQQDQ%-0  $ WD[DDUHDUHODWLRQVKLSIRUEDFWHULDNature, 432, 750-753 +RVWHWWHU+3 +RVKDZ5:  (QYLURQPHQWDOIDFWRUVDIIHFWLQJ resistance to desiccation in the diatom Stauroneis anceps. American Journal of Botany, 57, 512-518 Hubbell, S.P. (2001) 7KHXQL¿HGWKHRU\RI%LRGLYHUVLW\DQG%LRJHRJUDSK\. Princeton University Press, New Yersey.

References 251 +XHOVHQEHFN-3 5RQTXLVW)  0U%D\HV%D\HVLDQLQIHUHQFHRI phylogenetic trees. Bioinformatics, 17, 754-755 +XOWpQ(  Outline of the history of Arctic and Boreal biota during the Quarternary period. Lehre J Cramer, New York. +XWFKLQVRQ*(  A treatise on limnology. Wiley, New York. +X\VPDQ0--0DUWHQV&9DQGHSRHOH.*LOODUG-5D\NR(+HLMGH 0%RZOHU&,Q]H'9DQGH3HHU<'H9H\OGHU/ 9\YHUPDQ:   Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biology, 11, 19 Imshenetsky, A.A. & Kondrateva, T.F. (1987) Resistance of polyploid cultures of Candida utilis to the action of ultraviolette rays. Microbiology, 56, 698- 700 ,UpQpH0DULH)  )ORUHGHVPLGLDOHGHODUpJLRQGH0RQWUpDO. Laprairie, Montreal. Isard, S.A. & Gage, S.H. (2001) )ORZRIOLIHLQWKHDWPRVSKHUHDQDLUVFDSH appraoch to understanding invasive organisms. Michigan State University Press, (DVW/DQVLQJ ,YDQRYLF$6RWLURSRXORV.']XNLF* .DOH]LF0/  6NXOOVL]H DQGVKDSHYDULDWLRQYHUVXVPROHFXODUSK\ORJHQ\DFDVHVWXG\RIDOSLQHQHZWV (Mesotriton alpestris, Salamandridae) from the Balkan Peninsula. Zoomorphology, 128, 157-167 -DFREV%'RQRJKXH0-%RXPDQ)+X\VPDQV6 6PHWV(   (YROXWLRQDQGSK\ORJHQHWLFLPSRUWDQFHRIHQGRFDUSDQGVHHGFKDUDFWHUVLQ Viburnum $GR[DFHDH International Journal of Plant Sciences, 169, 409-431 Jargeat, P., Martos, F., Carriconde, F., Gryta, H., Moreau, P.A. & Gardes, M. (2010) Phylogenetic species delimitation in ectomycorrhizal fungi and implications IRUEDUFRGLQJWKHFDVHRIWKHTricholoma scalpturatumFRPSOH[ %DVLGLRP\FRWD  0ROHFXODU(FRORJ\, 19, 5216-5230 -DZRUVNL*- /XQG-:*  'URXJKWUHVLVWDQFHDQGGLVSHUVDORI Asterionella formosa Hass. Nova Hedwigia Beihefte, 31, 37-48 -HZVRQ'+/RZU\6) %RZHQ5  &RH[LVWHQFHDQGVXUYLYDORI diatoms on sand grains. (XURSHDQ-RXUQDORI3K\FRORJ\, 41, 131-146 -REE*9RQ+DHVHOHU$ 6WULPPHU.  75((),1'(5DSRZHUIXO graphical analysis environment for molecular phylogenetics. %PF(YROXWLRQDU\ Biology, 4, 9 -RKDQVHQ-5  &KDSWHU'LDWRPVRIDHULDOKDELWDWV7KHGLDWRPV applications for the environmental and earth sciences HGE\()6WRHUPHUDQG J.P. Smol), pp. 264-273. Cambridge University Press, New York. Johst, K. & Brandl, R. (1997) The effect of dispersal on local population dynamics. (FRORJLFDO0RGHOOLQJ, 1, 87-101 -RQHV+06LPSVRQ*(6WLFNOH$- 0DQQ'*  /LIHKLVWRU\ and systematics of Petroneis (Bacillariophyta), with special reference to British waters. (XURSHDQ-RXUQDORI3K\FRORJ\, 40, 61-87 -RQHV6( /HQQRQ-7  'RUPDQF\FRQWULEXWHVWRWKH maintenance of microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 5881-5886 Jost, L. (2007) Partitioning diversity into independent alpha and beta components. (FRORJ\, 88, 2427-2439

252 References Julius, M.L. & Tanimura, Y. (2001) Cladistic analysis of plicated Thalassiosira (Bacillariophyceae). Phycologia, 40, 111-122 .LQJ5$ )HUULV&  &KORURSODVW'1$SK\ORJHRJUDSK\RIAlnus glutinosa (L.) Gaertn. 0ROHFXODU(FRORJ\, 7, 1151-1161 .LUVW*2 :LHQFNH&  (FRSK\VLRORJ\RISRODUDOJDHJournal of Phycology, 31, 181-199 .OHLQ*0DF,QWRVK..DF]PDUVND, (KUPDQ-0  'LDWRP VXUYLYRUVKLSLQEDOODVWZDWHUGXULQJWUDQV3DFL¿FFURVVLQJVBiological Invasions, 12, 1031-1044 .RFLROHN-3  'HWHUPLQLQJFKDUDFWHUSRODULW\LQGLDWRPVDQ alternative appraoch. 'LDWRP5HVHDUFK, 1, 189-192 .RFLROHN-3 6WRHUPHU()  3K\ORJHQHWLFUHODWLRQVKLSV DQGFODVVL¿FDWLRQRIPRQRUDSKLGGLDWRPVEDVHGRQSKHQHWLFDQGFODGLVWLF methodologies. Phycologia, 25, 297-303 Kociolek, J.P. (1997) Historical constraints, species concepts and the search IRUDQDWXUDOFODVVL¿FDWLRQRIGLDWRPV'LDWRP, 13, 3-8 Kociolek, J.P. & Spaulding, S.A. (2000) Freshwater diatom biogeography. Nova Hedwigia, 71, 223-241 .RHVWHU-$6ZDOZHOO-(YRQ'DVVRZ3 $UPEUXVW(9   Genome size differentiates co-occurring populations of the planktonic diatom 'LW\OXPEULJKWZHOOLL (Bacillariophyta). %PF(YROXWLRQDU\%LRORJ\, 10 .RRLVWUD: 0HGOLQ/.  (YROXWLRQRIWKHGLDWRPV (bacillariophyta). 4. Reconstruction of their age from small subunit rRNA coding regions and the fossil record. 0ROHFXODU3K\ORJHQHWLFVDQG(YROXWLRQ, 6, 391-407 .RRLVWUD:'H6WHIDQR00DQQ'*6DOPD1 0HGOLQ/.   Phylogenetic position of 7R[DULXP, a pennate-like lineage within centric diatoms (Bacillariophyceae). Journal of Phycology, 39, 185-197 Kooistra, W., Hargraves, P., Andersen, R.A., Balzano, S., Zingone, A. & 6DUQR'  3VHXGRFU\SWLFGLYHUVLW\DQGSK\ORJHRJUDSK\LQWKHFHQWULF diatom Skeletonema. Phycologia, 44, 134 .RRLVWUD:6DUQR'+HUQDQGH]%HFHUULO'8$VVP\3'L3ULVFR& & Montresor, M. (2010) Comparative molecular and morphological phylogenetic DQDO\VHVRIWD[DLQWKH&KDHWRFHURWDFHDH %DFLOODULRSK\WD Phycologia, 49, 471- 500 Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006) World map of WKH.RSSHQ*HLJHUFOLPDWHFODVVL¿FDWLRQXSGDWHGMeteorologische Zeitschrift, 15, 259-263 Krammer, K. & Lange-Bertalot, H. (1985) Naviculaceae, neue und wenig EHNDQQWH7D[DQHXH.RPELQDWLRQHQXQG6\QRQ\PHVRZLH%HPHUNXQJHQ]X einigen Gattungen, Braunschweig. Krammer, K. & Lange-Bertalot, H. (1986) %DFLOODULRSK\FHDH7HLO Naviculaceae. Gustav Fisher Verlag, Stuttgart. Krammer, K. & Lange-Bertalot, H. (1988) %DFLOODULRSK\FHDH7HLO (SLWKHPLDFHDH%DFLOODULDFHDH6XULOOHOODFHDH. Gustav Fisher Verlag, Stuttgart. Krammer, K. & Lange-Bertalot, H. (1991a) %DFLOODULRSK\FHDH7HLO &HQWUDOHV)UDJLODULDFHDH(XQRWLDFHDH. Gustav Fischer Verlag, Stuttgart. Krammer, K. & Lange-Bertalot, H. (1991b) %DFLOODULRSK\FHDH7HLO $FKQDQWKDFHDH.ULWLVFKH(UJlQ]XQJHQ]X1DYLFXOD /LQHRODWD XQG*RPSKRQHPD. Gustav Fisher Verlag, Stuttgart.

References 253 Krammer, K. (1992) 3LQQXODULDHLQH0RQRJUDSKLHGHUHXURSlLVFKHQ7D[D. J. Cramer, Berlin. Krammer, K. (2000) The genus Pinnularia. A.R.G. Gantner Verlag, Ruggell. Krammer, K. (2002) The genus Cymbella. A.R.G. Gantner Verlag, Ruggell. .ULVWLDQVHQ-  'LVSHUVDORIIUHVKZDWHUDOJDH$UHYLHZ Hydrobiologia, 336, 151-157 .XPDU66NMDHYHODQG$2UU5-6(QJHU35XGHQ70HYLN%+ %XUNL)%RWQHQ$ 6KDOFKLDQ7DEUL]L.  $,5$EDWFKRULHQWHGZHE program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinformatics, 10, 7 Kuwata, A. & Takahashi, M. (1990) Life-form population responses of a marine planktonic diatom, Chaetoceros pseudocurvisetus, to oligothophication in regionally upwelled water. Marine Biology, 107, 503-512 .XZDWD$+DPD7 7DNDKDVKL0  (FRSK\VLRORJLFDO characterization of 2 life forms, resting spores and resting cells, of a marine phytoplanktonic diatom, Chaetoceros pseudocurvisetus, formed under nitrogen depletion. 0DULQH(FRORJ\3URJUHVV6HULHV, 102, 245-255 /DJDEULHOOH<*RGGHULV<'RQQDGLHX<0DODYLHLOOH- 6XDUH]0  7KHWHFWRQLFKLVWRU\RI'UDNH3DVVDJHDQGLWVSRVVLEOHLPSDFWVRQJOREDO climate. (DUWKDQG3ODQHWDU\6FLHQFH/HWWHUV, 279, 197-211 Lande, R. (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5-13 /DQIHDU5+R6<:/RYH' %URPKDP/  0XWDWLRQUDWHLV OLQNHGWRGLYHUVL¿FDWLRQLQELUGVProceedings of the National Academy of Sciences of the United States of America, 107, 20423-20428 Lange-Bertalot, H. (1993) QHXHWD[DXQGEHUZHLWHUHQHX GH¿QLHUWHWD[DHUJlQ]HQG]XU6VVZDVVHUÀRUDYRQ0LWWHOHXURSD9RO. J. Cramer, Berlin. Lange-Bertalot, H. (2001) Navicula sensu stricto, 10 new genera separated from Navicula sensu lato, Frustulia. A.R.G. Gantner Verlag, Ruggell. /DZYHU/$ *DKDJDQ/0  (YROXWLRQRI&HQR]RLFVHDZD\VLQWKH circum-Antarctic region. Palaeogeography Palaeoclimatology Palaeoecology, 198, 11-37 /H&RKX5 0DLOODUG5  /HVGLDWRPpHVPRQRUDSKLGpHVGHV,OHV Kerguelen. Ann. Limnol., 19, 143-167 /H&RKX5 0DLOODUG5  'LDWRPpHVG¶HDXGRXFHGHV,OHV .HUJXHOHQ jO¶H[FOXVLRQGHV0RQRUDSKLGpHV Ann. Limnol., 22, 99-118 /H&RKX5  5pYLVLRQGHVSULQFLSDOHVHVSqFHVGXOoDTXLFROHV G¶$FKQDQWKDOHV %DFLOODULRSK\WD GHVvOHVVXEDQWDUFWLTXHVGH.HUJXHOHQAlgol. Stud., 116, 79-114 Lee, M.S.Y. & Camens, A.B. (2009) Strong morphological support for the molecular evolutionary tree of placental mammals. -RXUQDORI(YROXWLRQDU\%LRORJ\, 22, 2243-2257 /HJHQGUH3%RUFDUG' 3HUHV1HWR35  $QDO\]LQJEHWD GLYHUVLW\3DUWLWLRQLQJWKHVSDWLDOYDULDWLRQRIFRPPXQLW\FRPSRVLWLRQGDWD (FRORJLFDO0RQRJUDSKV, 75, 435-450

254 References Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., +RRSHV0)+ROW5'6KXULQ-%/DZ57LOPDQ'/RUHDX0 *RQ]DOH] $  7KHPHWDFRPPXQLW\FRQFHSWDIUDPHZRUNIRUPXOWLVFDOHFRPPXQLW\ ecology. (FRORJ\/HWWHUV, 7, 601-613 /HYLQV5  'LDSDXVHDVDQDGDSWLYHVWUDWHJ\Symposia of the 6RFLHW\RI([SHULPHQWDO%LRORJ\, 23, 1-10 Lewis Smith, R.I. (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. $QWDUFWLF(FRORJ\ (ed. by R.M. Laws), pp. 61-162. Academic Press, London. Lewis, L.A. & Flechtner, V.R. (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of Western North America. Journal of Phycology, 40, 1127-1137 Lewis, L.A. & Lewis, P.O. (2005) Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Systematic Biology, 54, 936-947 /HZLV$50DUFKDQW'5$VKZRUWK$&+HGHQDV/+HPPLQJ65 -RKQVRQ-9/HQJ0-0DFKOXV0/1HZWRQ$(5DLQH-,:LOOHQEULQJ -.:LOOLDPV0 :ROIH$3  0LG0LRFHQHFRROLQJDQGWKHH[WLQFWLRQRI tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 105, 10676-10680 /L<0)HUJXVRQ'.:DQJ<) /L&6  3DOHRHQYLURQPHQWDO inferences from diatom assemblages of the middle Miocene Shanwang Formation, Shandong, China. Journal of Paleolimnology, 43, 799-814 /LJKWKDUW% 0RKU$-  (VWLPDWLQJGRZQZLQGFRQFHQWUDWLRQVRI viable airborne microorganisms in dynamic atmospheric conditions. Applied and (QYLURQPHQWDO0LFURELRORJ\, 53, 1580-1583 Linnaeus, C. (1781) On the increase of the habitable earth. Translation by F.J. Brandt. Amoenitates Academicae, 2, 17-27 /RKPDQ.( $QGUHZV*:  /DWH(RFHQHQRQPDULQHGLDWRPV IURPWKH%HDYHU'LYLGHDUHD)UHPRQW&RXQW\:\RPLQJUnited States Geological Survey Professional Paper, 593-E /RPROLQR096D[') %URZQ-+  Foundations of biogeography. Classic papers with commentaries. The university of Chicago Press, London. Lomolino, M.V., Riddle, B.R., Whittaker, R.J., Brown, J.H. (2010) Biogeography. Sinauer Associates, Inc. Lund, J.W.G. (1953) The seasonal cycle of the plankton diatom Melosira italica (KU .XW]subsp. subarctica O. Mull. -RXUQDORI(FRORJ\, 42, 151-179 /XQGKROP1'DXJEMHUJ1 0RHVWUXS2  3K\ORJHQ\RIWKH Bacillariaceae with emphasis on the genus Pseudo-nitzschia (Bacillariophyceae) EDVHGRQSDUWLDO/68U'1$(XURSHDQ-RXUQDORI3K\FRORJ\, 37, 115-134 /XQGKROP10RHVWUXS2+DVOH*5 +RHI(PGHQ.   A study of the 3VHXGRQLW]VFKLDSVHXGRGHOLFDWLVVLPDFXVSLGDWDFRPSOH[ %DFLOODULRSK\FHDH :KDWLVP. pseudodelicatissima? Journal of Phycology, 39, 797-813 0DF$UWKXU5+ :LOVRQ(2  $QHTXLOLEULXPWKHRU\IRULQVXODU zoogeography. (YROXWLRQ, 17, 373-387 0DGGLVRQ:3 0DGGLVRQ'5  0HVTXLWHDPRGXODUV\VWHPIRU HYROXWLRQDU\DQDO\VLV9HUVLRQKWWSPHVTXLWHSURMHFWRUJ

References 255 0DJUL'9HQGUDPLQ**&RPSV%'XSDQORXS,*HEXUHN7*RPRU\ '/DWDORZD0/LWW73DXOH/5RXUH-07DQWDX,YDQGHU.QDDS:2 Petit, R.J. & de Beaulieu, J.L. (2006) A new scenario for the Quaternary history of (XURSHDQEHHFKSRSXODWLRQVSDODHRERWDQLFDOHYLGHQFHDQGJHQHWLFFRQVHTXHQFHV New Phytologist, 171, 199-221 Maguire, B. (1963) Passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. (FRORJLFDO0RQRJUDSKV, 33, 161-185 0DQQ'* 'URRS6-0  %LRGLYHUVLW\ELRJHRJUDSK\DQG conservation of diatoms. Hydrobiologia, 336, 19-32 0DQQ'*  7KHVSHFLHVFRQFHSWLQGLDWRPVPhycologia, 38, 437- 495 0DQQ'*  $GLVFXVVLRQRICaloneis and related genera. 'LDWRP, 17, 29-36 0DQQ'*0F'RQDOG60%D\HU00'URRS6-0&KHSXUQRY9$ /RNH5(&LREDQX$ 'X%XI-0+  7KHSellaphora pupula species FRPSOH[ %DFLOODULRSK\FHDH PRUSKRPHWULFDQDO\VLVXOWUDVWUXFWXUHDQGPDWLQJ GDWDSURYLGHHYLGHQFHIRU¿YHQHZVSHFLHVPhycologia, 43, 459-482 0DQQ'* (YDQV.0  0ROHFXODUJHQHWLFVDQGWKHQHJOHFWHGDUW of diatomics. 8QUDYHOLQJWKHDOJDH±WKHSDVWSUHVHQWDQGIXWXUHRIDOJDPROHFXODU systematics (ed. by J. Brodie and J.M. Lewis), pp. 321-265. CRC Press, London. 0DQQ'*6DWR67UREDMR59DQRUPHOLQJHQ3 6RXIIUHDX&   '1$EDUFRGLQJIRUVSHFLHVLGHQWL¿FDWLRQDQGGLVFRYHU\LQGLDWRPVCryptogamie Algologie, 31, 557-577 0DQWHO1  'HWHFWLRQRIGLVHDVHFOXVWHULQJDQGDJHUQHUDOL]HG regression approach. Cancer Research, 27, 209-& Mantel, N. & Valand, R.S. (1970) A technique of non-parametric multivariate analysis. Biometrics, 26, 547 0DULYDX[/9LDQH\/LDXG0 -DHJHU--  +LJKOHYHOSK\ORJHQ\RI HDUO\7HUWLDU\URGHQWVGHQWDOHYLGHQFHZoological Journal of the Linnean Society, 142, 105-134 0DUVKDOO'- 3XJK3-$  2ULJLQRIWKHLQODQG$FDULRI&RQWLQHQWDO $QWDUFWLFDZLWKSDUWLFXODUUHIHUHQFHWR'URQQLQJ0DXG/DQGZoological Journal of the Linnean Society, 118, 101-118 Marshall, W.A. & Chalmers, M.O. (1997) Airborne dispersal of antarctic terrestrial algae and cyanobacteria. (FRJUDSK\, 20, 585-594 Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., *UHHQ-/+RUQHU'HYLQH0&.DQH0.UXPLQV-$.XVNH&50RULQ3- Naeem, S., Ovreas, L., Reysenbach, A.L., Smith, V.H. & Staley, J.T. (2006) Microbial ELRJHRJUDSK\SXWWLQJPLFURRUJDQLVPVRQWKHPDSNature Reviews Microbiology, 4, 102-112 0DUYDOGL$(6HTXHLUD$62¶EULHQ&: )DUUHOO%'  0ROHFXODU DQGPRUSKRORJLFDOSK\ORJHQHWLFVRIZHHYLOV &ROHRSWHUD&XUFXOLRQRLGHD 'RQLFKH VKLIWVDFFRPSDQ\GLYHUVL¿FDWLRQ"Systematic Biology, 51, 761-785 Mathur, J. (2006) Trichome cell morphogenesis in ArabidopsisDFRQWLQXXP of cellular decisions. &DQDGLDQ-RXUQDORI%RWDQ\5HYXH&DQDGLHQQH'H%RWDQLTXH, 84, 604-612 0D[LPLQR&  (YROXWLRQDU\FKDQJHVLQWKHFRPSOH[LW\RIWKHWHFWXP RIQRQWHWUDSRGV$FODGLVWLFDSSURDFKPlos One, 3, 7 0D\QDUG1*  6LJQL¿FDQFHRIDLUERUQHDOJDHZeitschrift Fur Allgemeine Mikrobiologie, 8, 225-&

