KEYS to MARINE INVERTEBRATES of the WOODS HOLE REGION

Total Page:16

File Type:pdf, Size:1020Kb

KEYS to MARINE INVERTEBRATES of the WOODS HOLE REGION AALPH I SMITH- FDITQP Spe FOR REFERENCE Do Not Take From This Room Ql 573 .3 o- KEYS TO MARINE INVERTEBRATES of the WOODS HOLE REGION A manual for the identification of the more common marine invertebrates, compiled by Ralph I. Smith with the assistance of many other contributors m lor X. ; ru 5: j o " o CD- S' i a z nn § a Contribution No. 11 LL Systematics-Ecology Program, Marine Biological Laboratory Woods Hole, Massachusetts 1964 J CO Copyright 1964 by the Marine Biological Laboratory Tenth Edition Referrals To Marine Biological Laboratory Supply Dept. Woods Hole, Massachusetts 02543 Printed by Spaulding Co., Inc., 29 Pacella Park Drive, Randolph, Mass. 02368 Ill TABLE OF CONTENTS Page List of Plates v Foreword vi Editor's Preface vii Chapter I . Phylum PORIFERA 1 Glossary 1 Key 2 Checklist 6 II. Phylum CNIDARIA, Class Hydrozoa 8 Glossary 8 Key 10 Checklist 17 III. Phylum CNIDARIA, Class Scyphozoa 21 Key to attached Scyphozoa 21 Key to Scyphomedusae 21 IV. Phylum CNIDARIA, Class Anthozoa 25 Key 26 Checklist 26 V. Phylum CTENOPHORA, key and checklist 29 VI . Phylum PLATYHELMINTHES 30 Key to common Turbellarians 30 Checklist of Acoela, Rhabdocoela, and Alloeocoela 32 Checklist of Tricladida 36 Key to Polycladida 36 Checklist of Polycladida 37 VII. Phylum NEMERTEA (RHYNCHOCOELA) 40 Key 40 Checklist 43 VIII. Other Unsegmented Worms: Phylum ASCHELMINTHES 46 Phylum SIPUNCULOIDEA 46 IX. Phylum ANNELIDA 47 Classes Hirudinea, Oligochaeta, and Archiannelida 47 Polychaete Terminology 48 Key to Polychaete Families 51 Keys and checklists of Polychaete Species 63 X. Phylum ARTHROPODA, Subphylum Chelicerata 84 Xiphosurida 84 Key to Pycnogonida 84 Checklist of Pycnogonida 85 XI. Phylum ARTHROPODA, Lower Crustacea and Cirripedia 88 Cephalocarida, Branchiopoda, Ostracoda, Mystacocarida, Copepoda , Branchiura 88 Key to Cirripedia 89 Checklist of Cirripedia 91 Rhizocephala 92 iv Table of Contents XII. Phylum ARTHROPODA, Peracaridan Crustaceans 93 Key to Orders of Peracaridans 93 Part 1. Mysidacea 93 Key 94 Checklist 94 Part 2. Cumacea 98 Key 98 Checklist 99 Part 3. Isopoda and Tanaidacea 102 Key 102 Checklist 105 Part 4. Amphipoda 107 Keys to Suborders 112 Key to Families of Gammaridea 112 Checklist of Gammaridea 114 XIII. Phylum ARTHROPODA, Decapod and Stomatopod Crustaceans 117 Key to Decapods 117 Checklist of Decapods 121 Order Hoplocarida (Stomatopoda) 127 XIV. Phylum MOLLUSCA, Introduction 129 Outline classification 130 Glossary 131 Classes Amphineura and Cephalopoda 133 Key to Shelled Gastropoda 134 Checklist of Shelled Gastropoda 139 Key to Bivalvia 146 Checklist of Bivalvia 150 XV. Phylum MOLLUSCA, Shell-less Opisthobranchia 153 Key 154 Checklist 162 XVI. Phylum ENTOPROCTA 165 XVII. Phylum ECTOPROCTA 167 Glossary 167 Key 170 XVIII. Phylum ECHINODERMATA 188 Asteroidea, key 188 Ophiuroidea, key 188 Echinoidea, key 188 Holothuroidea, key 189 Asteroidea, checklist 189 Ophiuroidea, checklist 189 Echinoidea, checklist 192 Holothuroidea, checklist 192 XIX. Protochordates 193 Phylum HEMICHORDATA 193 Phylum CHORDATA, Subphylum Urochordata 193 Key to Ascideans 194 Checklist of Ascideans 198 Glossary of Common Names 200 Systematic Index (Genera and Higher Taxa) 202 V LIST OF PLATES Plate Pag e 1. Porifera 5 2. Hydrozoa 13 3. Scyphozoa and Anthozoa 23 4. Turbellaria (except Polycladida) 35 5. Polycladida, Nemertea, Sipunculoidea, Nectonema 45 6. Polychaete Setae 51 7. Polychaeta (1) and Archiannelida 53 8. Polychaeta (2) 55 9. Polychaeta (3) 57 10. Polychaeta (4) 59 11. Pycnogonida; Cirripedia 87 12. Mysidacea 97 13. Cumacea 101 14. Isopoda (1) and Tanaidacea 109 15. Isopoda (2) ; Hyperiidea and Caprellidea Ill 16. Decapod Crustacea (1) 123 17. Decapod Crustacea (2) and Hoplocarida 125 18. Mollusca (1) 143 19. Mollusca (2) 145 20. Shell-less Opisthobranchia (1) 157 21. Shell-less Opisthobranchia (2) 159 22. Shell-less Opisthobranchia (3) 161 23. Ectoprocta (1) and Entoprocta 181 24. Ectoprocta (2) 183 25. Ectoprocta (3) 185 26. Ectoprocta (4) 187 27. Echinodermata 191 28. Protochordates 197 FOREWORD Cape Cod juts eastward over the continental shelf as the flexed arm of Massa- chusetts, partly sheltered on its southern side by Monomoy, Nantucket, Martha's Vineyard, and the Elizabeth Islands. The Cape, islands, eastern shores of the state bordering the Cape, Cape Cod Bay, Nantucket Sound, Vineyard Sound, and Buzzards Bay constitute the Cape Cod Region. Glacial in origin, the Region is dotted by myriad small embayments and estuaries, and the clean tidal waters of the North Atlantic wash its shores a diverse ecologic setting accounting for the richness of the local marine biota, and for establishment of the Marine Biological Laboratory here in 1888. On September 1, 1962, the Marine Biological Laboratory inaugurated the Syste- matics -Ecology Program and embarked on a basic, year-round, long-term program of research and training in marine systematics and ecology. The Program