256 References 0D\U(  Animal speciation and their evolution. Harvard University Press, Cambridge. McQuoid, M.R. & Hobson, L.A. (1995) Importance of resting stages in diatom seasonal succession. Journal of Phycology, 31, 44-50 0F4XRLG05 +REVRQ/$  'LDWRPUHVWLQJVWDJHVJournal of Phycology, 32, 889-902 Medlin, L.K., Kooistra, W., Gersonde, R., Sims, P.A. & Wellbrock, U. (1997a) ,VWKHRULJLQRIWKHGLDWRPVUHODWHGWRWKHHQG3HUPLDQPDVVH[WLQFWLRQ"Nova Hedwigia, 65, 1-11 0HGOLQ/..RRLVWUD:3RWWHU'6DXQGHUV*: $QGHUVHQ5$ E 3K\ORJHQHWLFUHODWLRQVKLSVRIWKHµJROGHQDOJDH¶ KDSWRSK\WHVKHWHURNRQW chromophytes) and their plastids. 3ODQW6\VWHPDWLFVDQG(YROXWLRQ, 187-219 Meier, F.C. & Lindbergh, C.A. (1935) Collecting microorganisms from the Arctic atmosphere. 7KH6FLHQWL¿F0RQWKO\, 40, 5-20 0HUHVFKNRZVN\&  /HVW\SHVGHO¶HQGRFKURPHFKH]OHV'LDWRPpHV Scripta Botanica, Horti Universitalis Imperialis Petropolitanae, 21, 107-193 0LJXOD:  'LH9HUEUHLWXQJVZHLVHGHU$OJHQBiol. Zentr., 7, 514-517 0L]XQR0  (YROXWLRQRIFHQWULFGLDWRPVLQIHUUHGIURPSDWWHUQVRI oogenesis and spermatogenesis. Phycological Research, 56, 156-165 0RQDJKDQ07:LOG5(OOLRW0)XMLVDZD7%DONH0,QZDUG'- /HHV'&5DQDLYRVROR5(JJOHWRQ3%DUUDFORXJK7* 9RJOHU$3   Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology, 58, 298-311 0RUURQH--  2Q8GYDUG\¶V,QVXODQWDUFWLFDSURYLQFHDWHVWIURPWKH ZHHYLOV &ROHRSWHUD&XUFXOLRQRLGHD Journal of Biogeography, 25, 947-955 0RUWLPHU(9DQ9XXUHQ%-/HH-(0DUVKDOO'-&RQYH\3  Chown, S.L. (2011) Mite dispersal among the Southern Ocean Islands and $QWDUFWLFDEHIRUHWKHODVWJODFLDOPD[LPXPProceedings of the Royal Society B-Biological Sciences, 278, 1247-1255 0OOHU+$FKLOOHV'D\8(0 'D\-*  7ROHUDQFHRIWKHUHVWLQJ cysts of &ROSRGDLQÀDWD (Ciliophora, Colpodea) and Meseres corlissi (Ciliophora, Spirotrichea) to desiccation and freezing. (XURSHDQ-RXUQDORI3URWLVWRORJ\, 46, 133-142 Munilla, T. & Membrives, A.S. (2009) Check-list of the pycnogonids from $QWDUFWLFDQGVXE$QWDUFWLFZDWHUV]RRJHRJUDSKLFLPSOLFDWLRQVAntarctic Science, 21, 99-111 Nekola, J.C. & White, P.S. (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867-878 Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. & Setlow, P. (2000) Resistance of BacillusHQGRVSRUHVWRH[WUHPHWHUUHVWULDODQGH[WUDWHUUHVWULDO environments. Microbiology and Molecular Biology Reviews, 64, 548-+ 2JQMDQRYD5XPHQRYD1 9DVV'  3DOHRHFRORJ\RIWKH/DWH Miocene maar lakes, Podrecany Basalt Formation, Southern Slovakia, on the basis of siliceous microfossils. Geologica Carpathica, 49, 351-368 Ohl, M. & Spahn, P. (2010) A cladistic analysis of the cockroach wasps EDVHGRQPRUSKRORJLFDOGDWD +\PHQRSWHUD$PSXOLFLGDH Cladistics, 26, 49-61

References 257 2NVDQHQ-%ODQFKHW%.LQGW5/HJHQGUH32¶+DUD5%6LPSVRQ */6RO\PRV36WHYHQV0++ :DJQHU+  9HJDQ&RPPXQLW\ (FRORJ\3DFNDJHKWWS&5$15SURMHFWRUJSDFNDJH YHJDQ, R package version 1.17-6 Oldenhof, H., Wolkers, W.F., Bowman, J.L., Tablin, F. & Crowe, J.H. (2006) Freezing and desiccation tolerance in the moss Physcomitrella patens$Qin situ Fourier transform infrared spectroscopic study. %LRFKLPLFD(W%LRSK\VLFD$FWD General Subjects, 1760, 1226-1234 2OVRQ5-9DXORW' &KLVKROP6:  (IIHFWVRIHQYLURQPHQWDO stresses on the cell-cylce of 2 marine phytoplankton species. Plant Physiology, 80, 918-925 2SSHQKHLP'5  7D[RQRPLFVWXGLHVRIAchnanthes (Bacillariophyta) in freshwater maritime Antarctic lakes. Canadian Journal of Botany-Revue &DQDGLHQQH'H%RWDQLTXH, 72, 1735-1748 Ozinga, W.A., Schaminee, J.H.J., Bekker, R.M., Bonn, S., Poschlod, P., Tackenberg, O., Bakker, J. & van Groenendael, J.M. (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos, 108, 555-561 Paerl, H.W. (1988) Growth and reproductive strategies of freshwater blue- green algae (Cyanobacteria). Growth and reproductive strategies of freshwater phytoplankton HGE\&'6DQGJUHQ SS&DPEULGJH8QLYHUVLW\3UHVV Cambridge. Pagel, M. (1997) Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331-348 Pantocsek, J. (1886) %HLWUlJH]XU.HQQWQLVVGHUIRVVLOHQ%DFLOODULHQ 8QJDUQV,7KHLO0DULQH%DFLOODULHQ. J. Platzko, Nagy-Tapolscány, Hungary. Pantocsek, J. (1889) %HLWUlJH]XU.HQQWQLVVGHUIRVVLOHQ%DFLOODULHQ Ungarns. Teil II Brackwasser Bacillarien. Julíus Platzko, Nagy-Tapolcsány, Hungary. 3DSNH575DPVLQJ1%%DWHVRQ00 :DUG'0   Geographical isolation in hot spring cyanobacteria. (QYLURQPHQWDO0LFURELRORJ\, 5, 650-659 3DUVRQV:06FKOLFKWLQJ+( 6WHZDUW.:  ,QÀLJKWWUDQVSRUWRI algae and protozoa by selected Odonata. Transaction of the American Microscopic Society, 85, 520-527 Patrick, R. & Reimer, C.W. (1966) The diatoms of the United States, H[FOXVLYHRI$ODVNDDQG+DZDLL9ROXPH)UDJLODULDFHDH(XQRWLDFHDH Achnanthaceae, Naviculaceae. 3DWULFN5  (FRORJ\RIIUHVKZDWHUGLDWRPVDQGGLDWRPFRPPXQLWLHV The biology of diatoms HGE\':HUQHU SS%ODFNZHOO6FLHQWL¿F 3XEOLFDWLRQV2[IRUG Patterson, C. (1982) Morphological characters and homology. Problems of Phylogenetic Reconstruction (ed. by G.P. Wagner), pp. 21-74. Academic Press, London. 3HUNLQV5*/DYDXG-6HURGLR-0RXJHW-/&DUWD[DQD35RVD P., Barille, L., Brotas, V. & Jesus, B.M. (2010) Vertical cell movement is a primary UHVSRQVHRILQWHUWLGDOEHQWKLFELR¿OPVWRLQFUHDVLQJOLJKWGRVH0DULQH(FRORJ\ Progress Series, 416, 93-103 Persson, A. (2002) Proliferation of cryptic protists and germination of UHVWLQJVWDJHVIURPXQWUHDWHGVHGLPHQWVDPSOHVZLWKHPSKDVLVRQGLQRÀDJHOODWHV Ophelia, 55, 151-166

258 References 3HWHUVHQ-%  6WXGLHVRQWKHELRORJ\DQGWD[RQRP\RIVRLODOJDH 'DQVN%RW$UNLY, 8, 1-180 3HW]:9DOERQHVL$6FKLIWQHU84XHVDGD$ (OOLV(YDQV-&   &LOLDWHELRJHRJUDSK\LQ$QWDUFWLFDQG$UFWLFIUHVKZDWHUHFRV\VWHPVHQGHPLVPRU global distribution of species? )HPV0LFURELRORJ\(FRORJ\, 59, 396-408 Pimentel, R.A. & Riggins, R. (1987) The nature of cladistic data. Cladistics, 3, 201-209 Pommier, T., Canback, B., Riemann, L., Bostrom, K.H., Simu, K., Lundberg, P., Tunlid, A. & Hagstrom, A. (2007) Global patterns of diversity and community structure in marine bacterioplankton. 0ROHFXODU(FRORJ\, 16, 867-880 3RQV-%DUUDFORXJK7**RPH]=XULWD-&DUGRVR$'XUDQ'3 +D]HOO6.DPRXQ66XPOLQ:' 9RJOHU$3  6HTXHQFHEDVHGVSHFLHV GHOLPLWDWLRQIRUWKH'1$WD[RQRP\RIXQGHVFULEHGLQVHFWVSystematic Biology, 55, 595-609 3RWDSRYD0* &KDUOHV')  %HQWKLFGLDWRPVLQ86$ULYHUV distributions along spatial and environmental gradients. Journal of Biogeography, 29, 167-187 Potts, M. (1999) Mechanisms of desiccation tolerance in cyanobacteria. (XURSHDQ-RXUQDORI3K\FRORJ\, 34, 319-328 3RXOLþNRYi$/\VDNRYD0+DVOHU3 /HONRYD(  )LVKSRQG sediments - the source of palaeoecological information and algal “seed banks”. Nova Hedwigia, 86, 141-153 3ULQJOH$%DNHU'03ODWW-/:DUHV-3/DWJH-3 7D\ORU-: (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. (YROXWLRQ, 59, 1886-1899 3URFWRU9:  'LVSHUVDORIGHVPLGVE\ZDWHUELUGVPhycologia, 5, 227-232 3XJK3-$ &RQYH\3  6XUYLYLQJRXWLQWKHFROG$QWDUFWLF endemic invertebrates and their refugia. Journal of Biogeography, 35, 2176-2186 Qian, P.P., Hou, S.W. & Guo, G.Q. (2009) Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Reports, 28, 1147-1157 4XD\OH:&3HFN/63HDW+(OOLV(YDQV-& +DUULJDQ35   ([WUHPHUHVSRQVHVWRFOLPDWHFKDQJHLQ$QWDUFWLFODNHVScience, 295, 645-645 5DMHQGUDQ80.DWKLUYHO( $QDQG1  'HVLFFDWLRQ LQGXFHGFKDQJHVLQDQWLR[LGDQWHQ]\PHVIDWW\DFLGVDQGDPLQRDFLGVLQWKH cyanobacterium 7RO\SRWKUL[VF\WRQHPRLGHV. World Journal of Microbiology & Biotechnology, 23, 251-257 5DPEDXW$ 'UXPPRQG$-  7UDFHU$YDLODEOHIURP KWWS EHDVWELRHGDFXNWUDFHU! 5HQDXG607KLQK/9/DPEULQLGLV* 3DUU\'/  (IIHFWRI temperature on growth, chemical composition and composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195-214 5LFH:5 +RVWHUW((  /DERUDWRU\H[SHULPHQWVRQVSHFLDWLRQ What have we learned in 40 years. (YROXWLRQ, 47, 1637-1653 Rieppel, O. & Kearney, M. (2002) Similarity. Biological Journal of the Linnean Society, 75, 59-82 5RGUtJXH]7UHOOHV)7DUUtR5 $\DOD)-  0ROHFXODUFORFNV whence and whither? 7HOOLQJWKHHYROXWLRQDU\WLPHPROHFXODUFORFNVDQGWKHIRVVLO record HGE\0-'RQRJKXHDQG036PLWK SS7D\ORU )UDQFLV/RQGRQ

References 259 Rokas, A., Williams, B.L., King, N. & Carroll, S.B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature, 425, 798-804 5RQTXLVW) +XHOVHQEHFN-3  0U%D\HV%D\HVLDQSK\ORJHQHWLF LQIHUHQFHXQGHUPL[HGPRGHOVBioinformatics, 19, 1572-1574 5RVV5&R[(-.DUD\HYD1,0DQQ'*3DGGRFN7%%6LPRQVHQ R. & Sims, P.A. (1979) An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia Beihefte, 64, 513-533 5RVVLWHU1 .DZDQDEH+  $QFLHQWODNHV%LRGLYHUVLW\HFRORJ\ and evolution - Advances in ecological research - Preface. $GYDQFHVLQ(FRORJLFDO Research, Vol 31, pp. XII-XVI. Academic Press Ltd, London. 5RXQG)( %XNKWL\DURYD/  )RXUQHZJHQHUDEDVHGRQ Achnanthes (Achnanthidium WRJHWKHUZLWKDUHGL¿QLWLRQRIAchnanthidium. 'LDWRP5HVHDUFK, 11, 245-261 5RXQG)(  %HQWKLFPDULQHGLDWRPVOceanography and Marine %LRORJ\DQ$QQXDO5HYLHZ, 9, 83-139 5RXQG)(  The ecology of algae. Cambrige University Press, Cambridge. 5RXQG)(&UDZIRUG50 0DQQ'*  7KHGLDWRPVELRORJ\DQG morphology of the genera. Cambridge University Press. 5RXVFK-0%LQJKDP6( 6RPPHUIHOG05  &KDQJHVLQIDWW\ DFLGSUR¿OHVRIWKHUPRLQWROHUDQWDQGWKHUPRWROHUDQWPDULQHGLDWRPVGXULQJ temperature stress. -RXUQDORI([SHULPHQWDO0DULQH%LRORJ\DQG(FRORJ\, 295, 145-156 5RXVFK-0%LQJKDP6( 6RPPHUIHOG05  3URWHLQH[SUHVVLRQ during heat stress in thermo-intolerant and thermo-tolerant diatoms. Journal of ([SHULPHQWDO0DULQH%LRORJ\DQG(FRORJ\, 306, 231-243 Roy-Ocotla, G. & Carrera, J. (1993) Aeroalgae - responses to some aerobiological questions. Grana, 32, 48-56 5\QHDUVRQ7$/LQ(2 $UPEUXVW(9  0HWDSRSXODWLRQVWUXFWXUH in the planktonic diatom 'LW\OXPEULJKWZHOOLL (Bacillariophyceae). Protist, 160, 111-121 6DEDFND0 (OVWHU-  5HVSRQVHRIF\DQREDFWHULDDQGDOJDHIURP Antarctic wetland habitats to freezing and desiccation stress. Polar Biology, 30, 31-37 Saint Martin, S. & Saint Martin, J.P. (2005) The diatom assemblages as environmental evolution recording of the Paratethys area during Sarmatian times. Comptes Rendus Palevol, 4, 191-201 6DQGHUVRQ0-  (VWLPDWLQJUDWHVRIVSHFLDWLRQDQGHYROXWLRQD bias due to homoplasy. Cladistics-the International Journal of the Willi Hennig Society, 6, 387-391 6DQGHUVRQ0-  (VWLPDWLQJDEVROXWHUDWHVRIPROHFXODUHYROXWLRQ DQGGLYHUJHQFHWLPHV$SHQDOL]HGOLNHOLKRRGDSSURDFKMolecular Biology and (YROXWLRQ, 19, 101-109 6DQGHUVRQ0-  UVLQIHUULQJDEVROXWHUDWHVRIPROHFXODUHYROXWLRQ and divergence times in the absence of a molecular clock. Bioinformatics, 19, 301-302

260 References 6DUQR'.RRLVWUD:0HGOLQ/.3HUFRSR, =LQJRQH$   'LYHUVLW\LQWKHJHQXVSkeletonema (Bacillariophyceae). II. An assessment of the WD[RQRP\RIS. costatum-like species with the description of four new species. Journal of Phycology, 41, 151-176 6DUQR'.RRLVWUD:%DO]DQR6+DUJUDYHV3( =LQJRQH$   'LYHUVLW\LQWKHJHQXV Skeletonema %DFLOODULRSK\FHDH ,,,3K\ORJHQHWLFSRVLWLRQ and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. Journal of Phycology, 43, 156-170 Savolainen, V., Cowan, R.S., Vogler, A.P., Roderick, G.K. & Lane, R. (2005) 7RZDUGVZULWLQJWKHHQF\FORSDHGLDRIOLIHDQLQWURGXFWLRQWR'1$EDUFRGLQJ Philosophical Transactions of the Royal Society B-Biological Sciences, 360, 1805- 1811 Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K. & Arndt, H.  0ROHFXODULGHQWLW\RIVWUDLQVRIKHWHURWURSKLFÀDJHOODWHVLVRODWHGIURP VXUIDFHZDWHUVDQGGHHSVHDVHGLPHQWVRIWKH6RXWK$WODQWLFEDVHGRQ668U'1$ $TXDWLF0LFURELDO(FRORJ\, 38, 239-247 Schelske, C.L., Carrick, H.J. & Aldridge, F.J. (1995) Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? Journal of the North American Benthological Society, 14, 616-630 6FKOLFKWLQJ+(-  7KHUROHRIZDWHUIRZOLQWKHGLVSHUVDORIDOJDH Transaction of the American Microscopic Society, 79, 160-166 6FKOLFKWLQJ+(-  9LDEOHVSHFLHVRIDOJDHDQGSURWR]RDLQWKH atmosphere. Lloydia, 24, 81-& 6FKOLFKWLQJ+(-  0HWHRURORJLFDOFRQGLWLRQVDIIHFWLQJGLSVHUVDORI airborne algae + protozoa. Lloydia, 27, 64 6FKOLFKWLQJ+(-  7KHLPSRUWDQFHRIDLUERUQHDOJDHDQGSURWR]RD Air Pollution Control Association, 19, 946-951 6FKPLG$00  ,QÀXHQFHRIHQYLURQPHQWDOIDFWRUVRQWKH development of the valve in diatoms. Protoplasma, 99, 99-115 Schmid, A.M.M. (2001) Value of pyrenoids in the systematics of WKHGLDWRPVWKHLUPRUSKRORJ\DQGXOWUDVWUXFWXUHProceedings of the 16th international diatom symposium, pp. 1-32. Schmid, A.M.M. (2009) Induction of resting-spores in the pennate diatom Navicula (Craticula) cuspidata by uncoupling of the cell and plastid cycles. Nova Hedwigia, 85-101 6FKPLGW50lXVEDFKHU5 0OOHU-  +RORFHQHGLDWRPÀRUDDQG stratigraphy from sediment cores of two Antarctic lakes (King George Island). Journal of Paleolimnology, 3, 55-74 6FKROLQ&$+HU]RJ06RJLQ0 $QGHUVRQ'0  ,GHQWL¿FDWLRQ RIJURXSVSHFL¿FDQGVWUDLQVSHFL¿FJHQHWLFPDUNHUVIRUJOREDOO\GLVWULEXWHG $OH[DQGULXP 'LQRSK\FHDH 6HTXHQFHDQDO\VLVRIDIUDJPHQWRIWKH/68 ribosomal RNA gene. Journal of Phycology, 30, 999-1011 6FKROQLN'$  6HDVRQDOYDULDWLRQDQGGLXUQDOÀXFWXDWLRQLQ ephemeral desert pools. Hydrobiologia, 294, 111-116 6FKZDU]*  (VWLPDWLQJGLPHQVLRQRIDPRGHOAnnals of Statistics, 6, 461-464 Scotland, R.W. & Pennington, R.T. (2000) +RPRORJ\DQGV\VWHPDWLFV coding characters for phylogenetic analysis. Taylor and Francis, London.