has as one of its major objectives the gradual extension, in a broad sense and at a high lev- el of excellence, of systematic and ecologic knowledge of organisms in the estuar- ine and marine waters and bottoms of the Cape Cod Region. Early in the life of the Program we realized the lack of and recognized the urgent necessity for illustrated, referenced, indexed sets of keys and check lists of the commoner plants and animals of the Region for use by non-systematists in the Woods Hole scientific community and neighboring areas. A start on this task was provided in 1960 when Dr. Ralph I. Smith and others of the MBL Invertebrate Zoology Course staff assembled a small loose-leaf collection of keys then existing in the laboratory instructions of that course. These early keys had evolved over a period of years, and the authorship of some could not be determined. It was a happy occasion for us when Ralph Smith agreed to compile and edit this present publication. He arrived in Woods Hole early in the summer of 1963, worked indefatigably with us during that summer, then returned to Berkeley where he continued his labors, somehow sandwiched among his many duties at the Univer- sity. Now, some ten months later, the manuscript is ready for publication. We extend to Ralph our hearty thanks! A most sincere word of appreciation is also due collaborators without whose excellent cooperation and zeal the manuscript would never have been completed, and Mrs. San Lineaweaver for her patient and care- ful typing and correcting of the master copy. The preparation of this publica- tion •••as made possible by support of the Ford Foundation to the Systematics Di- vision of the Systematics-Ecology Program; it is a pleasure to acknowledge this aid. The first edition of the Invertebrate Keys is a beginning. We welcome sug- gestions, and look forward to producing revised editions as the invertebrates of the Region become better known. We are also planning to produce similar keys to other organisms of the Woods Hole Region as this becomes possible. Melbourne R. Carriker, Director Victor A. Zullo, Resident Systematist Systematics-Ecology Program Marine Biological Laboratory May, 1964 Woods Hole, Massachusetts EDITOR'S PREFACE vii This handbook of keys is an attempt to fill an obvious need at Woods Hole, the need for a general reference on marine invertebrates for the use of students and in- vestigators who want to know what is here and how to identify it. Relatively few present day biologists realize the difficulties involved in iden- tifying with certainty the myriad species of marine invertebrates. Some species are readily recognized by distinctive form or color, but in most cases the beginner will experience difficulty in making a positive identification, and in many instances the assistance of a specialist may be necessary. Keys are useful mainly in the identi- fication of common and obvious animals, or in making preliminary identification of less common animals (perhaps to family or genus) , or by indicating to the observant non-systematist that he has something out of the ordinary which should be referred to a specialist. The problem is akin to that of medical diagnosis; the alert zo- ologist, like the general practitioner, need feel no shame if he makes some identi- fications with confidence, but seeks consultation on others. The purpose of zoological classification is to arrange animals into groups on the basis of fundamental similarities. The completion of this task will presumably reveal evolutionary relationships, but the immediate objective of a set of keys is more utilitarian, that of identifying and providing the names of the local inverte- brate fauna as simply, accurately, and painlessly as possible. It cannot be too strongly emphasized that keys are shortcuts and often very misleading; their func- tion is merely to clear the way to an approximation, and identifications made by keys, if to be of scientific reliability, should be checked by reference to the original description or to recent monographs. A key is made to cover a selected list of species, and any species not one of that group will not "key out" or, worse yet, may key out as something which it is not, hence the need for a cross check in all cases of doubt. The terminology of systematists may be difficult for the non-systematist to grasp, owing to the independent evolution of descriptive jargon within the groups of specialists on different animal phyla. Therefore each key will when necessary be accompanied by a glossary and illustrations of the descriptive terms and by a brief statement of the characteristics used in the taxonomy of that particular group and how the student may locate and recognize them. The spicules of sponges, the se- tae of polychaetes, the ossicles of sea cucumbers, are of basic importance to sys- tematists in establishing the degrees of similarity which underlie classification; the problem of the biological role of these structures as functional parts of the animals concerned lies outside the immediate field of classification.