References 261 Scotland, R.W., Olmstead, R.G. & Bennett, J.R. (2003) Phylogeny UHFRQVWUXFWLRQ7KHUROHRIPRUSKRORJ\Systematic Biology, 52, 539-548 Servant-Vildary, S., Paicheler, J.C. & Semelin, B. (1988) Miocene lacustrine diatoms from Turkey. 3URFHHGLQJVRIWKHWK,QWHUQDWLRQDO'LDWRP6\PSRVLXP Bristol, 1986, pp. 165-180. Biopress Ltd., Koenigstein. 6KDUPD1.5DL$.6LQJK6 %URZQ50  $LUERUQHDOJDH Their present status and relevance. Journal of Phycology, 43, 615-627 6KHSKDUG./  (YDSRUDWLRQRIZDWHUIURPWKHPXFLODJHRID gelatinous algal community. British Phycological Journal, 22, 181-185 Shurin, J.B., Cottenie, K. & Hillebrand, H. (2009) Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia, 159, 151-159 6LFNR*RDG/6WRHUPHU() )DKQHQVWLHO*  5HMXYHQDWLRQRI Melosira granulata %DFLOODULRSK\FHDH UHVWLQJFHOOVIURPWKHDQR[LFVHGLPHQWV RI'RXJODVVODNH0LFKLJDQ/LJKWPLFURVFRS\DQG&XSWDNHJournal of Phycology, 22, 22-28 6LPRQ(01DQQH\'/ 'RHUGHU)3  7KH³Tetrahymena pyriformis´FRPSOH[RIFU\SWLFVSHFLHVBiodiversity and Conservation, 17, 365-380 6LPV3$0DQQ'* 0HGOLQ/.  (YROXWLRQRIWKHGLDWRPV insights from fossil, biological and molecular data. Phycologia, 45, 361-402 Sinclair, B.J., Addo-Bediako, A. & Chown, S.L. (2003) Climatic variability and the evolution of insect freeze tolerance. Biological Reviews, 78, 181-195 6LQJK566WRHUPHU() .DU5  (DUOLHVWIUHVKZDWHU diatoms from the deccan intertrappean (Maastrichtian) sediments of India. Micropaleontology, 52, 545-551 Siver, P.A. & Wolfe, A.P. (2007) (XQRWLDVSS(Bacillariophyceae) from 0LGGOH(RFHQHODNHVHGLPHQWVDQGFRPPHQWVRQWKHRULJLQRIWKHGLDWRPUDSKH &DQDGLDQ-RXUQDORI%RWDQ\5HYXH&DQDGLHQQH'H%RWDQLTXH, 85, 83-90 6LYHU3$:ROIH$3 (GOXQG0%  7D[RQRPLFGHVFULSWLRQVDQG HYROXWLRQDU\LPSOLFDWLRQVRI0LGGOH(RFHQHSHQQDWHGLDWRPVUHSUHVHQWLQJWKH H[WDQWJHQHUD2[\QHLV, Actinella and Nupela (Bacillariophyceae) 3ODQW(FRORJ\DQG (YROXWLRQ, 143, 340-351 Skottsberg, C. (1960) Remarks on the plant geography of the southern cold temperate zone. Proceedings of the Royal Society of London Series B-Biological Sciences, 152, 447-457 âODSHWD-/RSH]*DUFLD3 0RUHLUD'  *OREDOGLVSHUVDODQG ancient cryptic species in the smallest marine eukaryotes. Molecular Biology and (YROXWLRQ, 23, 23-29 Slobodkin, L.B. (1954) Population dynamics in 'DSKQLDREWXVD Kurz. (FRORJLFDO0RQRJUDSKV, 24, 69-88 6PLWK5(+6WDSOHIRUG/& 5LGLQJV56  7KHDFFOLPDWHG response of growth, photosynthesis, composition, and carbon balance to temperature in the psychrophilic ice diatom Nitzschia seriata. Journal of Phycology, 30, 8-16 6PLWK1' 7XUQHU$+  0RUSKRORJ\¶VUROHLQSK\ORJHQ\ UHFRQVWUXFWLRQ3HUVSHFWLYHVIURPSDOHRQWRORJ\Systematic Biology, 54, 166-173 6RLQLQHQ-0F'RQDOG5 +LOOHEUDQG+  7KHGLVWDQFHGHFD\RI similarity in ecological communities. (FRJUDSK\, 30, 3-12

262 References Soininen, J., Paavola, R. & Muotka, T. (2004) Benthic diatom communities LQERUHDOVWUHDPVFRPPXQLW\VWUXFWXUHLQUHODWLRQWRHQYLURQPHQWDODQGVSDWLDO gradients. (FRJUDSK\, 27, 330-342 Sokal, R.R. & Rohlf, F.J. (2000) %LRPHWU\WKHSULQFLSOHVDQGSUDFWLFHRI statistics in biological research, 3 edn. W.H. Freeman, New York. 6RUKDQQXV8  'LDWRPSK\ORJHQHWLFVLQIHUUHGEDVHGRQGLUHFW optimization of nuclear-encoded SSU rRNA sequences. Cladistics-the International Journal of the Willi Hennig Society, 20, 487-497 Sorhannus, U. (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology, 65, 1-12 6RUKDQQXV82UWL]-':ROI0 )R[0*  0LFURHYROXWLRQDQG speciation in 7KDODVVLRVLUDZHLVVÀRJLL (Bacillariophyta). Protist, 161, 237-249 6RXIIUHDX&9DQRUPHOLQJHQ39HUOH\HQ(6DEEH. 9\YHUPDQ W. (2010) Tolerance of benthic diatoms from temperate aquatic and terrestrial KDELWDWVWRH[SHULPHQWDOGHVLFFDWLRQDQGWHPSHUDWXUHVWUHVVPhycologia, 49, 309- 324 6RXIIUHDX&&R[(-6DEEH. 9\YHUPDQ: XQSXEOD 3K\ORJHQHWLF signals in the valve and plastid morphology of the diatom genus Pinnularia. Souffreau, C., Vanormelingen, P. & Vyverman, W. (unpubl. b) Resistance of IUHVKZDWHUEHQWKLFGLDWRPUHVWLQJVWDJHVWRH[SHULPHQWDOGHVLFFDWLRQDQGIUHH]LQJ depends on the temporality of their habitat. Souffreau, C., Vanormelingen, P., Van de Vijver, B., Isheva, T., Verleyen, (6DEEH. 9\YHUPDQ: XQSXEOF 0ROHFXODUHYLGHQFHIRUWKHH[LVWHQFH of distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and +DQW]VFKLDDPSKLR[\V. Souffreau, C., Verbruggen, H., Wolfe, A.P., Vanormelingen, P., Siver, P.A., &R[(-0DQQ'*9DQ'H9LMYHU%6DEEH. 9\YHUPDQ: VXEPLWWHG $ time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Submitted to 0ROHFXODU3K\ORJHQHWLFVDQG(YROXWLRQ 6SDXOGLQJ6$.RFLROHN-3 :RQJ'  $WD[RQRPLFDQG systematic revision of the genus Muelleria (Bacillariophyta). Phycologia, 38, 314- 341 6SDXOGLQJ6$9DQGH9LMYHU%+RGJVRQ$0F.QLJKW'09HUOH\HQ ( 6WDQLVK/  'LDWRPVDVLQGLFDWRUVRIHQYLURQPHQWDOFKDQJHLQ$QWDUFWLF and subantarctic fresh waters. 7KHGLDWRPVDSSOLFDWLRQVIRUWKHHQYLURQPHQWDO and earth sciences HGE\-36PRODQG()6WRHUPHU SS 6WDPDWDNLV$  5$[0/9,+3&0D[LPXPOLNHOLKRRGEDVHG SK\ORJHQHWLFDQDO\VHVZLWKWKRXVDQGVRIWD[DDQGPL[HGPRGHOVBioinformatics, 22, 2688-2690 6WDUN-% 2¶JUDG\30  0RUSKRORJLFDOYDULDWLRQLQWKHIRUHOHJV RIWKH+DZDLLDQ'URVRSKLOLGDH,7KH$0&&ODGHJournal of Morphology, 271, 86-103 6WDUNV7/6KXEHUW/( 7UDLQRU)5  (FRORJ\RIVRLODOJDHD review. Phycologia, 20, 65-80 6WHYHQV0,*UHHQVODGH3+RJJ,' 6XQQXFNV3  6RXWKHUQ KHPLVSKHUHVSULQJWDLOV&RXOGDQ\KDYHVXUYLYHGJODFLDWLRQRI$QWDUFWLFD" 0ROHFXODU%LRORJ\DQG(YROXWLRQ, 23, 874-882 6XQJ'<.DSODQ)/HH.- *X\&/  $FTXLUHGWROHUDQFHWR WHPSHUDWXUHH[WUHPHVTrends in Plant Science, 8, 179-187

References 263 6XWKHUODQG-0+HUGPDQ0 6WHZDUW:'3  $NLQHWHVRIWKH cyanobacterium Nostoc-Pcc-7524. Macromolecular composition, structure and control of differentiation. Journal of General Microbiology, 115, 273-287 Suzuki, Y. & Takahashi, M. (1995) Growth responses of several diatom species isolated from various environments to temperature. Journal of Phycology, 31, 880-888 6ZRIIRUG'/  3$83 3K\ORJHQHWLF$QDO\VLV8VLQJ3DUVLPRQ\ DQG other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Talling, J.F. (1951) The element of chance in pond populations. The Naturalist, 1951, 157-170 Tamaru, Y., Takani, Y., Yoshida, T. & Sakamoto, T. (2005) Crucial role of H[WUDFHOOXODUSRO\VDFFKDULGHVLQGHVLFFDWLRQDQGIUHH]LQJWROHUDQFHLQWKHWHUUHVWULDO cyanobacterium Nostoc commune. $SSOLHGDQG(QYLURQPHQWDO0LFURELRORJ\, 71, 7327-7333 7DWRQ$*UXELVLF6%UDPELOOD('H:LW5 :LOPRWWH$   &\DQREDFWHULDOGLYHUVLW\LQQDWXUDODQGDUWL¿FLDOPLFURELDOPDWVRI/DNH)U\[HOO 0F0XUGRGU\YDOOH\V$QWDUFWLFD $PRUSKRORJLFDODQGPROHFXODUDSSURDFK $SSOLHGDQG(QYLURQPHQWDO0LFURELRORJ\, 69, 5157-5169 7DWRQ$*UXELVLF6%DOWKDVDUW3+RGJVRQ'$/D\ERXUQ3DUU\-  Wilmotte, A. (2006) Biogeographical distribution and ecological ranges of benthic F\DQREDFWHULDLQ(DVW$QWDUFWLFODNHV)HPV0LFURELRORJ\(FRORJ\, 57, 272-289 Taylor, F. (1980) Optimal switching to diapause in relation to the onset of winter. Theoretical Population Biology, 18, 125-133 7D\ORU-:7XUQHU(7RZQVHQG-3'HWWPDQ-5 -DFREVRQ'  (XNDU\RWLFPLFUREHVVSHFLHVUHFRJQLWLRQDQGWKHJHRJUDSKLFOLPLWVRI VSHFLHVH[DPSOHVIURPWKHNLQJGRP)XQJLPhilosophical Transactions of the Royal Society B-Biological Sciences, 361, 1947-1963 7HOIRUG5-9DQGYLN9 %LUNV+-%  'LVSHUVDOOLPLWDWLRQVPDWWHU for microbial morphospecies. Science, 312, 1015-1015 Telford, R.J., Vandvik, V. & Birks, H.J.B. (2006b) How many freshwater diatoms are pH specialists? A response to Pither & Aarssen (2005). (FRORJ\ Letters, 9(( Templeton, A.R. (2008) The reality and importance of founder speciation in evolution. Bioessays, 30, 470-479 Ter Braak, C.J.F., Smilauer, P. (2002) CANOCO reference manual and &DQR'UDZIRU:LQGRZVXVHU¶VJXLGHVRIWZDUHIRUFDQRQLFDOFRPPXQLW\RUGLQDWLRQ (version 4.5). . Microcomputer Power, Ithaca, New York, USA. 7KHULRW(&)ULW]6&:KLWORFN& &RQOH\'-  /DWH4XDWHUQDU\ rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 32, 38-54 7KRPDV'1%DXPDQQ0(0 *OHLW]0  (I¿FLHQF\RIFDUERQ assimilation and photoacclimation in a small unicellular Chaetoceros species from WKH:HGGHOO6HD $QWDUFWLFD LQÀXHQFHRIWHPSHUDWXUHDQGLUUDGLDQFHJournal of ([SHULPHQWDO0DULQH%LRORJ\DQG(FRORJ\, 157, 195-209 7KRPSVRQ-'+LJJLQV'* *LEVRQ7-  &OXVWDO:,PSURYLQJ the sensitivity of progressive multiple sequence alignment through sequence ZHLJKWLQJSRVLWLRQVSHFL¿FJDSSHQDOWLHVDQGZHLJKWPDWUL[FKRLFHNucleic Acids Research, 22, 4673-4680

264 References Tomanek, L. (2008) The importance of physiological limits in determining ELRJHRJUDSKLFDOUDQJHVKLIWVGXHWRJOREDOFOLPDWHFKDQJHWKHKHDWVKRFN response. Physiological and Biochemical Zoology, 81, 709-717 7RUPR55HFLR'6LOYD, 0XQR]$)  $TXDQWLWDWLYH investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. (XURSHDQ-RXUQDORI3K\FRORJ\, 36, 385-390 7UREDMR50DQQ'*&KHSXUQRY9$&ODYHUR( &R[(-   7D[RQRP\OLIHF\FOHDQGDX[RVSRUXODWLRQRINitzschia fonticola (Bacillariophyta). Journal of Phycology, 42, 1353-1372 7UREDMR5&ODYHUR(&KHSXUQRY9$6DEEH.0DQQ'*,VKLKDUD 6 &R[(-  0RUSKRORJLFDOJHQHWLFDQGPDWLQJGLYHUVLW\ZLWKLQWKH widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia, 48, 443- 459 Tronholm, A., Steen, F., Tyberghein, L., Leliaert, F., Verbruggen, H., Siguan, 0$5 GH&OHUFN2  6SHFLHVGHOLPLWDWLRQWD[RQRP\DQGELRJHRJUDSK\RI 'LFW\RWDLQ(XURSH 'LFW\RWDOHV3KDHRSK\FHDH Journal of Phycology, 46, 1301- 1321 7XRPLVWR+5XRNRODLQHQ. 

References 265 Van der Gucht, K., Cottenie, K., Muylaert, K., Vloemans, N., Cousin, S., 'HFOHUFN6-HSSHVHQ(&RQGH3RUFXQD-06FKZHQN.=ZDUW*'HJDQV +9\YHUPDQ: 'H0HHVWHU/  7KHSRZHURIVSHFLHVVRUWLQJ/RFDO factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences of the United States of America, 104, 20404-20409 9DQGHU3XWWHQ19HUEUXJJHQ&2FK\UD59HUOH\HQ( )UHQRW <  6XEDQWDUFWLFÀRZHULQJSODQWVSUHJODFLDOVXUYLYRUVRUSRVWJODFLDO immigrants? Journal of Biogeography, 37, 582-592 9DQ+DQQHQ(-0RRLM:09DQ$JWHUYHOG03*RQV+-  /DDQEURHN+-  'HWULWXVGHSHQGHQWGHYHORSPHQWRIWKHPLFURELDO FRPPXQLW\LQDQH[SHULPHQWDOV\VWHP4XDOLWDWLYHDQDO\VLVE\GHQDWXULQJJUDGLHQW gel electrophoresis. $SSOLHGDQG(QYLURQPHQWDO0LFURELRORJ\, 65, 2478-2484 Van Kerckvoorde, A., Trappeniers, K., Nijs, I. & Beyens, L. (2000) Terrestrial soil diatom assemblages from different vegetation types in Zackenberg (Northeast Greenland). Polar Biology, 23, 392-400 Van Overeem, M.A. (1937) On green organisms occuring in the lower troposhere. 5HFXHLOGHV7UDYDX[%RWDQLTXH1HHUODQGDLV, 34, 388-442 9DQHOVODQGHU%&UHDFK99DQRUPHOLQJHQ3(UQVW$&KHSXUQRY9$ 6DKDQ(0X\]HU*6WDO/-9\YHUPDQ: 6DEEH.  (FRORJLFDO differentiation between sympatric pseudocryptic species in the estuarine benthic diatom Navicula phyllepta (Bacillariophyceae). Journal of Phycology, 45, 1278- 1289 9DQHOVODQGHU%5XsGLJHU).DUVWHQ86DEEH. 9\YHUPDQ: (unpubl.) Thermal niche evolution in the marine diatom genus Cylindrotheca. Vanlandingham, S.L. (1991) Precision dating by means of traditional biostratigraphic methods for the middle Miocene diatomaceous interbeds within the middle Yakima (Wanapum) Basalt of south-central Washington (U.S.A.). Nova Hedwigia, 53, 349-368 9DQRUPHOLQJHQ3&KHSXUQRY9$0DQQ'*6DEEH. 9\YHUPDQ W. (2008a) Genetic divergence and reproductive barriers among morphologically heterogeneous sympatric clones of (XQRWLDELOXQDULVVHQVXODWR (Bacillariophyta). Protist, 159, 73-90 9DQRUPHOLQJHQ39HUOH\HQ( 9\YHUPDQ: E 7KHGLYHUVLW\DQG GLVWULEXWLRQRIGLDWRPVIURPFRVPRSROLWDQLVPWRQDUURZHQGHPLVPBiodiversity and Conservation, 17, 393-405 9DXORW'2OVRQ5- &KLVKROP6:  /LJKWDQGGDUNFRQWURORI the cell-cylce in 2 marine phytoplankton species. ([SHULPHQWDO&HOO5HVHDUFK, 167, 38-52 Veech, J.A., Summerville, K.S., Crist, T.O. & Gering, J.C. (2002) The DGGLWLYHSDUWLWLRQLQJRIVSHFLHVGLYHUVLW\UHFHQWUHYLYDORIDQROGLGHDOikos, 99, 3-9 9HHFK-$ &KULVW72  3$57,7,21VRIWZDUHIRUKLHUDUFKLFDO partitioning of species diversity, version 3.0. ZZZXVHUVPXRKLRHGXFULVWWR partition.htm Velasques, G.T. (1940) On the viability of algae obtained from he digestive tract of the Gizzad Shad, 'RURVRPDFHSHGLDQXP. American Midland Naturalist, 22, 376-412

266 References Verbruggen, H., Tyberghein, L., Pauly, K., Vlaeminck, C., Van 1LHXZHQKX\]H..RRLVWUD:/HOLDHUW) 'H&OHUFN2  0DFURHFRORJ\ PHHWVPDFURHYROXWLRQHYROXWLRQDU\QLFKHG\QDPLFVLQWKHVHDZHHGHalimeda. *OREDO(FRORJ\DQG%LRJHRJUDSK\, 18, 393-405 9HUOH\HQ(9\YHUPDQ:6WHUNHQ0+RGJVRQ'$'H:HYHU  $   -XJJLQV69DQGH9LMYHU%-RQHV9-9DQRUPHOLQJHQ35REHUWV')ORZHU R., Kilroy, C., Souffreau, C. & Sabbe, K. (2009) The importance of dispersal related DQGORFDOIDFWRUVLQVKDSLQJWKHWD[RQRPLFVWUXFWXUHRIGLDWRPPHWDFRPPXQLWLHV Oikos, 118, 1239-1249 9HUOH\HQ(9DQGH9LMYHU%6RXIIUHDX&6DEEH.+RGJVRQ'$ 1HGEDORYD/9DQRUPHOLQJHQ3$QWRQLDGHV' 9\YHUPDQ: XQSXEO 3ROHV DSDUWLQWHUKHPLVSKHULFFRQWUDVWVLQ$UFWLFDQG$QWDUFWLFGLDWRPGLYHUVLW\ 9LFUH0)DUUDQW-0 'ULRXLFK$  ,QVLJKWVLQWRWKHFHOOXODU mechanisms of desiccation tolerance among angiosperm resurrection plant species. 3ODQW&HOODQG(QYLURQPHQW, 27, 1329-1340 9LOODQXHYD9'  'LDWRPGLVWULEXWLRQLQDWHPSRUDU\SRQGIURPWKH Patagonian Andes (Fantasma Pond) during drought. Nova Hedwigia, 83, 459-472 9OHHVKRXZHUV/0%RXZPHHVWHU+- .DUVVHQ&0  5HGH¿QLQJ VHHGGRUPDQF\$QDWWHPSWWRLQWHJUDWHSK\VLRORJ\DQGHFRORJ\Journal of (FRORJ\, 83, 1031-1037 9RQ6WRVFK+$ )HFKHU.  µ,QWHUQDOWKHFDH¶RI(XQRWLDVROHUROLL %DFLOODULRSK\FHDH GHYHORSPHQWVWUXFWXUHDQGIXQFWLRQDVUHVWLQJVSRUHV Journal of Phycology, 15, 223-243 9\YHUPDQ:6DEEH.0DQQ'*.LOUR\&9\YHUPDQ59DQKRXWWH . +RGJVRQ'  (XQRSKRUDJHQQRY(Bacillariophyta) from Tasmania and 1HZ=HDODQGGHVFULSWLRQDQGFRPSDULVRQZLWK(XQRWLDand amphoroid diatoms. (XURSHDQ-RXUQDORI3K\FRORJ\, 33, 95-111 9\YHUPDQ:9HUOH\HQ(6DEEH.9DQKRXWWH.6WHUNHQ0 +RGJVRQ'$0DQQ'*-XJJLQV6'H9LMYHU%9-RQHV9)ORZHU5 5REHUWV'&KHSXUQRY9$.LOUR\&9DQRUPHOLQJHQ3 'H:HYHU$   Historical processes constrain patterns in global diatom diversity. (FRORJ\, 88, 1924-1931 :DJQHU*3  &KDUDFWHUVXQLWVDQGQDWXUDONLQGVDQLQWURGXFWLRQ The character concept in evolutionary biology (ed. by G.P. Wagner), pp. 1-10. $FDGHPLF3UHVV6DQ'LHJR Wallace, A.R. (1876) The geographical distribution of animals. McMillan, London. :DUG%% 2¶0XOODQ*'  :RUOGZLGHGLVWULEXWLRQRINitrosococcus oceaniDPDULQHDPPRQLDR[LGL]LQJJDPPDSURWHREDFWHULXPGHWHFWHGE\ PCR and sequencing of 16S rRNA and amoA genes. $SSOLHGDQG(QYLURQPHQWDO Microbiology, 68, 4153-4157 Wegener, A.L. (1924) The origin of continents and oceans. Translated by J.G.A. Skerl. Methuen, London. :HOVK'7  (FRORJLFDOVLJQL¿FDQFHRIFRPSDWLEOHVROXWH DFFXPXODWLRQE\PLFURRUJDQLVPVIURPVLQJOHFHOOVWRJOREDOFOLPDWHFems Microbiology Reviews, 24, 263-290 :HUQHU'  The biology of diatoms. University of California Press. :KLWDNHU5-*URJDQ': 7D\ORU-:  *HRJUDSKLFEDUULHUV isolate endemic populations of hyperthermophilic archaea. Science, 301, 976-978

References 267 Whittaker, R.H. (1960) Vegetation of the Siskiyou mountains, Oregon and California. (FRORJLFDO0RQRJUDSKV, 30, 279-338 :KLWWDNHU5+  (YROXWLRQDQGPHDVXUHPHQWRIVSHFLHVGLYHUVLW\ 7D[RQ, 21, 213-251 Wiens, J.J. (1998) Combining data sets with different phylogenetic histories. Systematic Biology, 47, 568-581 :LHQV--  &KDUDFWHUDQDO\VLVLQPRUSKRORJLFDOSK\ORJHQHWLFV Problems and solutions. Systematic Biology, 50, 689-699 :LHUVPD<) 8UEDQ'/  %HWDGLYHUVLW\DQGQDWXUHUHVHUYH system design in the Yukon, Canada. Conservation Biology, 19, 1262-1272 Witt, O.N. (1886) Ueber den Polierschiefer von Archangelsk-Kurojedowo im Gouv. Simbirsk. Verhandlungen der Russisch-Kaiserlichen Mineralogischen Gesellschaft zu St Petersburg, series 2, pp. 137-177. :ROIH$3 6LYHU3$  7KUHHH[WDQWJHQHUDRIIUHVKZDWHU 7KDODVVLRVLURLGGLDWRPVIURPPLGGOH(RFHQHVHGLPHQWVLQQRUWKHUQ&DQDGD American Journal of Botany, 96, 487-497 :RRG7(7DNHED\DVKL1%DUNHU060D\URVH,*UHHQVSRRQ3%  Rieseberg, L.H. (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 13875-13879 Wortley, A.H. & Scotland, R.W. (2006) The effect of combining molecular and morphological data in published phylogenetic analyses. Systematic Biology, 55, 677-685 :\QQZLOOLDPV''  $HURELRORJ\DQGFRORQL]DWLRQLQ$QWDUFWLFD The Biotas program. Grana, 30, 380-393 Xiao, X.W., Xu, X. & Yang, F. (2008) Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica, 42, 705-719 Yang, J., Wang, Y.F., Spicer, R.A., Mosbrugger, V., Li, C.S. & Sun, Q.G. (2007) Climatic reconstruction at the miocene shanwang basin, China, using OHDIPDUJLQDQDO\VLVFODPSFRH[LVWHQFHDSSURDFKDQGRYHUODSSLQJGLVWULEXWLRQ analysis. American Journal of Botany, 94, 599-608

268 References Summary / Samenvatting

Summary Until recently, the geographical distribution of microorganisms was assumed to be only controlled by local ecological factors (species sorting); their high local abundances and small size would increase ‘Ž’›ȱ’œ™Ž›œŠ•ȱ™›˜‹Š‹’•’’ŽœȱœžĜȱȱŒ’Ž—•¢ȱ˜ȱ˜ŸŽ›Œ˜–ŽȱŠ••ȱŽ˜›Š™‘’ŒŠ•ȱ barriers (Finlay et al.ǰȱŘŖŖŘǼǯȱ’—ŒŽȱ‘Ž—ǰȱœŽŸŽ›Š•ȱœž’Žœȱ‘ŠŸŽȱ›ŽŒŽ—•¢ȱ suggested and shown that when using a higher taxonomical ›Žœ˜•ž’˜—ǰȱ –’Œ›˜˜›Š—’œ–œȱ ˜ȱ ‘ŠŸŽȱ Ž˜›Š™‘’ŒŠ••¢ȱ ›Žœ›’ŒŽȱ ’œ›’‹ž’˜—œȱ ŠěȱŽŒŽȱ ‹¢ȱ ‘’œ˜›’ŒŠ•ȱ ŠŒ˜›œȱ ǻ›ŽŸ’Ž Žȱ ’—ȱ ›ŽŽ—ȱ ǭȱ Bohannan, 2006; Martiny et al. 2006). Also for diatoms, recent studies žœ’—ȱ’ěȱŽ›Ž—ȱŽŒ‘—’šžŽœȱ‘ŠŸŽȱœ‘˜ —ȱ‘Šȱ–Š›’—ŽȱŠ—ȱ•ŠŒžœ›’—Žȱ ’Š˜–ȱ’œ›’‹ž’˜—œȱŠ›Žȱœ‘Š™Žȱ‹¢ȱ‹˜‘ȱŽ—Ÿ’›˜—–Ž—Š•ȱŠŒ˜›œȱŠ—ȱ ’œ™Ž›œŠ•ȱ•’–’Š’˜—ȱǻ˜Š™˜ŸŠȱǭȱ‘Š›•ŽœǰȱŘŖŖŘDzȱ˜’—’—Ž—ȱet al., 2004; Telford et alǯǰȱŘŖŖŜDzȱ¢ŸŽ›–Š—ȱet al., 2007; Verleyen et al.ǰȱŘŖŖşDzȱŸŠ—œȱ et al.ǰȱŘŖŖşDzȱŠœŽ•Ž¢— et al., 2010). ž›’—ȱ‘’œȱ‘Žœ’œǰȱ ŽȱŠ’–Žȱ˜ȱ’–™›˜ŸŽȱ˜ž›ȱž—Ž›œŠ—’—ȱ˜ȱ ‘Žȱ›˜•Žȱ˜ȱ’œ™Ž›œŠ•ȱ•’–’Š’˜—ȱ˜›ȱŽ—Ž›Š’—ȱŽ˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œȱ in lacustrine and terrestrial diatoms by analyzing global and regional œŒŠ•Žȱ ‹’˜’ŸŽ›œ’¢ȱ ™ŠĴȱŽ›—œǰȱ ’–ŽȬŒŠ•’‹›ŠŽȱ ™‘¢•˜Ž—’Žœȱ Š—ȱ ˜œœ’•ȱ ŽŸ’Ž—ŒŽǰȱ Š—ȱ ‹¢ȱ ŽŒ˜™‘¢œ’˜•˜’ŒŠ•ȱ œž’Žœȱ Ž¡Š–’—’—ȱ ‘Žȱ œ›Žœœȱ ˜•Ž›Š—ŒŽȱ ˜›ȱ ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱ ŠŒ˜›œǯȱ ž›ȱ ™›’–Š›¢ȱ ˜Œžœȱ Šœȱ ‘Žȱ ǻœž‹ȬǼ—Š›Œ’Œȱ›Ž’˜—ȱ‹ŽŒŠžœŽȱ˜ȱ‘Žȱ›Ž•Š’ŸŽ•¢ȱœ™ŽŒ’ŽœȬ™˜˜›ȱ’Š˜–ȱ Ěȱ˜›ŠȱŠ—ȱœ›˜—ȱŽ›ŽŽȱ˜ȱŽ˜›Š™‘’ŒŠ•ȱ’œ˜•Š’˜—ȱ˜—ȱ’ěȱŽ›Ž—ȱœ™Š’Š•ȱ scales. In chapter 2ǰȱ Žȱ Š—Š•¢£Žȱ ‘Žȱ ‹’˜Ž˜›Š™‘’ŒŠ•ȱ ™ŠĴȱŽ›—œȱ ˜ȱ lacustrine diatoms in the Antarctic and Arctic and combined these ›Žœž•œȱ ’‘ȱ˜œœ’•ȱŠŠȱŠ—ȱŠȱ’–ŽȬŒŠ•’‹›ŠŽȱ–˜•ŽŒž•Š›ȱ™‘¢•˜Ž—¢ǯȱ ˜–™Š›Žȱ˜ȱ‘Žȱ›Œ’ŒȱŒ˜––ž—’’Žœǰȱ—Š›Œ’Œȱ’Š˜–ȱŒ˜––ž—’’Žœȱ Š›Žȱ ’–™˜ŸŽ›’œ‘Žȱ Š—ȱ ’–‹Š•Š—ŒŽǰȱ Š—ȱ Š›Žȱ Œ‘Š›ŠŒŽ›’£Žȱ ‹¢ȱ ‘’‘ȱ •ŽŸŽ•œȱ˜ȱŽ—Ž–’œ–ǰȱ‘ŽȱŠ‹œŽ—ŒŽȱ˜ȱ”Ž¢ȱž—Œ’˜—Š•ȱ›˜ž™œȱœžŒ‘ȱŠœȱ ™•Š—”˜—’Œȱ Š¡Šǰȱ Š—ȱ ˜ŸŽ››Ž™›ŽœŽ—Š’˜—ȱ ˜ȱ Ž››Žœ›’Š•ȱ •’—ŽŠŽœǰȱ Š—ȱ a general paucity of globally successful genera. A comparison of Œ˜—Ž–™˜›Š›¢ȱ —Š›Œ’Œȱ Ěȱ˜›Šœȱ ’‘ȱ ˜œœ’•ȱ ’˜ŒŽ—Žȱ ŠœœŽ–‹•ŠŽœȱ

Summary / Samenvatting 271 Š—ȱ Šȱ –˜•ŽŒž•Š›ȱ Œ•˜Œ”ȱ Š—Š•¢œ’œȱ ˜ȱ ’ŸŽ›œ’ęȱŒŠ’˜—ȱ ™ŠĴȱŽ›—œȱ ™˜’—ȱ to high rates of local extinction during Neogene and Quaternary glacial maxima, in combination with radiations through allopatric speciation in glacial refugia. This indicates that processes controlling ‘Žȱ’œ›’‹ž’˜—ȱŠ—ȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ’Š˜–œȱŒŠ—ȱ˜™Ž›ŠŽȱŠȱœ’–’•Š›ȱ spatial and temporal scales as those for macroscopic organisms, ›Žœž•’—ȱ’—ȱŒ˜—›žŽ—ȱ‹’˜Ž˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œǯȱ In chapter 3, we examined if terrestrial and lacustrine diatoms œ‘˜ ȱ’ěȱŽ›Ž—ȱ™ŠĴȱŽ›—œȱ’—ȱŽ˜›Š™‘’ŒŠ•ȱœ›žŒž›ŽȱŠȱ’ěȱŽ›Ž—ȱœ™Š’Š•ȱ scales, using distance decay analysis of community similarities ˜ȱ ’Š˜–ȱ ŠœœŽ–‹•ŠŽœȱ ˜—ȱ ‘Žȱ œž‹Ȭ—Š›Œ’Œȱ ’œ•Š—œȱ ›˜£Žȱ Š—ȱ Ž›žŽ•Ž—ǰȱ œ’žŠŽȱ ’—ȱ ‘Žȱ ˜ž‘Ž›—ȱ —’Š—ȱ ŒŽŠ—ǰȱ Š—ȱ ˜ž‘ȱ Ž˜›’Šǰȱœ’žŠŽȱ’—ȱ‘Žȱ˜ž‘Ž›—ȱ•Š—’ŒȱŒŽŠ—ǯȱŽȱ˜‹œŽ›ŸŽȱ‘Šȱ ’‘’—ȱ ’œ•Š—œȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ ǻΆȬ’ŸŽ›œ’¢Ǽȱ Šœȱ ›Ž•Š’ŸŽ•¢ȱ ‘’‘ȱ ˜›ȱ‘Žȱ ˜ȱŒ˜––ž—’’ŽœȱŒ˜–™Š›Žȱ˜ȱ‘Žȱ ’‘’—Ȭœ’Žȱǻ΅Ǽȱ’ŸŽ›œ’¢ǰȱ ™˜œœ’‹•¢ȱ ›ŽĚȱŽŒ’—ȱ œ–Š••ȬœŒŠ•Žȱ Ž—Ÿ’›˜—–Ž—Š•ȱ ’ěȱŽ›Ž—’Š’˜—ȱ Š—ȱ œ™ŽŒ’Žœȱ œ˜›’—ȱ ˜›ȱ œ›˜—ȱ ™›’˜›’¢ȱ ŽěȱŽŒœǯȱ ŽŠ— ‘’•Žǰȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ‘ŠȱŠȱœ’—’ęȱŒŠ—•¢ȱ•˜ Ž›ȱž›—˜ŸŽ›ȱ ’‘’—ȱ’œ•Š—œȱŒ˜–™Š›Žȱ ˜ȱ ŠšžŠ’Œȱ Œ˜––ž—’’Žœǰȱ œžŽœ’—ȱ ‘’‘Ž›ȱ ’œ™Ž›œŠ•ȱ ›ŠŽœȱ Š—Ȧ˜›ȱ ‹›˜ŠŽ›ȱ—’Œ‘Žœȱ˜›ȱ•ŽœœȱŽ—Ÿ’›˜—–Ž—Š•ȱŸŠ›’Š’˜—ȱ‹Ž ŽŽ—ȱ‘Žȱœ’Žœǯȱȱ Š—ȱ’—Ž›–Ž’ŠŽȱœŒŠ•Žǰȱ ’‘’—ȱ‘Žȱ˜ž‘ȱ —’Š—ȱŒŽŠ—ȱ›Ž’˜—ȱǻca. 1,500 ”–Ǽǰȱ‘Ž›Žȱ ŠœȱŠȱ—˜—Ȭœ’—’ęȱŒŠ—ȱ›Ž—ȱ˜ Š›œȱ‘’‘Ž›ȱŒ˜––ž—’¢ȱ œ’–’•Š›’’ŽœȱŠ—ȱ•˜ Ž›ȱž›—˜ŸŽ›ȱ˜›ȱŽ››Žœ›’Š•ȱŒ˜––ž—’’Žœǰȱ ‘’•ŽȱŠȱ the largest spatial, among the two oceanic basins (ca.ȱŜǰŖŖŖȱ”–Ǽǰȱ‹˜‘ȱ communities showed a strong decrease in community similarity, Š•‹Ž’ȱ˜—•¢ȱœ’—’ęȱŒŠ—ȱ˜›ȱ‘ŽȱŽ››Žœ›’Š•ȱŠŠœŽǯȱ‘ŽœŽȱęȱ›œȱ›Žœž•œȱ œžŽœȱ ‘Šȱ Ž››Žœ›’Š•ȱ Š—ȱ ŠšžŠ’Œȱ ’Š˜–œȱ Œ˜ž•ȱ ’ěȱŽ›ȱ ’—ȱ ‘Ž’›ȱ dispersal probabilities at small to intermediate scales, but further ›ŽœŽŠ›Œ‘ȱ œ‘˜ž•ȱ Œ˜—›˜•ȱ ˜›ȱ Šȱ ™˜œœ’‹•Žȱ ’—ĚȱžŽ—ŒŽȱ ˜ȱ Ž—Ÿ’›˜—–Ž—Š•ȱ ŸŠ›’Š’˜—ǯȱ In chapter 4ȱ Žȱ Œ˜—œ›žŒŽȱ Šȱ ˜œœ’•ȬŒŠ•’‹›ŠŽȱ ’–ŽȬœŒŠ•Žȱ phylogeny of the diatom genus Pinnularia to explore the importance ˜ȱ’–Žȱ’—ȱœ™ŽŒ’Š’˜—ȱŽŸŽ—œǯȱœ’—ȱŠȱęȱŸŽȬ•˜ŒžœȱŠŠœŽȱ Žȱ’—Ž››Žȱ ‘Žȱ ’—Ž›œ™ŽŒ’ęȱŒȱ ŽŸ˜•ž’˜—Š›¢ȱ ›Ž•Š’˜—œ‘’™œȱ ˜›ȱ řŜȱ Pinnularia taxa. ȱ›Š—Žȱ˜ȱ˜œœ’•ȱŠ¡Šǰȱ’—Œ•ž’—ȱ—Ž •¢Ȭ’œŒ˜ŸŽ›Žȱ’•Žȱ˜ŒŽ—Žȱ forms of Pinnularia, were used to calibrate a relaxed molecular Œ•˜Œ”ȱ Š—Š•¢œ’œȱ Š—ȱ ’—ŸŽœ’ŠŽȱ ‘Žȱ Ž–™˜›Š•ȱ Šœ™ŽŒœȱ ˜ȱ ‘Žȱ Ž—žœȂȱ ’ŸŽ›œ’ęȱŒŠ’˜—ǯȱ‘Žȱ–ž•’ȬŽ—ŽȱŠ™™›˜ŠŒ‘ȱ›Žœž•Žȱ’—ȱŠȱ Ž••Ȭ›Žœ˜•ŸŽȱ ™‘¢•˜Ž—¢ȱ Œ˜—œ’œ’—ȱ ˜ȱ ‘›ŽŽȱ –Š“˜›ȱ Œ•ŠŽœȱ Š—ȱ œŽŸŽ›Š•ȱ œž‹Œ•ŠŽœȱ ‘Šȱ Ž›Žȱ ›ŽšžŽ—•¢ǰȱ ‹žȱ —˜ȱ ž—’ŸŽ›œŠ••¢ǰȱ Ž•’–’Žȱ ‹¢ȱ ŸŠ•ŸŽȱ –˜›™‘˜•˜¢ǯȱ’ŸŽ›œ’ęȱŒŠ’˜—ȱ˜ȱ‘ŽȱŽ—žœȱ’œȱŽœ’–ŠŽȱ˜ȱ‘ŠŸŽȱœŠ›Žȱ

272 Summary / Samenvatting ca.ȱŜŖȱŠȱŠ˜ǰȱŗŖȱ˜ȱřŖȱŠȱŽŠ›•’Ž›ȱ‘Š—ȱ‘Žȱ˜œœ’•ȱ›ŽŒ˜›ȱœžŽœœǰȱ Š—ȱ–˜œȱ•Š›Ž›ȱŒ•ŠŽœȱ’ŸŽ›Žȱ’—ȱ‘Žȱ’˜ŒŽ—ŽǰȱŠ••˜ ’—ȱ‘Ž–ȱ˜ȱ successfully disperse worldwide. In chapter 5 we used the molecular phylogeny created in chapter 4 to compare the phylogenetic signal of molecular and –˜›™‘˜•˜’ŒŠ•ȱŠŠǯȱŽȱ™Ž›˜›–ŽȱŠȱŒ•Š’œ’ŒȱŠ—Š•¢œ’œȱ˜—ȱŚŞȱœ›Š’—œȱ žœ’—ȱŗŝȱ›žœž•ŽȱŠ—ȱřȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›œǯȱ —Ž™Ž—Ž—ȱ™‘¢•˜Ž—Ž’Œȱ analyses of molecular and morphological data generated similar Œ•ŠŽœǰȱ Š—ȱ Š—Ž•ȱ Žœœȱ ˜ž—ȱ Šȱ œ’—’ęȱŒŠ—ȱ Œ˜››Ž•Š’˜—ȱ ‹Ž ŽŽ—ȱ –˜›™‘˜•˜’ŒŠ•ȱ Š—ȱ –˜•ŽŒž•Š›ȱ ’œŠ—ŒŽœǯȱ ˜ ŽŸŽ›ǰȱ ‘’•Žȱ ™‘¢•˜›Š–œȱ ‹ŠœŽȱ ˜—ȱ ęȱŸŽȱ –˜•ŽŒž•Š›ȱ –Š›”Ž›œȱ Œ˜—Š’—’—ȱ ’—ȱ ˜Š•ȱ ŗǰŖŗŘȱ ™Š›œ’–˜—¢Ȭ’—˜›–Š’ŸŽȱ œ’Žœȱ Ž›Žȱ ž••¢ȱ ›Žœ˜•ŸŽǰȱ ‘Žȱ •˜ Ž›ȱ —ž–‹Ž›ȱ ˜ȱ ™‘¢•˜Ž—Ž’ŒŠ••¢ȱ ’—˜›–Š’ŸŽȱ –˜›™‘˜•˜’ŒŠ•ȱ Œ‘Š›ŠŒŽ›œȱ ’—ŽŸ’Š‹•¢ȱ ›Žœž•Žȱ ’—ȱ Ž Ž›ȱ Œ•ŠŽœȱ ‹Ž’—ȱ ›ŽŒ˜ŸŽ›Žǰȱ Š—ȱ Žȱ Ž›Žȱ —ŽŸŽ›ȱŠ‹•Žȱ˜ȱž••¢ȱ›Žœ˜•ŸŽȱ‘Žȱ’—Ž›œ™ŽŒ’ęȱŒȱ›Ž•Š’˜—œ‘’™œȱ˜ȱPinnularia ‹ŠœŽȱ ˜—ȱ –˜›™‘˜•˜¢ǯȱ ‘Žȱ ‹Žœȱ ›Žœ˜•ž’˜—ȱ ˜›ȱ –˜›™‘˜•˜¢Ȭ‹ŠœŽȱ œ™ŽŒ’Žœȱ’ěȱŽ›Ž—’Š’˜—ȱ ŠœȱŠŒšž’›Žȱ‹¢ȱŠ—Š•¢£’—ȱŠ••ȱ–˜›™‘˜•˜’ŒŠ•ȱ characters simultaneously. Mainly “structural” characters (such as ŒŽ—›Š•ȱ ›Š™‘Žȱ Ž—’—œǰȱ ›Š™‘Žȱ Œ˜–™•Ž¡’¢ȱ Š—ȱ Š•ŸŽ˜•žœȱ ˜™Ž—’—œǼȱ Š—ȱ˜—Žȱ™•Šœ’ȱŒ‘Š›ŠŒŽ›ȱǻ—ž–‹Ž›ȱ˜ȱ™¢›Ž—˜’œǼȱ Ž›Žȱ’—˜›–Š’ŸŽȱ for reconstructing the phylogenetic relationships within the genus. In chapter 6, we used two presumed cosmopolitan taxa, Pinnularia borealis and Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ, to assess the molecular ’ŸŽ›Ž—ŒŽȱ ‹Ž ŽŽ—ȱ —Š›Œ’Œȱ œ›Š’—œȱ Š—ȱ œ›Š’—œȱ ›˜–ȱ ˜‘Ž›ȱ locations. Molecular phylogenies based on the plastid gene rbcL Š—ȱ ‘Žȱ ŘŞȱ ›ȱ ŗȬŘȱ ›Ž’˜—ȱ ›ŽŸŽŠ•Žȱ ‘Šȱ P. borealis and ǯȱ Š–™‘’˜¡¢œ are two species complexes consisting of multiple Ž—Ž’ŒŠ••¢ȱ ’ŸŽ›Žȱ •’—ŽŠŽœǰȱ ŽŠŒ‘ȱ ’—Œ•ž’—ȱ Šȱ ’œ’—Œȱ —Š›Œ’Œȱ •’—ŽŠŽǯȱ ȱ –˜•ŽŒž•Š›ȱ ’–ŽȬŒŠ•’‹›Š’˜—ȱ Žœ’–ŠŽœȱ ‘Žȱ ˜›’’—ȱ ˜ȱ ‘Žȱ species complex P. borealis ŠȱřśǯŜȱ–’••’˜—ȱ¢ŽŠ›œȱǻŠǼȱŠ˜ǰȱŠ—ȱ‘Žȱ ęȱ›œȱ•’—ŽŠŽȱœ™•’Ĵȱ’—ȱ‹ŠœŽȱ˜—ȱŽ¡Š—ȱŠ¡ŠȱŠȱŘŘǯŖȱŠǰȱ–Š”’—ȱ‘’œȱ ‘Žȱ˜•Žœȱ”—˜ —ȱ’Š˜–ȱœ™ŽŒ’ŽœȱŒ˜–™•Ž¡ǯȱ‘Žȱ—Š›Œ’ŒȱP. borealis •’—ŽŠŽȱ’œȱŽœ’–ŠŽȱ˜ȱ‘ŠŸŽȱ’ŸŽ›ŽȱŝǯŝȱǻŗśȬŘǼȱŠȱŠ˜ȱ›˜–ȱ’œȱœ’œŽ›ȱ •’—ŽŠŽǰȱŠŽ›ȱ‘Žȱęȱ—Š•ȱ˜™Ž—’—ȱ˜ȱ‘Žȱ›Š”ŽȱŠœœŠŽǰȱœžŽœ’—ȱ‘Žȱ ˜ŒŒž››Ž—ŒŽȱ˜ȱŠȱ•˜—Ȭ’œŠ—ŒŽȱ’œ™Ž›œŠ•ȱŽŸŽ—ȱ˜••˜ Žȱ‹¢ȱŠ••˜™Š›’Œȱ speciation. In addition, the Antarctic lineages of both P. borealis and ǯȱŠ–™‘’˜¡¢œȱ‘ŠȱŠȱ‘’‘Ž›ȱ›Ž•Š’ŸŽȱ›˜ ‘ȱ›ŠŽȱŠȱ•˜ ȱŽ–™Ž›Šž›Žǰȱ a lower optimal temperature and lethal upper temperature than most lineages from more temperate regions, indicating thermal —’Œ‘Žȱ’ěȱŽ›Ž—’Š’˜—ǯȱ‘ŽœŽȱŠŠȱ’—’ŒŠŽȱ‘Šȱ–Š—¢ȱ˜ȱ‘Žȱ™›Žœž–Žȱ cosmopolitan Antarctic diatom species are in fact species complexes,

Summary / Samenvatting 273 possibly containing Antarctic endemic lineages. In chapter 7ǰȱ ŽȱŒ˜—žŒŽȱŠȱ•Š‹˜›Š˜›¢ȱŽ¡™Ž›’–Ž—ȱžœ’—ȱřŚȱ ‹Ž—‘’Œȱ›Žœ‘ ŠŽ›ȱŠ—ȱŽ››Žœ›’Š•ȱ’Š˜–ȱœ›Š’—œȱ˜ȱ’—ŸŽœ’ŠŽȱ‘Žȱ ˜•Ž›Š—ŒŽȱ •ŽŸŽ•œȱ ˜ȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ ˜›ȱ  ˜ȱ ’œ™Ž›œŠ•Ȭ›Ž•ŠŽȱ œ›Žœœȱ ŠŒ˜›œǰȱ—Š–Ž•¢ȱŽœ’ŒŒŠ’˜—ȱŠ—ȱŽ¡›Ž–ŽȱŽ–™Ž›Šž›Žœǯȱ’¡ȱ’ěȱŽ›Ž—ȱ œ›Žœœȱ Œ˜—’’˜—œȱ Ž›Žȱ œž’ŽDZȱ ›ŠžŠ•ȱ ‘ŽŠ’—ȱ ž™ȱ ˜ȱ ƸřŖǚȱ Š—ȱ ƸŚŖǚǰȱŠ‹›ž™ȱ‘ŽŠ’—ȱ˜ȱƸŚŖǚǰȱ›ŽŽ£’—ȱ˜ȱȬŘŖǚǰȱŠ—ȱŽœ’ŒŒŠ’˜—ȱ ’‘ȱŠ—ȱ ’‘˜žȱ™›ŽŒ˜—’’˜—’—ȱŠȱƸřŖǚǯȱž›ȱ›Žœž•œȱœ‘˜ Žȱ‘Šȱ ŸŽŽŠ’ŸŽȱ ’Š˜–ȱ ŒŽ••œȱ Š›Žȱ ŸŽ›¢ȱ œŽ—œ’’ŸŽȱ ˜›ȱ Žœ’ŒŒŠ’˜—ǰȱ Šœȱ —˜—Žȱ ˜ȱ ‘Žȱ œ›Š’—œȱ œž›Ÿ’ŸŽȱ ‘’œȱ ›ŽŠ–Ž—ǯȱ ˜•Ž›Š—ŒŽȱ ˜ȱ Ž–™Ž›Šž›Žȱ Ž¡›Ž–Žœȱ ǻƸŚŖǚȱ Š—ȱ ȬŘŖǚǼȱ Šœȱ ˜ȱ Šȱ •Š›Žȱ Ž¡Ž—ȱ œ™ŽŒ’ŽœȬœ™ŽŒ’ęȱŒǯȱ ˜ ŽŸŽ›ǰȱ ˜—•¢ȱ Ž››Žœ›’Š•ȱ œ™ŽŒ’Žœȱ œž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱ Š—ȱ ŠšžŠ’Œȱ ’Š˜–œȱ Ž›Žȱ•Žœœȱ˜•Ž›Š—ȱ˜ȱ›ŠžŠ•ȱ‘ŽŠ’—ȱ˜ȱƸŚŖǚǰȱ‹˜‘ȱ™˜’—’—ȱ at a higher tolerance of terrestrial diatoms to temperature extremes, and indicating that terrestrial diatoms are adapted to their habitat. In chapter 8, we experimentally assessed the tolerance for desiccation and freezing of diatom resting cells, in comparison to ŸŽŽŠ’ŸŽȱŒŽ••œǰȱ˜›ȱŗŝȱ‹Ž—‘’Œȱ›Žœ‘ ŠŽ›ȱ–˜›™‘˜œ™ŽŒ’Žœȱ˜ŒŒž››’—ȱ ˜ŸŽ›ȱŠȱ›Š’Ž—ȱ›˜–ȱ™Ž›–Š—Ž—ȱŠšžŠ’Œȱ‘Š‹’Šœȱ˜ȱŽ››Žœ›’Š•ȱœ˜’•œǰȱ ’Ÿ’Žȱ ’—˜ȱ ęȱŸŽȱ –˜’œž›Žȱ ŒŠŽ˜›’Žœǯȱ Žœ’—ȱ ŒŽ••ȱ ˜›–Š’˜—ȱ Šœȱ ’—’’ŠŽȱ ‹¢ȱ —’›˜Ž—ȱ Ž™•Ž’˜—ȱ ’—ȱ Š›”ȱ Œ˜—’’˜—œǯȱ œȱ ˜‹œŽ›ŸŽȱ ™›ŽŸ’˜žœ•¢ǰȱ ŸŽŽŠ’ŸŽȱ ŒŽ••œȱ Ž›Žȱ ’—ȱ Ž—Ž›Š•ȱ ‘’‘•¢ȱ œŽ—œ’’ŸŽȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ǯȱ—•¢ȱœ›Š’—œȱ˜ȱ‘›ŽŽȱŽ››Žœ›’Š•ȱŠ¡Šȱœž›Ÿ’ŸŽȱ ›ŽŽ£’—ȱŠœȱŸŽŽŠ’ŸŽȱŒŽ••œȱ ‘’•ŽȱŠȱœ’—•Žȱœ›Š’—ȱœž›Ÿ’ŸŽȱśȱ–’—žŽœȱ of desiccation. In contrast, resting cells showed a higher tolerance for desiccation, especially when preceded by a heat treatment, Š—ȱ–˜›Žȱœ›Š’—œȱŠ—ȱŠ¡Šȱœž›Ÿ’ŸŽȱ›ŽŽ£’—ǰȱŠ•‹Ž’ȱ˜Ž—ȱ ’‘ȱ•˜ ȱ œž›Ÿ’ŸŠ•ȱ ™Ž›ŒŽ—ŠŽœȱ Š—ȱ Šȱ •Š›Žȱ ’—Ž›Œ•˜—Š•ȱ ŸŠ›’Š’˜—ǯȱ ›’”’—•¢ǰȱ only the resting cells of terrestrial taxa, i.e. those occurring mainly in wet and moist or temporarily dry places (moisture category 4) ˜›ȱ —ŽŠ›•¢ȱ Ž¡Œ•žœ’ŸŽ•¢ȱ ˜žœ’Žȱ ŠŽ›ȱ ‹˜’Žœȱ ǻŒŠŽ˜›¢ȱ śǼȱ œž›Ÿ’ŸŽȱ Žœ’ŒŒŠ’˜—ȱŠ—ȱ›ŽŽ£’—ǰȱ’—’ŒŠ’—ȱ‘Žȱ™›ŽœŽ—ŒŽȱ˜ȱ‘Š‹’ŠȬœ™ŽŒ’ęȱŒȱ ŠŠ™Š’˜—œȱ˜ȱ‘ŽœŽȱŠŸŽ›œŽȱŒ˜—’’˜—œǯ From the results gathered in this thesis, we can conclude that diatom biogeographies are shaped by the same processes ˜™Ž›Š’—ȱ˜›ȱ–ŠŒ›˜‹’˜Šǯȱ’˜Ž˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œȱŠȱ•Š›Žȱœ™Š’Š•ȱ scales indicate that historical factors and dispersal limitation are at ˜›”ǰȱ ‘’•Žȱ Šȱ ˜˜ȱ •˜ ȱ Š¡˜—˜–’ŒŠ•ȱ ›Žœ˜•ž’˜—ȱ Š—ȱ ‘Žȱ ™›ŽŸŠ•Ž—ŒŽȱ ˜ȱŒ›¢™’Œȱœ™ŽŒ’Žœȱœ’••ȱ–Šœ”ȱœ˜–Žȱ˜ȱ‘ŽȱŽ˜›Š™‘’ŒŠ•ȱ™ŠĴȱŽ›—œǯȱ‘Žȱ ‘’‘ȱ œŽ—œ’’Ÿ’¢ȱ ˜ȱ ŸŽŽŠ’ŸŽȱ Š—ȱ –˜œȱ ›Žœ’—ȱ ŒŽ••œȱ ˜ȱ ’Š˜–œȱ ˜ȱ Žœ’ŒŒŠ’˜—ȱ ›Šœ’ŒŠ••¢ȱ ŽŒ›ŽŠœŽœȱ ‘Žȱ ™›ŽŸ’˜žœ•¢ȱ Šœœž–Žȱ

274 Summary / Samenvatting high dispersal probabilities of diatoms, despite their high local Š‹ž—Š—ŒŽœǯȱȱ’—Ž›–Ž’ŠŽȱŠ—ȱœ–Š••Ž›ȱœ™Š’Š•ȱœŒŠ•Žœǰȱ Žȱ˜‹œŽ›ŸŽȱ Šȱ Ž—Ž—Œ¢ȱ ˜›ȱ Ž››Žœ›’Š•ȱ ’Š˜–œȱ ˜ȱ ‘ŠŸŽȱ •˜ Ž›ȱ œ™ŽŒ’Žœȱ ž›—˜ŸŽ›ȱ compared to lacustrine diatom communities, which suggests higher ’œ™Ž›œŠ•ȱ›ŠŽœȱ˜›ȱ‘Žȱ˜›–Ž›ȱŠ—ȱęȱœȱ‘ŽȱŽœ’ŒŒŠ’˜—ȱ˜•Ž›Š—ŒŽȱ˜ȱ their resting cells.

Summary / Samenvatting 275 Samenvatting ˜ȱŸ˜˜›ȱ”˜›ȱ Ž›ȱŸŽ›˜—Ž›œŽ•ȱŠȱŽȱŽ˜›ŠęȱœŒ‘ŽȱŸŽ›œ™›Ž’’—ȱ ŸŠ—ȱ–’Œ›˜Ȭ˜›Š—’œ–Ž—ȱŠ••ŽŽ—ȱ ˜›ȱ‹Ž™ŠŠ•ȱ˜˜›ȱ•˜”Š•ŽȱŽŒ˜•˜’œŒ‘Žȱ ŠŒ˜›Ž—ȱǻœ™ŽŒ’Žœȱœ˜›’—ǼDzȱ‘ž—ȱ‘˜Žȱ•˜”Š•ŽȱŠ‹ž—Š—’ŽœȱŽ—ȱŽ›’—Žȱ Š–Ž’—ȱ £˜žŽ—ȱ ‘ž—ȱ ’œ™Ž›œ’Ž”Š—œŽ—ȱ Ž›–ŠŽȱ ŸŽ›‘˜Ž—ȱ Šȱ Ž˜›ŠęȱœŒ‘Žȱ‹Š››’¸›ŽœȱŸŠ—ȱŽŽ—ȱŽ•ȱ£˜žŽ—ȱ£’“—ȱǻ’—•Š¢ et al., 2002). Œ‘Ž›ǰȱ ŸŽ›œŒ‘’••Ž—Žȱ œž’Žœȱ ‘Ž‹‹Ž—ȱ ˜—•Š—œȱ ŽœžŽ›ŽŽ›ȱ Ž—ȱ ŠŠ—Ž˜˜—ȱ Šǰȱ Ž‹›ž’”ȱ –Š”Ž—ȱ ŸŠ—ȱ ŽŽ—ȱ ‘˜Ž›Žȱ Š¡˜—˜–’œŒ‘Žȱ ›Žœ˜•ž’Žǰȱ –’Œ›˜Ȭ˜›Š—’œ–Ž—ȱ Ž•ȱ ŽŽ•’“”ȱ Ž˜›ŠęȱœŒ‘ȱ ‹Ž™Ž›”Žȱ ŸŽ›œ™›Ž’’—Ž—ȱ ”ž——Ž—ȱ ‘Ž‹‹Ž—ȱ ˜—Ž›ȱ ’—Ÿ•˜Žȱ ŸŠ—ȱ ‘’œ˜›’œŒ‘Žȱ ŠŒ˜›Ž—ȱ ǻ ›ŽŽ—ȱ ǭȱ ˜‘Š——Š—ǰȱ ŘŖŖŜDzȱ Š›’—¢ȱ et al. 2006). Met ‹Ž›Ž””’—ȱ ˜ȱ ’Š˜–ŽŽº—ȱ Ÿ˜—ȱ ŽŽ—ȱ Ž•’“”ŠŠ›’Žȱ ŽŸ˜•ž’Žȱ ™•ŠŠœǯȱ ŽŒŽ—Žȱ œž’Žœȱ ‘Ž‹‹Ž—ȱ –Žȱ ‹Ž‘ž•™ȱ ŸŠ—ȱ ŸŽ›œŒ‘’••Ž—Žȱ ŽŒ‘—’Ž”Ž—ȱ ŠŠ—Ž˜˜—ȱ Šȱ Žȱ ŸŽ›œ™›Ž’’—Ž—ȱ ŸŠ—ȱ –Š›’Ž—Žȱ Ž—ȱ •ŠŒžœ›’Ž—Žȱ ’Š˜–ŽŽº—ȱ ‹Ž™ŠŠ•ȱ ˜›Ž—ȱ ˜˜›ȱ £˜ Ž•ȱ ˜–ŽŸ’—œŸŠ›’Š‹Ž•Ž—ȱ Š•œȱ ’œ™Ž›œ’Žȱ•’–’Š’Žȱǻ˜Š™˜ŸŠȱǭȱ‘Š›•ŽœǰȱŘŖŖŘDzȱ˜’—’—Ž—ȱet al., 2004;. Telford et al.ǰȱ ŘŖŖŜDzǯȱ ¢ŸŽ›–Š—ȱ et al., 2007.; Verleyen et al., 2009;. ŸŠ—œȱet al.ǰȱŘŖŖşDzǯȱŠœŽ•Ž¢—ȱet al., 2010). ’ȱ ™›˜ŽœŒ‘›’ȱ ‘Šȱ ˜ȱ ˜Ž•ȱ Žȱ ›˜•ȱ ŸŠ—ȱ ’œ™Ž›œ’Ž•’–’Š’Žȱ ’—ȱ ‘Žȱ ˜ȱ œŠ—ȱ ”˜–Ž—ȱ ŸŠ—ȱ Ž˜›ŠęȱœŒ‘Žȱ ™Š›˜—Ž—ȱ ŸŠ—ȱ •ŠŒžœ›’Ž—Žȱ Ž—ȱ Ž››Žœ›’œŒ‘Žȱ ’Š˜–ŽŽº—ȱ ‹ŽŽ›ȱ Žȱ ‹Ž›’“™Ž—ǰȱ Ÿ’Šȱ Žȱ Š—Š•¢œŽȱ ŸŠ—ȱ ‹’˜’ŸŽ›œ’Ž’œ™Š›˜—Ž—ȱ ˜™ȱ •˜‹Š•Žȱ Ž—ȱ ›Ž’˜—Š•Žȱ œŒ‘ŠŠ•ǰȱ ’“œŽ”Š•’‹›ŽŽ›Žȱ ¢•˜Ž—’Žº—ȱ Ž—ȱ ˜œœ’Ž•ȱ ‹Ž ’“œ–ŠŽ›’ŠŠ•ǰȱ Ž—ȱ Ÿ’Šȱ ŽŒ˜¢œ’˜•˜’œŒ‘Žȱ œž’Žœȱ —ŠŠ›ȱ Žȱ œ›Žœœ˜•Ž›Š—’Žȱ Ÿ˜˜›ȱ dispersiegerelateerde factoren. Er werd een primaire focus op —Š›Œ’ŒŠȱ Ž—ȱ Žȱ œž‹Ȭ—Š›Œ’œŒ‘Žȱ Ž’•Š—Ž—ȱ Ž•Žȱ ŸŠ— ŽŽȱ Žȱ ›Ž•Š’Žȱ œ˜˜›Ž—Š›–Žȱ ’Š˜–ŽŽº—Ěȱ˜›Šȱ Ž—ȱ Žȱ œŽ›”Žȱ Ž˜›ŠęȱœŒ‘Žȱ ’œ˜•Š’ŽȱŸŠ—ȱŽȱ‘Š‹’Šœȱ˜™ȱŸŽ›œŒ‘’••Ž—Žȱ›ž’–Ž•’“”ŽȱœŒ‘Š•Ž—ǯ In hoofdstuk 2ȱ Š—Š•¢œŽŽ›Ž—ȱ Žȱ Žȱ ‹’˜Ž˜›ŠęȱœŒ‘Žȱ ™Š›˜—Ž—ȱ ŸŠ—ȱ •ŠŒžœ›’Ž—Žȱ ’Š˜–ŽŽº—ȱ ’—ȱ —Š›Œ’ŒŠȱ Ž—ȱ ›Œ’ŒŠȱ Ž—ȱ Œ˜–‹’—ŽŽ›Ž—ȱ ŽȱŽ£Žȱ›Žœž•ŠŽ—ȱ–Žȱ˜œœ’Ž•ŽȱŽŽŸŽ—œȱŽ—ȱŽŽ—ȱ’“œȬ Ž”Š•’‹›ŽŽ›Žȱ–˜•ŽŒž•Š’›Žȱ¢•˜Ž—’ŽǯȱŽ—ȱ˜™£’Œ‘ŽȱŸŠ—ȱŽȱ›Œ’œŒ‘Žȱ Ž–ŽŽ—œŒ‘Š™™Ž—ȱ£’“—ȱŽȱ—Š›Œ’œŒ‘Žȱ’Š˜–ŽŽº—Ž–ŽŽ—œŒ‘Š™™Ž—ȱ ŸŽ›Š›–ȱŽ—ȱ˜—ŽŸŽ— ’Œ‘’ǰȱŽ—ȱ ˜›Ž—ȱ£ŽȱŽ”Ž—–Ž›”ȱ˜˜›ȱŽŽ—ȱ‘˜Žȱ –ŠŽȱ ŸŠ—ȱ Ž—Ž–’Œ’Ž’ǰȱ ‘Žȱ ˜—‹›Ž”Ž—ȱ ŸŠ—ȱ ‹Ž•Š—›’“”Žȱ ž—Œ’˜—Ž•Žȱ ›˜Ž™Ž—ȱ £˜Š•œȱ ™•Š—”˜—’œŒ‘Žȱ Š¡Šǰȱ ŽŽ—ȱ ˜ŸŽ›ŸŽ›ŽŽ— ˜˜›’’—ȱ ŸŠ—ȱŽ››Žœ›’œŒ‘ŽȱŽ—Ž›ŠǰȱŽ—ȱŽŽ—ȱŠ•Ž–Ž—ŽȱœŒ‘ŠŠ›œŽȱŠŠ—ȱ Ž›Ž• ’“ȱ œžŒŒŽœŸ˜••Žȱ Ž—Ž›Šǯȱ Ž—ȱ ŸŽ›Ž•’“”’—ȱ ŸŠ—ȱ Žȱ ‘ŽŽ—ŠŠœŽȱ —Š›Œ’œŒ‘ŽȱĚȱ˜›Šȱ–Žȱ˜œœ’Ž•ŽȱŠœœŽ–‹•ŠŽœȱž’ȱ‘Žȱ’˜ŒŽŽ—ȱŽ—ȱŽŽ—ȱ –˜•ŽŒž•Š’›Žȱ ”•˜”ȬŠ—Š•¢œŽȱ ˜™ȱ ’ŸŽ›œ’ęȱŒŠ’Ž™Š›˜—Ž—ȱ ’“£Ž—ȱ ˜™ȱ ŽŽ—ȱ ‘˜Žȱ ›ŠŠȱ ŸŠ—ȱ •˜”Š•Žȱ Ž¡’—Œ’Žȱ ’“Ž—œȱ Žȱ Ž˜Ž—Žȱ Ž—ȱ Š›Š’›Žȱ

276 Summary / Samenvatting glaciale maxima, in combinatie met radiaties door allopatrische œ˜˜›Ÿ˜›–’—ȱ ’—ȱ •ŠŒ’Š•Žȱ ›Žž’Šǯȱ ’ȱ ’“œȱ Ž›˜™ȱ Šȱ Žȱ ™›˜ŒŽœœŽ—ȱ ’ŽȱŽȱŸŽ›œ™›Ž’’—ȱŽ—ȱŽȱ’ŸŽ›œ’ęȱŒŠ’ŽȱŸŠ—ȱ’Š˜–ŽŽº—ȱŒ˜—›˜•Ž›Ž—ȱ ˜™ȱŸŽ›Ž•’“”‹Š›Žȱ›ž’–Ž•’“”ŽȱŽ—ȱŽ–™˜›Ž•ŽȱœŒ‘Š•Ž—ȱ Ž›”Ž—ȱŠ•œȱŽ£Žȱ Ÿ˜˜›ȱ–ŠŒ›˜œŒ˜™’œŒ‘Žȱ˜›Š—’œ–Ž—ǰȱ‘ŽŽŽ—ȱ›Žœž•ŽŽ›ȱ’—ȱŒ˜—›žŽ—Žȱ ‹’˜Ž˜›ŠęȱœŒ‘Žȱ™Š›˜—Ž—ǯ In hoofdstuk 3 onderzochten we of terrestrische en lacustriene ’Š˜–ŽŽº—ȱ ŽŽ—ȱ ŸŽ›œŒ‘’••Ž—ȱ ™Š›˜˜—ȱ ”Ž——Ž—ȱ ’—ȱ ‘ž—ȱ Ž˜›ŠęȱœŒ‘Žȱ œ›žŒžž›ȱ ˜™ȱ ›Ž’˜—Š•Žȱ œŒ‘ŠŠ•ȱ –Žȱ ‹Ž‘ž•™ȱ ŸŠ—ȱ ȃ’œŠ—ŒŽȱ ŽŒŠ¢Ȅȱ ˜ȱ ‘Žȱ ŸŽ›ŸŠ•ȱ ’—ȱ Ž–ŽŽ—œŒ‘Š™œ˜ŸŽ›ŽŽ—”˜–œŽ—ȱ ˜ŸŽ›ȱ ŠœŠ—ȱ Ž—ȱ Žȱ ȃž›—˜ŸŽ›Ȅȱ ŸŠ—ȱ ’Š˜–ŽŽº—Ž–ŽŽ—œŒ‘Š™™Ž—ȱ žœœŽ—ȱ Žȱ œž‹Ȭ —Š›Œ’œŒ‘Žȱ Ž’•Š—Ž—ȱ ›˜£Žȱ Ž—ȱ Ž›žŽ•Ž—ȱ Ž•ŽŽ—ȱ ’—ȱ Žȱ ž’Ȭ —’œŒ‘ŽȱŒŽŠŠ—ǰȱŽ—ȱ˜ž‘ȱ Ž˜›’ŠȱŽ•ŽŽ—ȱ’—ȱŽȱž’Ȭ•Š—’œŒ‘Žȱ ŒŽŠŠ—ǯȱ ’——Ž—ȱ Ž’•Š—Ž—ȱ Šœȱ Ÿ˜˜›ȱ Žȱ  ŽŽȱ ‘Š‹’Šœȱ Žȱ ž›—˜ŸŽ›ȱ ǻΆȬ’ŸŽ›œ’Ž’Ǽȱ ›Ž•Š’Žȱ ‘˜˜ȱ ’—ȱ ŸŽ›Ž•’“”’—ȱ –Žȱ Žȱ ‹’——Ž—Ȭœ’Žȱ ǻ΅Ǽȱ ’ŸŽ›œ’Ž’ǰȱ ‘ŽŽŽ—ȱ ”Š—ȱ ’“£Ž—ȱ ˜™ȱ –’•’Žž’ěȱŽ›Ž—’Š’Žȱ ˜™ȱ ”•Ž’—Žȱ œŒ‘ŠŠ•ȱŽ—ȱœ™ŽŒ’Žœȱœ˜›’—ǰȱ˜ȱ˜™ȱœŽ›”Žȱ™›’˜›’Ž’œŽěȱŽŒŽ—ǯȱŽ››Žœ›’œŒ‘Žȱ ’Š˜–ŽŽº—ȱ‘ŠŽ—ȱŽŽ—ȱœ’—’ęȱŒŠ—ȱ•ŠŽ›Žȱž›—˜ŸŽ›ȱ‹’——Ž—ȱŽ’•Š—Ž—ȱ Ž—ȱ˜™£’Œ‘ŽȱŸŠ—ȱŠšžŠ’œŒ‘ŽȱŽ–ŽŽ—œŒ‘Š™™Ž—ǰȱ Šȱ ’“œȱ˜™ȱ‘˜Ž›Žȱ ’œ™Ž›œ’Žœ—Ž•‘ŽŽ—ȱ Ž—Ȧ˜ȱ ‹›ŽŽ›Žȱ —’Œ‘Žœǰȱ ˜ȱ ˜™ȱ ŽŽ—ȱ ‘˜–˜Ž—Ž›ȱ ‘Š‹’Šǯȱ™ȱ’—Ž›–Ž’Š’›ŽȱœŒ‘ŠŠ•ǰȱ‹’——Ž—ȱŽȱž’Ȭ —’œŒ‘ŽȱŒŽŠŠ—ȱ (ca. ŗśŖŖȱ”–Ǽǰȱ ŠœȱŽ›ȱœ•ŽŒ‘œȱŽŽ—ȱ—’ŽȬœ’—’ęȱŒŠ—Žȱ›Ž—ȱ—ŠŠ›ȱ‘˜Ž›Žȱ Ž–ŽŽ—œŒ‘Š™œœ’–’•Š›’Ž’Ž—ȱ Ž—ȱ •ŠŽ›Žȱ ž›—˜ŸŽ›ȱ Ÿ˜˜›ȱ Ž››Žœ›’œŒ‘Žȱ Ž–ŽŽ—œŒ‘Š™™Ž—ǰȱŽ› ’“•ȱ˜™ȱŽȱ›˜˜œŽȱ›ž’–Ž•’“”ŽȱœŒ‘ŠŠ•ǰȱžœœŽ—ȱ Žȱ ŽŽȱ˜ŒŽŠŠ—‹Ž””Ž—œȱǻca.ȱŜŖŖŖȱ”–ǼǰȱŸ˜˜›ȱ‹Ž’Žȱ‘Š‹’ŠĴȱ¢™ŽœȱŽŽ—ȱ œŽ›”ŽȱŠ•’—ȱ’—ȱŽ–ŽŽ—œŒ‘Š™œœ’–’•Š›’Ž’Ž—ȱ ŠŠ›Ž—˜–Ž—ȱ Ž›ȱ’Žȱ ŽŒ‘Ž›ȱŠ••ŽŽ—ȱœ’—’ęȱŒŠ—ȱ ŠœȱŸ˜˜›ȱŽȱŽ››Žœ›’œŒ‘ŽȱŠŠœŽǯȱŽ£ŽȱŽŽ›œŽȱ ›Žœž•ŠŽ—ȱ œžŽ›Ž›Ž—ȱ Šȱ Ž››Žœ›’œŒ‘Žȱ Ž—ȱ ŠšžŠ’œŒ‘Žȱ ’Š˜–ŽŽº—ȱ ’—Ž›ŠŠȱ£˜žŽ—ȱŸŽ›œŒ‘’••Ž—ȱ’—ȱ‘ž—ȱ’œ™Ž›œ’Ž ŠŠ›œŒ‘’“—•’“”‘ŽŽ—ȱ ˜™ȱ ”•Ž’—Žȱ Ž—ȱ ’—Ž›–Ž’Š’›Žȱ ›ž’–Ž•’“”Žȱ œŒ‘Š•Ž—ǰȱ –ŠŠ›ȱ ŸŽ›Ž›ȱ ˜—Ž›£˜Ž”ȱ–˜ŽȱŸ˜˜›ȱŽȱ’—Ÿ•˜ŽȱŸŠ—ȱŸŠ›’Š’Žȱ’—ȱ˜–ŽŸ’—œŠŒ˜›Ž—ȱ controleren. In hoofdstuk 4ȱ Œ˜—œ›žŽŽ›Ž—ȱ Žȱ ŽŽ—ȱ ˜œœ’Ž•ȬŽ”Š•’‹›ŽŽ›Žǰȱ ’“œŽœŒ‘ŠŠ•Žȱ¢•˜Ž—’ŽȱŸ˜˜›ȱ‘ŽȱŽ—žœȱPinnularia om het belang ŸŠ—ȱ ’“ȱ ’—ȱ œ˜˜›œŸ˜›–’—ȱ Žȱ ŸŽ›”Ž——Ž—ǯȱ Žȱ ‹Ž‘ž•™ȱ ŸŠ—ȱ ŽŽ—ȱ Ÿ’“Ȭ •˜Œžœȱ ŠŠœŽȱ –ŠŠ”Ž—ȱ Žȱ Žȱ ’—Ž›œ™ŽŒ’ęȱŽ”Žȱ ŽŸ˜•ž’˜—Š’›Žȱ ›Ž•Š’Žœȱ ˜™ȱŸ˜˜›ȱřŜȱPinnulariaȱŠ¡ŠǯȱŽ—ȱ›ŽŽ”œȱŸŠ—ȱ˜œœ’Ž•ŽȱŠ¡Šǰȱ’—Œ•žœ’ŽȱŽŽ—ȱ —’Žž ȱ˜—Ž”ŽȱŸ˜›–ȱž’ȱ‘Žȱ’Ž—Ȭ˜ŒŽŽ—ǰȱ Ž›ȱŽ‹›ž’”ȱ˜–ȱŽȱ –˜•ŽŒž•Š’›Žȱ”•˜”ȱŠ—Š•¢œŽȱŽȱ”Š•’‹›Ž›Ž—ȱŽ—ȱŽȱŽ–™˜›Ž•ŽȱŠœ™ŽŒŽ—ȱŸŠ—ȱ Žȱ’ŸŽ›œ’ęȱŒŠ’ŽȱŸŠ—ȱ‘ŽȱŽ—žœȱŽȱ˜—Ž›£˜Ž”Ž—ǯȱŽȱ–ž•’ȬŽ—ȱŠŠ—™Š”ȱ resulteerde in een goed opgeloste fylogenie, bestaande uit drie grote

Summary / Samenvatting 277 Œ•ŠŽœȱŽ—ȱ’ŸŽ›œŽȱœž‹Œ•ŠŽœȱ’ŽȱŸŠŠ”ǰȱ–ŠŠ›ȱ—’Žȱž—’ŸŽ›œŽŽ•ǰȱ‹Ž›Ž—œȱ Ž›Ž—ȱ˜˜›ȱŸŠ•ŸŽȱ–˜›˜•˜’Žǯȱ’ŸŽ›œ’ęȱŒŠ’ŽȱŸŠ—ȱ‘ŽȱŽœ•ŠŒ‘ȱ’œȱ—ŠŠ›ȱ œŒ‘ŠĴȱ’— ca.ȱŜŖȱŠȱŽ•ŽŽ—ȱ‹Ž˜——Ž—ǰȱŗŖȱ˜ȱřŖȱŠȱŽŽ›Ž›ȱŠ—ȱ Šȱ Žȱ˜œœ’Ž•Žȱ›ŽŒ˜›ȱž’ ’“œǯȱŽȱ–ŽŽœŽȱ›˜Ž›ŽȱŒ•ŠŽœȱ’ŸŽ›ŽŽ›Ž—ȱ Žž›Ž—Žȱ‘Žȱ’˜ŒŽŽ—ǰȱ ŠŠ›˜˜›ȱ£Žȱ Ž›Ž• ’“ȱœžŒŒŽœŸ˜•ȱ”˜—Ž—ȱ ŸŽ›œ™›Ž’Ž—ǯ In hoofdstuk 5ȱ Ž‹›ž’”Ž—ȱ Žȱ Žȱ –˜•ŽŒž•Š’›Žȱ ¢•˜Ž—’Žȱ ž’ȱ ‘˜˜œž”ȱ Śȱ ˜–ȱ ‘Žȱ ¢•˜Ž—Ž’œŒ‘ȱ œ’—ŠŠ•ȱ ŸŠ—ȱ –˜›˜•˜’œŒ‘Žȱ Ž—ȱ Ž—Ž’œŒ‘Žȱ ŠŠȱ Žȱ ŸŽ›Ž•’“”Ž—ǯȱ Žȱ Ÿ˜Ž›Ž—ȱ ˜™ȱ ŚŞȱ Œ•˜—Žœȱ ŽŽ—ȱ Œ•Š’œ’œŒ‘ŽȱŠ—Š•¢œŽȱž’ȱ–Žȱŗŝȱ›žœž•ŽȬȱŽ—ȱřȱŒ‘•˜›˜™•Šœ”Ž—–Ž›”Ž—ǯȱ —ŠĢȱŠ—”Ž•’“”Žȱ Š—Š•¢œŽœȱ ŸŠ—ȱ Žȱ –˜•ŽŒž•Š’›Žȱ Ž—ȱ –˜›˜•˜’œŒ‘Žȱ ŠŠȱ Ž—Ž›ŽŽ›Žȱ Ž•’“”ŠŠ›’Žȱ Œ•ŠŽœǰȱ Ž—ȱ Š—Ž•ȱ Žœœȱ ŠŸŽ—ȱ ŽŽ—ȱ œ’—’ęȱŒŠ—Žȱ Œ˜››Ž•Š’Žȱ žœœŽ—ȱ –˜›˜•˜’œŒ‘Žȱ Ž—ȱ Ž—Ž’œŒ‘Žȱ ŠœŠ—Ž—ǯȱ Œ‘Ž›ǰȱ Ž› ’“•ȱ ‘Žȱ ¢•˜›Š–ȱ ˜™ȱ ‹Šœ’œȱ ŸŠ—ȱ śȱ Ž—Ž’œŒ‘Žȱ –Ž›”Ž›œȱ –Žȱ ŽŽ—ȱ ˜ŠŠ•ȱ ŸŠ—ȱ ŗŖŗŘȱ ™Š›œ’–˜—’ŽȬ’—˜›–Š’ŽŸŽȱ œ’Žœȱ Ÿ˜••Ž’ȱ ˜™Ž•˜œȱ Šœǰȱ ›Žœž•ŽŽ›Žȱ ‘Žȱ •ŠŽ›Žȱ ŠŠ—Š•ȱ ¢•˜Ž—Ž’œŒ‘ȱ ’—˜›–Š’ŽŸŽȱ–˜›˜•˜’œŒ‘Žȱ”Ž—–Ž›”Ž—ȱ˜—ŸŽ›–’“Ž•’“”ȱ’—ȱŽŽ—ȱ•ŠŽ›ȱ ŠŠ—Š•ȱ˜™Ž•˜œŽȱŒ•ŠŽœǯȱ™ȱ‹Šœ’œȱŸŠ—ȱŽȱ–˜›˜•˜’œŒ‘ŽȱŠŠȱ”˜—Ž—ȱ Žȱ ’—Ž›œ™ŽŒ’ęȱŽ”Žȱ ›Ž•Š’Žœȱ ŸŠ—ȱ Pinnulariaȱ —˜˜’ȱ Ÿ˜••Ž’ȱ ˜™Ž•˜œȱ ˜›Ž—ǯȱ Žȱ ‹ŽœŽȱ ›Žœ˜•ž’Žȱ Ÿ˜˜›ȱ Žȱ –˜›˜•˜’œŒ‘ȱ Ž‹ŠœŽŽ›Žȱ œ˜˜›Ž—˜—Ž›œŒ‘Ž’’—ȱ Šœȱ ‹’“ȱ ŽŽ—ȱ Š—Š•¢œŽȱ ŸŠ—ȱ Š••Žȱ ”Ž—–Ž›”Ž—ȱ œŠ–Ž—ǯȱ ˜˜›—Š–Ž•’“”ȱ ȃœ›žŒž›Ž•ŽȄȱ ›žœž•Žȱ ”Ž—–Ž›”Ž—ȱ ǻ£˜Š•œȱ ŒŽ—›Š•Žȱ›Š™‘Žȱž’Ž’—Ž—ǰȱ›Š™‘ŽȱŒ˜–™•Ž¡’Ž’ȱŽ—ȱŠ•ŸŽ˜•žœȱ˜™Ž—’—Ǽȱ Ž—ȱ··—ȱŒ‘•˜›˜™•Šœ”Ž—–Ž›”ȱǻŠŠ—Š•ȱ™¢›Ž—˜’Ž—Ǽȱ Š›Ž—ȱ’—˜›–Š’Žȱ ’—ȱŽȱ›ŽŒ˜—œ›žŒ’ŽȱŸŠ—ȱŽȱ¢•˜Ž—Ž’œŒ‘Žȱ›Ž•Š’Žœȱ’—ȱ‘ŽȱŽ—žœǯ In hoofdstuk 6ȱŽ‹›ž’”Ž—ȱ Žȱ ŽŽȱŸŽ›–ŽŽ—Žȱ”˜œ–˜™˜•’’œŒ‘Žȱ taxa, Pinnularia borealis en Š—ĵȱœŒ‘’ŠȱŠ–™‘’˜¡¢œ, om de moleculaire ’ŸŽ›Ž—’ŽȱŽȱ‹Ž˜˜›Ž•Ž—ȱžœœŽ—ȱ—Š›Œ’œŒ‘ŽȱœŠ––Ž—ȱŽ—ȱœŠ––Ž—ȱ ŠĤȱ˜–œ’ȱŸŠ—ȱŠ—Ž›Žȱ•˜ŒŠ’Žœǯȱ’ȱ–˜•ŽŒž•Š’›Žȱ¢•˜Ž—’Žº—ȱŽ‹ŠœŽŽ›ȱ ˜™ȱŽȱŒ‘•˜›˜™•Šœȱ–Ž›”Ž› rbcȱŽ—ȱŽȱ—žŒ•ŽŠ’›ŽȱŘŞȱ›ȱŗȬŘȱ›Ž’˜ȱ ’œȱ Ž‹•Ž”Ž—ȱ Šȱ P. borealis en ǯȱ Š–™‘’˜¡¢œ twee soortscomplexen £’“—ȱ ‹ŽœŠŠ—Žȱ ž’ȱ –ŽŽ›Ž›Žȱ Ž—Ž’œŒ‘ȱ Ž’ŸŽ›ŽŽ›Žȱ •’—ŽŠŽœǰȱ Ž•”ȱ –ŽȱŽŽ—ȱŠ™Š›Žȱ—Š›Œ’œŒ‘Žȱ•’—ŽŠŽǯȱŽ—ȱ–˜•ŽŒž•Š’›Žȱ’“œ”Š•’‹›Š’Žȱ ›ŠŠ–Žȱ Žȱ ‘Ž›”˜–œȱ ŸŠ—ȱ ‘Žȱ œ˜˜›œŒ˜–™•Ž¡ȱ P. borealisȱ ˜™ȱ řśǰŜȱ –’•“˜Ž—ȱ“ŠŠ›ȱǻŠǼǰȱŽ—ȱŽȱŽŽ›œŽȱ’ŸŽ›Ž—’Žȱ˜™ȱŘŘǰŖȱŠȱ‘ŽŽŽ—ȱ’ȱ‘Žȱ ˜žœȱŽ”Ž—Žȱ’Š˜–ŽŽº—œ˜˜›œŒ˜–™•Ž¡ȱ–ŠŠ”ǯȱŽȱ—Š›Œ’œŒ‘ŽȱP. borealisȱ•’—ŽŠŽȱ’œȱ—ŠŠ›ȱœŒ‘ŠĴȱ’—ȱŝǰŝȱǻŗśȬŘǼȱŠȱŽ•ŽŽ—ȱŽ’ŸŽ›ŽŽ›ȱ ŸŠ—ȱ ‘ŠŠ›ȱ £žœŽ›•’—ŽŠŽǰȱ —Šȱ Žȱ Žęȱ—’’ŽŸŽȱ ˜™Ž—’—ȱ ŸŠ—ȱ Žȱ ›Š”Žȱ ŠœœŠŽǰȱ ‘ŽŽŽ—ȱ ’“œȱ ˜™ȱ ŽŽ—ȱ •Š—ŽȬŠœŠ—ȱ ’œ™Ž›œ’Žȱ ŽŸŽ—Ž–Ž—ȱ ŽŸ˜•ȱ ˜˜›ȱ Š••˜™Š›’œŒ‘Žȱ œ˜˜›Ÿ˜›–’—ǯȱ ˜ŸŽ—’Ž—ȱ £’“—ȱ Žȱ —Š›Œ’œŒ‘Žȱ•’—ŽŠŽœȱŸŠ—ȱ£˜ Ž•ȱP. borealis als ǯȱŠ–™‘’˜¡¢œ genetisch

278 Summary / Samenvatting Š ’“”Ž—ȱ ŸŠ—ȱ Žȱ –ŽŽœŽȱ •’—ŽŠŽœȱ ž’ȱ –ŽŽ›ȱ Ž–Š’Žȱ œ›Ž”Ž—ȱ Ž—ȱ —Ž’Ž—ȱ£Žȱ‹Ž’Žȱ—ŠŠ›ȱŽŽ—ȱȱȱ‘˜Ž›Žȱ›Ž•Š’ŽŸŽȱ›˜Ž’ȱ‹’“ȱ•ŠŽȱŽ–™Ž›Šžž›ǰȱ een lagere optimale temperatuur en een lagere lethale maximum Ž–™Ž›Šžž›ǰȱ Šȱ ’“œȱ˜™ȱ—’Œ‘ŽȬ’ěȱŽ›Ž—’Š’ŽǯȱŽ£ŽȱŽŽŸŽ—œȱ ’“£Ž—ȱ Ž›˜™ȱ Šȱ ŸŽŽ•ȱ ŸŠ—ȱ Žȱ ŸŽ›–˜ŽŽ•’“”ȱ ”˜œ–˜™˜•’’œŒ‘Žȱ —Š›Œ’œŒ‘Žȱ ’Š˜–ŽŽº—œ˜˜›Ž—ȱ œ˜˜›œŒ˜–™•Ž¡Ž—ȱ ”ž——Ž—ȱ £’“—ǰȱ ŽŸŽ—žŽŽ•ȱ –Žȱ endemische Antarctische lineages. In hoofdstuk 7 Ÿ˜Ž›Ž—ȱ ŽȱŽŽ—ȱ•Š‹˜›Š˜›’ž–Ž¡™Ž›’–Ž—ȱž’ȱ ˜™ȱ řŚȱ ‹Ž—‘’œŒ‘Žȱ £˜Ž ŠŽ›ȱ Ž—ȱ Ž››Žœ›’œŒ‘Žȱ ’Š˜–ŽŽº—ȱ œŠ––Ž—ȱ ˜–ȱ Žȱ ˜•Ž›Š—’Žœȱ ŸŠ—ȱ Žȱ ŸŽŽŠ’ŽŸŽȱ ŒŽ••Ž—ȱ Žȱ ˜—Ž›£˜Ž”Ž—ȱ Ÿ˜˜›ȱ  ŽŽȱ ’œ™Ž›œ’ŽŽ›Ž•ŠŽŽ›Žȱ œ›ŽœœŠŒ˜›Ž—ǰȱ —Š–Ž•’“”ȱ ž’›˜’—ȱ Ž—ȱ Ž¡›Ž–Žȱ Ž–™Ž›Šž›Ž—ǯȱ Žœȱ ŸŽ›œŒ‘’••Ž—Žȱ œ›ŽœœŒ˜—’’Žœȱ Ž›Ž—ȱ ‹ŽœžŽŽ›DZȱ Ž•Ž’Ž•’“”Žȱ ˜™ Š›–’—ȱ ˜ȱ ƸřŖǚȱ Ž—ȱ ƸŚŖǚǰȱ Š‹›ž™Žȱ ˜™ Š›–’—ȱ ˜™ȱ ƸŚŖǚǰȱ ‹ŽŸ›’Ž£’—ȱ ˜™ȱ ȬŘŖǚǰȱ Ž—ȱ ž’›˜’—ȱ –Žȱ Ž—ȱ £˜—Ž›ȱ Ÿ˜˜›‹Ž‘Š—Ž•’—ȱ ‹’“ȱ ƸřŖǚǯȱ —£Žȱ ›Žœž•ŠŽ—ȱ ˜˜—Ž—ȱ ŠŠ—ȱ Šȱ Žȱ ŸŽŽŠ’ŽŸŽȱ ŒŽ••Ž—ȱ ŸŠ—ȱ ’Š˜–ŽŽº—ȱ £ŽŽ›ȱ ŽŸ˜Ž•’ȱ £’“—ȱ Ÿ˜˜›ȱ ž’›˜’—ǰȱ ŠŠ—Ž£’Ž—ȱ ŽŽ—ȱ ŸŠ—ȱ Žȱ œŠ––Ž—ȱ Ž£Žȱ ‹Ž‘Š—Ž•’—ȱ ˜ŸŽ›•ŽŽŽǯȱ˜•Ž›Š—’ŽȱŸ˜˜›ȱŽ¡›Ž–ŽȱŽ–™Ž›Šž›Ž—ȱǻƸŚŖǚȱŽ—ȱȬŘŖǚǼȱ Šœȱ ’—ȱ ›˜Žȱ –ŠŽȱ œ˜˜›œœ™ŽŒ’ęȱŽ”ǯȱ Œ‘Ž›ǰȱ Š••ŽŽ—ȱ Ž››Žœ›’œŒ‘Žȱ œ˜˜›Ž—ȱ ˜ŸŽ›•ŽŽŽ—ȱ ‹ŽŸ›’Ž£’—ȱ Ž—ȱ ŠšžŠ’œŒ‘Žȱ ’Š˜–ŽŽº—ȱ Š›Ž—ȱ –’—Ž›ȱ˜•Ž›Š—ȱŸ˜˜›ȱŽ•Ž’Ž•’“”ŽȱŸŽ›‘’Ĵȱ’—ȱ˜ȱƸŚŖǚǰȱ‘ŽŽŽ—ȱ ’“œȱ ˜™ȱŽŽ—ȱ‘˜Ž›Žȱ˜•Ž›Š—’ŽȱŸŠ—ȱŽ››Žœ›’œŒ‘Žȱ’Š˜–ŽŽº—ȱŠŠ—ȱŽ¡›Ž–Žȱ Ž–™Ž›Šž›Ž—ǰȱ Ž—ȱ ŸŽ›Ž›ȱ ŠŠ—ŽŽȱ Šȱ Ž››Žœ›’œŒ‘Žȱ ’Š˜–ŽŽº—ȱ aangepast zijn aan hun habitat. In hoofdstuk 8 onderzochten we experimenteel de tolerantie ŸŠ—ȱ ›žœŒŽ••Ž—ȱ ŸŠ—ȱ ’Š˜–ŽŽº—ȱ Ÿ˜˜›ȱ ž’›˜’—ȱ Ž—ȱ ‹ŽŸ›’Ž£’—ȱ ’—ȱ ŸŽ›Ž•’“”’—ȱ–Žȱ‘ž—ȱŸŽŽŠ’ŽŸŽȱŒŽ••Ž—ǰȱŽ—ȱ’ȱŸ˜˜›ȱŗŝȱ‹Ž—‘’œŒ‘Žȱ –˜›˜œ˜˜›Ž—ȱ˜ŸŽ›ȱŽŽ—ȱ›Š’º—ȱŸŠ—ȱ™Ž›–Š—Ž—ȱŠšžŠ’œŒ‘Žȱ‘Š‹’Šœȱ˜ȱ Ž››Žœ›’œŒ‘Žȱ‹˜Ž–œǰȱ˜—Ž›ŸŽ›ŽŽ•ȱ’—ȱŸ’“ȱŸ˜Œ‘’‘Ž’œŒŠŽ˜›’Žº—ǯȱ žœŒŽ•Ÿ˜›–’—ȱ Ž›ȱ’—Ž•Ž’ȱ˜˜›ȱ—ž›’º—Ž—•’–’Š’Žȱ’—ȱ˜—”Ž›Žȱ ˜–œŠ—’‘ŽŽ—ǯȱ ˜Š•œȱ ŽŽ›Ž›ȱ ŠŠ›Ž—˜–Ž—ȱ Š›Ž—ȱ ŸŽŽŠ’ŽŸŽȱ ŒŽ••Ž—ȱ’—ȱ‘ŽȱŠ•Ž–ŽŽ—ȱ£ŽŽ›ȱŽŸ˜Ž•’ȱŸ˜˜›ȱž’›˜’—ȱŽ—ȱ‹ŽŸ›’Ž£’—ǯȱ ••ŽŽ—ȱœŠ––Ž—ȱŸŠ—ȱ›’ŽȱŽ››Žœ›’œŒ‘ŽȱŠ¡Šȱ˜ŸŽ›•ŽŽŽ—ȱ‹ŽŸ›’Ž£’—ȱ ’—ȱŽȱŸŽŽŠ’ŽŸŽȱŠœŽǰȱŽ› ’“•ȱœ•ŽŒ‘œȱ··—ȱœŠ–ȱśȱ–’—žŽ—ȱž’›˜’—ȱ ˜ŸŽ›•ŽŽŽǯȱ žœŒŽ••Ž—ȱ ŽŒ‘Ž›ȱ ŸŽ›˜˜—Ž—ȱ ŽŽ—ȱ ‘˜Ž›Žȱ ˜•Ž›Š—’Žȱ Ÿ˜˜›ȱ ž’›˜’—ǰȱ Ÿ˜˜›Š•ȱ Š——ŽŽ›ȱ ’ȱ Ÿ˜˜›ŠŽŠŠ—ȱ Ž›ȱ ˜˜›ȱ ŽŽ—ȱ Š›–Ž‹Ž‘Š—Ž•’—Dzȱ Ž—ȱ –ŽŽ›ȱ œŠ––Ž—ȱ Ž—ȱ Š¡Šȱ ˜ŸŽ›•ŽŽŽ—ȱ ‹ŽŸ›’Ž£’—ǰȱ£’“ȱ‘ŽȱŸŠŠ”ȱ–Žȱ•ŠŽȱ˜ŸŽ›•ŽŸ’—™Ž›ŒŽ—ŠŽœȱŽ—ȱŽŽ—ȱ›˜Žȱ ’—Ž›Œ•˜—Š•Žȱ ŸŠ›’Š’Žǯȱ ™ŸŠ••Ž—ȱ Šœȱ Šȱ Š••ŽŽ—ȱ Žȱ ›žœŒŽ••Ž—ȱ ŸŠ—ȱ Ž››Žœ›’œŒ‘ŽȱŠ¡Šǰȱǯ ǯ£ȱŠ¡Šȱ’Žȱ‘˜˜£Š”Ž•’“”ȱ’—ȱ—ŠĴȱŽȱŽ—ȱŸ˜Œ‘’Žȱ ˜ȱ’“Ž•’“”ȱ›˜Žȱ™•Ž””Ž—ȱǻŸ˜Œ‘’‘Ž’œ”•ŠœœŽȱŚǼȱ˜ȱ‹’“—Šȱž’œ•ž’Ž—ȱ

Summary / Samenvatting 279 ‹ž’Ž—ȱ ŠŽ›–ŠœœŠȂœȱǻŸ˜Œ‘’‘Ž’œ”•ŠœœŽȱśǼȱŸ˜˜›”˜–Ž—ǰȱž’›˜’—ȱ Ž—ȱ ‹ŽŸ›’Ž£’—ȱ ˜ŸŽ›•ŽŽŽ—ǰȱ ‘ŽŽŽ—ȱ ’“œȱ ˜™ȱ ‘Š‹’Šœ™ŽŒ’ęȱŽ”Žȱ aanpassingen aan deze ongunstige omstandigheden. ’ȱ Žȱ ›Žœž•ŠŽ—ȱ ŸŽ›£Š–Ž•ȱ ’—ȱ ’ȱ ™›˜ŽœŒ‘›’ȱ ”ž——Ž—ȱ Žȱ Œ˜—Œ•žŽ›Ž—ȱ Šȱ Žȱ ‹’˜Ž˜›ŠęȱŽȱ ŸŠ—ȱ ’Š˜–ŽŽº—ȱ ŽŒ˜—›˜•ŽŽ›ȱ ˜›ȱ˜˜›ȱŽ£Ž•Žȱ™›˜ŒŽœœŽ—ȱŠ•œȱ‹’“ȱ–ŠŒ›˜‹’˜ŠǯȱŽȱ‹’˜Ž˜›ŠęȱœŒ‘Žȱ patronen op wereldschaal tonen aan dat historische factoren en ’œ™Ž›œ’Ž•’–’Š’Žȱ’—Ž›ŠŠȱŸŠ—ȱ˜Ž™Šœœ’—ȱ£’“—ǰȱŽ› ’“•ȱŒ›¢™’œŒ‘Žȱ soorten en een te lage taxonomische resolutie nog steeds een aantal ŸŠ—ȱŽȱŽ˜›ŠęȱœŒ‘Žȱ™Š›˜—Ž—ȱ–Šœ”Ž›Ž—ǯȱŽȱ‘˜ŽȱŽŸ˜Ž•’‘Ž’ȱŸ˜˜›ȱ ž’›˜’—ȱ ŸŠ—ȱ ŸŽŽŠ’ŽŸŽȱ ŒŽ••Ž—ȱ Ž—ȱ Žȱ –ŽŽœŽȱ ›žœŒŽ••Ž—ȱ ”Š—ȱ Žȱ ’œ™Ž›œ’Ž”Š—œŽ—ȱ ŸŠ—ȱ ’Š˜–ŽŽº—ȱ ›Šœ’œŒ‘ȱ ŸŽ›–’—Ž›Ž—ǰȱ ˜—Š—”œȱ ‘ž—ȱ‘˜Žȱ•˜”Š•ŽȱŠ‹ž—Š—’Žœǯȱ™ȱ’—Ž›–Ž’Š’›ŽȱŽ—ȱ”•Ž’—Ž›ŽȱœŒ‘ŠŠ•ǰȱ ˜‹œŽ›ŸŽŽ›Ž—ȱ ŽȱŽŽ—ȱŽ—Ž—œȱŸ˜˜›ȱ•ŠŽ›Žȱž›—˜ŸŽ›ȱ’—ȱŽ››Žœ›’œŒ‘Žȱ Ž–ŽŽ—œŒ‘Š™™Ž—ȱ Ž—ȱ ˜™£’Œ‘Žȱ ŸŠ—ȱ •ŠŒžœ›’Ž—Žȱ Ž–ŽŽ—œŒ‘Š™™Ž—ǰȱ ‘ŽŽŽ—ȱ ŽŽ—ȱ ŽŸ˜•ȱ £˜žȱ ”ž——Ž—ȱ £’“—ȱ ŸŠ—ȱ ‘˜Ž›Žȱ ’œ™Ž›œ’Ž”Š—œŽ—ȱ ˜˜›ȱŽŽ—ȱ‹ŽŽ›Žȱ›˜˜Ž˜•Ž›Š—’ŽȱŸŠ—ȱ‘ž—ȱ›žœŒŽ••Ž—ǯ

280 Summary / Samenvatting Acknowledgments

There’s one important thing I’ve learned during these four years of œŒ’Ž—’ęȱŒȱ“˜¢ǰȱœ›Žœœǰȱ‹•ž—Ž›œȱŠ—ȱ˜™™˜›ž—’’ŽœDZȱnever make a PhD on your ownǯȱ ȱ–’‘ȱ‘ŠŸŽȱ›’Žȱ’ȱ‘Žȱęȱ›œȱ ˜ȱ¢ŽŠ›œǰȱ‹žȱœŠ•¢ȱŠ’•Žǯȱ ‘Ž›Ž˜›Žǰȱ‘˜žœŠ—˜•ȱ‘Š—”œȱ˜ȱœ˜ȱ–Š—¢ȱ™Ž˜™•Žȱ‘ŠȱŒ›˜œœŽȱ–¢ȱ path.

’–ȱ ¢ŸŽ›–Š—ȱ ’—Ÿ’Žȱ –Žȱ ˜ȱ ˜›”ȱ ’—ȱ ‘’œȱ •Š‹ǰȱ Š—ȱ ›ŽŠŒ‘Žȱ –Žȱ™•Ž—¢ȱ˜ȱ˜™™˜›ž—’’Žœȱ ‘’Œ‘ȱ ȱž—˜›ž—ŠŽ•¢ȱ’ȱ—˜ȱ–Š”Žȱ‘Žȱ –˜œȱ˜ǯȱ˜›ȱ‹Ž•’ŽŸ’—ȱ’—ȱ–Žǰȱ›Š—’—ȱ–Žȱ™•Ž—¢ȱ˜ȱŠž˜—˜–¢ǰȱŠ—ȱ ˜›ȱ‹Ž’—ȱŽ—‘žœ’Šœ’Œȱ ‘Ž—ǰȱŠŽ›ȱŠ••ǰȱœ˜–Ž‘’—ȱ’ȱŒ˜–Žȱ˜žǰȱ Ȃ–ȱ very grateful.

˜Ž—ȱ Š‹‹Žǰȱ ›’‘ȱ ‘Š—ȱ Š—ȱ Œ˜–™•Ž–Ž—ȱ ˜ȱ ’–ǰȱ ’ȱ Šœȱ ¢˜ž›ȱ’ŽŠȱ˜ȱœŠ›ȱ ’‘ȱ’œ™Ž›œŠ•ȱ˜•Ž›Š—ŒŽȱ˜ȱŽ››Žœ›’Š•ȱŠ—ȱŠšžŠ’Œȱ ’Š˜–œǯȱ ȱ œ’••ȱ ęȱ—ȱ ‘’œȱ Šȱ ˜—Ž›ž•ȱ œž‹“ŽŒǷȱ ‘Š—”ȱ ¢˜žȱ ˜›ȱ ¢˜ž›ȱ positivism.

ȱ‘Šȱ‘Žȱ›Ž–Ž—˜žœȱ•žŒ”ȱ˜ȱ•ŽŠ›—ȱ˜ȱŒž•ž›Žȱ’Š˜–œȱ›˜–ȱ‘Žȱ ‘Š—œȱŠ—ȱ–’—ȱ˜ȱŠȱœž™Ž›‹ȱžœœ’Š—ȱ’Š˜–’œǯȱ’Œ˜›ȱ‘Ž™ž›—˜Ÿǰȱ ¢˜žȱ Ž›Žȱ‘Žȱ˜—Žȱ ‘˜ȱœŽ—ȱ–Žȱ˜ȱ‘Žȱ•Š‹ȱ ‘Ž—ȱ ȱ Šœȱœ’Ĵȱ’—ȱ˜˜ȱ•˜—ȱ ’‘ȱ–¢ȱ—˜œŽȱ’—ȱ™Š™Ž›œǰȱŠ—ȱ’ȱ Šœȱ¢˜žȱ ‘˜ȱœŽ—ȱ–Žȱ‹ŠŒ”ȱ˜ȱ–¢ȱŽœ”ȱ ˜ȱœŠ›ȱ ›’’—ȱ ‘Ž—ȱ ȱ Šœȱ’—Œž‹Š’—ȱ˜˜ȱ•˜—ȱ’—ȱ‘ŽȱŒž•ž›Žȱ›˜˜–œǯȱ ˜›ȱœžŒ‘ȱœ–Š••ȱ‹žȱ’–™˜›Š—ȱ‘’—œǰȱ ȱ˜ Žȱ¢˜žȱŠȱ•˜ȱ˜ȱ‘Š—”œǯ

•’ŽȱŽ›•Ž¢Ž—ǰȱ‘Š—”ȱ¢˜žȱ˜›ȱ’Ÿ’—ȱ–Žȱ‘ŽȱŒ‘Š—ŒŽȱ˜ȱ ˜›”ȱ˜—ȱ ‘Žȱ—Š›Œ’ŒȱŠŠœŽœȱŠ—ȱ˜›ȱœ‘Š›’—ȱ¢˜ž›ȱŸŠ•žŠ‹•ŽȱœžŽœ’˜—œȱŠ—ȱ ”—˜ •ŽŽȱ˜—ȱ‘Žȱ—Š›Œ’Œǯ

Š›ȱŠ—ȱŽȱ’“ŸŽ›ǰȱ˜›ȱ¢˜ž›ȱ’Š˜–’ŒȱŽ—Ž›¢ȱŠ—ȱŽ—‘žœ’Šœ–ǰȱ Š• Š¢œȱ›ŽŠ¢ȱ˜ȱ Ž•Œ˜–Žȱ–Žȱ’—ȱŽ’œŽǰȱ˜ȱ’Ž—’¢ȱ–¢ȱŒž•ž›Žœȱ˜›ȱ ’ŸŽȱŠ¡˜—˜–’ŒŠ•ȱ˜›ȱœž‹Ȭ—Š›Œ’ŒŠ•ȱŠŸ’ŒŽDZȱ‘Š—”ȱ¢˜žȱŸŽ›¢ȱ–žŒ‘ǯȱ ’‘˜žȱ¢˜žǰȱ Žȱ ˜ž•ȱ›˜ —ȱ’—ȱ’Š˜–ȱŠ¡˜—˜–¢ǯ

’•ŽŽ—ȱ ˜¡ǰȱ ȱ œ’—ŒŽ›Ž•¢ȱ ‘Š—”ȱ ¢˜žȱ ˜›ȱ ’Ÿ’—ȱ –Žȱ ‘Žȱ œž™Ž›‹ȱ

Acknowledgments 283 ˜™™˜›ž—’¢ȱ ˜ȱ ˜›”ȱ Šȱ –˜—‘ȱ ’—ȱ ‘Žȱ Šž›Š•ȱ ’œ˜›¢ȱ žœŽž–ȱ ’—ȱ ˜—˜—ǯȱ ‘’œȱ Šœȱ Š—ȱ ž—˜›ŽĴȱŠ‹•Žȱ Ž¡™Ž›’Ž—ŒŽȱ ˜—ȱ ŸŽ›¢ȱ ’ěȱŽ›Ž—ȱ Š›ŽŠœDZȱ‘Žȱœ™•Ž—’ȱ–’Œ›˜œŒ˜™’ŒŠ•ȱ’—›Šœ›žŒž›Žǰȱ‘ŽȱŠ’›¢ȬŠ•Žȱ·Œ˜›ȱ ˜ȱ‘ŽȱžœŽž–ǰȱ‘Žȱ–Š›ŸŽ•˜žœȱ‹˜˜”œȱ‘’Žȱ’—ȱ‘Žȱ ˜ȱ˜ Ž›œȱ˜ȱ‘Žȱ ’Š˜–’œœǰȱŠ—ȱ•Šœȱ‹žȱ—˜ȱ•ŽŠœȱ¢˜ž›ȱŽ—Œ˜ž›Š’—ȱŠ—ȱŽ—‘žœ’Šœ’Œȱ Œ˜›’Š•’¢Ƿ

Ž›˜Ž—ȱ Ž›‹›žŽ—ǰȱ ¢˜ž›ȱ ™‘¢•˜Ž—Ž’Œȱ Ž—‘žœ’Šœ–ȱ œŽŽ–œȱ ž—•’–’Žǯȱ Ȃ–ȱŸŽ›¢ȱ›ŠŽž•ȱ‘Šȱ¢˜žȱœŠŸŽȱ–¢ȱ™‘¢•˜Ž—¢ȱ‹¢ȱ’Ÿ’—ȱ ŸŽ›¢ȱ ’œŽȱŠŸ’ŒŽǯȱ •Ž¡ȱ˜•Žǰȱ¢˜ž›ȱ•’ŸŽ•¢ȱ“˜¢ȱ˜›ȱ˜œœ’•ȱ’Š˜–œȱŠŸŽȱ–ŽȱŠȱ—’ŒŽȱ Œ‘Š™Ž›ǰȱŠ—ȱŠȱ›ŽŸ’ŸŽȱ•˜ŸŽȱ˜›ȱŽ˜•˜’ŒŠ•ȱ’–Žǯȱ

‘Žȱ ™›ŠŒ’ŒŠ•ȱ ˜›”ȱ ’—ȱ ‘Žȱ Œž•ž›Žȱ Š—ȱ –˜•ŽŒž•Š›ȱ •Š‹œȱ ‘Šœȱ ‹ŽŽ—ȱ œ˜ȱ –˜›Žȱ ŽŠœ¢ȱ Š—ȱ Ž—“˜¢Š‹•Žȱ ‘Š—”œȱ ˜ȱ ‘Žȱ ˜›”ǰȱ ‘Ž•™ȱ Š—ȱ ™›ŽœŽ—ŒŽȱ˜ȱ˜ęȱŽȱȂ‘˜—ǰȱ——Ȭ•’—ŽȱŽ‹ŽŽ›ǰȱ’—ŽȱŽ›œ›ŠŽŽȱŠ—ȱ •Šȱ ‘Ž™ž›—˜ŸŠǯȱ ˜žȱ Š••ȱ ŽœŽ›ŸŽȱ Šȱ ŽŠ‘Ž›ȱ ˜›ȱ ¢˜ž›ȱ œ˜–Ž’–Žœȱ ž——˜’ŒŽŠ‹•Žȱ‹žȱœ˜ȱ’–™˜›Š—ȱ ˜›”ǯ

¢ȱ ŽŠ›Žœȱ ›˜˜––ŠŽœDZȱ Š›’“—ȱ Š——Ž›ž–ǰȱ —Ž”Žȱ Š—ȱ ›Ž–‹Ž›‘Žǰȱ——’Œ”ȱ Ž› ŽŽ—ȱ Š—ȱ ›’Žȱ ŠœŽ•Ž¢—ǯȱ ˜žȱŠ••ȱ ”—˜ ȱ ‘Šȱ’ȱ’œȱ˜ȱ–Š”ŽȱŠ—ȱęȱ—’œ‘ȱŠȱ‘ǰȱŠ—ȱ¢˜žȱŠ••ȱ’ȱŠȱ›ŽŠȱ“˜‹ȱ’—ȱ Ž—Ž›’£’—ǰȱ ’œ›Žœœ’—ǰȱ ›Ž•Š’Ÿ’£’—ǰȱ ˜œœ’™’—ǰȱ Œ˜–™•Š’—’—ǰȱ ‹žȱ –˜œȱ˜ȱŠ••ȱŽ—“˜¢’—ȱ ˜›”ǯȱ ȱ ’••ȱ–’œœȱ–¢ȱ•’Ĵȱ•Žȱ‘˜–Žȱ’—ȱŽȱŽ››Ždz

’ŽȱŠȱŽȱŽ››Žȱ‘Šœȱ‹ŽŽ—ȱŠȱœŽšžŽ•ȱ˜ȱœ˜ȱ–Š—¢ȱž——¢ǰȱœ›Žœœ’—ǰȱ —Šœ¢ǰȱ™Š—’Œ”¢ǰȱ‘Š™™¢ȱŠ—ȱŽ—Ž›Ž’Œȱ–˜–Ž—œǯȱ˜›ȱœ˜ȱ–Š—¢ȱŽ—“˜¢Š‹•Žȱ œŽŒ˜—œDZȱ‘Š—”œȱ˜ȱŠ••ȱ‘Žȱ™›˜’œ˜•˜’œœȱŠ—ȱŠ•˜•˜’œœǷ

’Žȱ˜žœ’ŽȱŽȱŽ››Žȱ‘Šœȱ‹ŽŽ—ȱ“žœȱŠœȱ–žŒ‘ȱŠȱœŽšžŽ•ȱ˜ȱŸŽ›¢ȱ ’ŸŽ›œŽȱ–˜–Ž—œǯȱ˜ȱŠ••ȱ‘Žȱ™Ž›œ˜—œȱ ‘˜ȱŒ›˜œœŽȱ–¢ȱ™Š‘ȱ›˜–ȱ˜—•¢ȱ œ˜–Žȱ›Ž–Ž–‹Ž›Š‹•Žȱ‘˜ž›œȱ’••ȱ’—ŸŠ•žŠ‹•Žȱ›’ŸŽ›œȱ˜ȱ’–Žǰȱ‘Š—”ȱ¢˜žȱ Š••ȱŸŽ›¢ȱ–žŒ‘ǯȱ˜ȱŠ••ȱ™Ž˜™•Žȱ ‘’Œ‘ȱ ȱ—Ž•ŽŒŽȱž›’—ȱ‘Žȱ™Šœȱ¢ŽŠ›œDZȱ ȱ™›˜–’œŽȱ ȱ ’••ȱ—ŽŸŽ›ȱ–Š”ŽȱŠȱ‘ȱŠŠ’—ǯȱ

ȱ œ™ŽŒ’Š•ȱ ‘Š—”œȱ ˜ȱ Š¢ȱ Š—ȱŠ––Žǰȱ ˜›ȱ œ˜ȱ –Š—¢ȱ ‘˜ž›œȱ ˜ȱ Ž—•’‘Ž—’—ȱŠ—ȱŽ—Ž›Š’—’—ȱ’œŒžœœ’˜—ǯȱžŒȱŽȱŽŽœŽ›ǰȱ˜›ȱ’Ÿ’—ȱ –Žȱ‘Žȱœ˜ȱ—ŽŽŽȱ‹˜˜œȱǻŠ—ȱ™›Žœœž›ŽǼȱ˜ȱęȱ—’œ‘ȱ‘’œȱ ˜›”ǰȱŠ—ȱ‘Žȱ ˜™™˜›ž—’¢ȱ˜ȱ’œŒ˜ŸŽ›ȱŠȱ–’Œ›˜œŒ˜™’Œȱ•’Žȱ‹Ž¢˜—ȱ‘Žȱ’Š˜–œǰȱ‘Š—”ȱ ¢˜žȱŸŽ›¢ȱ–žŒ‘ǷȱŠ—žǰȱ’Ȃœȱ’–Žȱ˜ȱŒ˜–ŽȱŠ•˜—ȱŠ—ȱŽȱ¢˜ž›ȱ™’Š—˜Ƿȱ

284 Acknowledgments ¢ȱȃŠ–’•¢Ȭ’—Ȭ•Š ȄȱŠ—ȱǻŠ•–˜œȱ˜ĜȱȱŒ’Š•Ǽȱœ’œŽ›Ȭ’—Ȭ•Š ȱ[£•Ž–DZȱ ‘Š—”ȱ¢˜žȱŠ••ȱ˜›ȱ¢˜ž›ȱ Š›–ȱ Ž•Œ˜–ŽȱŽŸŽ›¢ȱ’–ŽȱŠŠ’—ǯȱ

’ŽŽ›ǰȱ‘’œȱ‹˜˜”•Žȱ ˜ž•ȱ—ŽŸŽ›ȱ‘ŠŸŽȱ‹ŽŽ—ȱ ’‘˜žȱ¢˜ž›ȱ–˜›Š•ȱ Š—ȱœŒ’Ž—’ęȱŒȱœž™™˜›ǯȱ˜›ȱ›Š’—ȱ–Žȱ˜ȱ‘Žȱ•Š‹ǰȱ›Ž–’—’—ȱ–Žȱ‘Žȱ ™•ŽŠœž›Žȱ˜ȱœŒ’Ž—ŒŽǰȱŠ—ȱ‹Ž’—ȱŠȱ•’Ÿ’—ȱ‹’˜•˜’ŒŠ•ȱŽ—Œ¢Œ•˜™Ž’Šȱǻ˜›ȱ Š•–˜œǼǰȱ ȱŠ–ȱŸŽ›¢ȱ›ŠŽž•ǯȱ˜›ȱ›˜ ’—ȱŠȱŠ›Ž—ȱž••ȱ˜ȱ’—’Ž—˜žœȱ Ěȱ˜ Ž›œǰȱ•ŽŠŸ’—ȱœ˜–Žȱ˜ȱ‘Žȱ‹ž££¢ȱ‹ŽŽœȱŠ•’ŸŽǰȱŽ—“˜¢’—ȱ‘Žȱœ’–™•’Œ’¢ȱ ˜ȱ•’ŽȱŠ—ȱ‘Žȱ™•ŽŠœž›Žȱ˜ȱ•’Ÿ’—ǰȱ ȱŠ–ȱŽŸŽ—ȱ–˜›Žǯȱ’••ȱŠȱ ‘˜•Žȱ•’Žȱ’—ȱ ›˜—ȱ˜ȱžœȱ˜ȱœŠŸŽȱŠ—ȱŽ—“˜¢ȱ‘ŽȱŠ›‘Ƿ

¢ȱ ‹›˜‘Ž›œȱ ›Š–ȱ ǭȱ ˜›’œDZȱ ˜›ȱ –Š”’—ȱ •’Žȱ •Žœœȱ ‹˜›’—ȱ Š—ȱ ž—Œ˜ž—Š‹•Žȱ˜‘Ž›ȱ‘’—œǰȱ˜›ȱ‘Žȱž— ›’ĴȱŽ—ȱŒŽ›Š’—¢ȱ‘Šȱ ȱŒŠ—ȱŒ˜ž—ȱ ˜—ȱ¢˜žǰȱŠȱŸŽ›¢ȱ‹’ȱ  Ƿ ˜ȱ –¢ȱ ™Š›Ž—œǰȱ ‘˜ȱ ›ŽŠŒ‘Žȱ žœȱ ‘ŽŠ™œȱ ˜ȱ ŸŽ›¢ȱ ’ŸŽ›œŽȱ ˜™™˜›ž—’’Žœǯȱ ‘˜ȱ ˜˜”ȱ žœȱ ˜ȱ £˜˜œȱ Š—ȱ ŒŠ›—’ŸŠ•œǰȱ ˜—Žœȱ ŸŠ—ȱ •ŠŠ—Ž›Ž—ȱ Š—ȱ ‹˜Š—’Œȱ Š›Ž—œǰȱ ž—”—˜ —ǰȱ ’—¢ȱ –žœŽž–œȱ Š—ȱ •Š›ŽǰȱŽ•’Œȱ›ž’—œǰȱ›˜Œ”Ȭȁ—Ȭ›˜••ȱŠ—ȱŒ•Šœœ’ŒŠ•ȱ˜™Ž›ŠȂœǯȱ‘˜ȱŒ›’’ŒŠ••¢ȱ œž™™˜›Žȱ–Žȱ’—ȱ–¢ȱŒ›Š£¢ȱ’–™ž•œ’ŸŽȱ’ŽŠœȱǻŠȱ‘ǰȱ˜›ȱ ˜ȂœȱœŠ”ŽǷǼȱ Š—ȱ ŽŸŽ›Ȭ•Šœ’—ȱ •˜ŸŽȱ ˜›ȱ —Šž›Žǯȱ ˜ȱ ¢˜žǰȱ ’‘˜žȱ ‘˜–ȱ ȱ ˜ž•ȱ —ŽŸŽ›ȱœŠ—ȱ‘Ž›Žǰȱ ȱŽ’ŒŠŽȱ‘’œȱ ˜›”ǯ

˜žǰȱ›ŽŠŽ›ǰȱ Ȃ–ȱŸŽ›¢ȱ›ŠŽž•ȱ˜›ȱ¢˜ž›ȱ’—Ž›ŽœǯȱŽ–Ž–‹Ž›ȱ“žœȱ ˜›ȱŠȱœŽŒ˜—ȱ‘Žȱ–’••’˜—œȱ˜ȱ’Š˜–ȱŒŽ••œȱ ‘˜ȱ‘›’ŸŽȱŠ—ȱ’Žȱ˜›ȱ ‘’œȱ ˜›”ǯǯǯ

Š›˜•’—Žȱ˜žěȱ›ŽŠž Gent, 15 May 2011

‘’œȱ›ŽœŽŠ›Œ‘ȱ Šœȱęȱ—Š—Œ’Š••¢ȱœž™™˜›Žȱ‹¢ȱ‘Žȱž—ȱ˜›ȱŒ’Ž—’ęȱŒȱŽœŽŠ›Œ‘ȱ Ȯȱ•Š—Ž›œȱǻȬ•ŠŠ—Ž›Ž—Ǽǯ

Acknowledgments 285