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • Defining Phyla: Evolutionary Pathways to Metazoan Body Plans
    EVOLUTION & DEVELOPMENT 3:6, 432-442 (2001) Defining phyla: evolutionary pathways to metazoan body plans Allen G. Collins^ and James W. Valentine* Museum of Paleontology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA 'Author for correspondence (email: [email protected]) 'Present address: Section of Ecology, Befiavior, and Evolution, Division of Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA SUMMARY Phyla are defined by two sets of criteria, one pothesis of Nielsen; the clonal hypothesis of Dewel; the set- morphological and the other historical. Molecular evidence aside cell hypothesis of Davidson et al.; and a benthic hy- permits the grouping of animals into clades and suggests that pothesis suggested by the fossil record. It is concluded that a some groups widely recognized as phyla are paraphyletic, benthic radiation of animals could have supplied the ances- while some may be polyphyletic; the phyletic status of crown tral lineages of all but a few phyla, is consistent with molecu- phyla is tabulated. Four recent evolutionary scenarios for the lar evidence, accords well with fossil evidence, and accounts origins of metazoan phyla and of supraphyletic clades are as- for some of the difficulties in phylogenetic analyses of phyla sessed in the light of a molecular phylogeny: the trochaea hy- based on morphological criteria. INTRODUCTION Molecules have provided an important operational ad- vance to addressing questions about the origins of animal Concepts of animal phyla have changed importantly from phyla. Molecular developmental and comparative genomic their origins in the six Linnaean classis and four Cuvieran evidence offer insights into the genetic bases of body plan embranchements.
    [Show full text]
  • Download Full Article 2.4MB .Pdf File
    Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries.
    [Show full text]
  • Radial Symmetry Or Bilateral Symmetry Or "Spherical Symmetry"
    Symmetry in biology is the balanced distribution of duplicate body parts or shapes. The body plans of most multicellular organisms exhibit some form of symmetry, either radial symmetry or bilateral symmetry or "spherical symmetry". A small minority exhibit no symmetry (are asymmetric). In nature and biology, symmetry is approximate. For example, plant leaves, while considered symmetric, will rarely match up exactly when folded in half. Radial symmetry These organisms resemble a pie where several cutting planes produce roughly identical pieces. An organism with radial symmetry exhibits no left or right sides. They have a top and a bottom (dorsal and ventral surface) only. Animals Symmetry is important in the taxonomy of animals; animals with bilateral symmetry are classified in the taxon Bilateria, which is generally accepted to be a clade of the kingdom Animalia. Bilateral symmetry means capable of being split into two equal parts so that one part is a mirror image of the other. The line of symmetry lies dorso-ventrally and anterior-posteriorly. Most radially symmetric animals are symmetrical about an axis extending from the center of the oral surface, which contains the mouth, to the center of the opposite, or aboral, end. This type of symmetry is especially suitable for sessile animals such as the sea anemone, floating animals such as jellyfish, and slow moving organisms such as sea stars (see special forms of radial symmetry). Animals in the phyla cnidaria and echinodermata exhibit radial symmetry (although many sea anemones and some corals exhibit bilateral symmetry defined by a single structure, the siphonoglyph) (see Willmer, 1990).
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • An Updated Checklist of the Scaleworm Harmothoe (Annelida, Polynoidae) from South America, with Two New Records from Brazil
    An updated checklist of the scaleworm Harmothoe (Annelida, Polynoidae) from South America, with two new records from Brazil JOSÉ ERIBERTO DE ASSIS1, 3,*, THAÍS KANANDA DA SILVA SOUZA3, JOSÉ ROBERTO BOTELHO DE SOUZA2 & MARTIN LINDSEY CHRISTOFFERSEN3 1 Departamento de Educação Básica, Prefeitura Municipal de Bayeux, Rua Santa Tereza, CEP 58306-070, Bayeux, Paraíba. 2 Departamento de Zoologia, Centro Biociências – UFPE. Av. Prof. Morais Rego, 1235, Recife, Pernambuco, Brasil. CEP: 50670–901. 3 Laboratório e Coleção de Invertebrados Paulo Young, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, 58059–900, João Pessoa, Paraíba, Brasil. * Corresponding author: [email protected] ----------------------------------------------------------------------------------------------------------------------- ORCIDs JEDA: https://orcid.org/0000-0002-1522-2904 TKDSS: https://orcid.org/0000-0002-4518-0864 JRBDS: https://orcid.org/0000-0002-0144-3992 MLC: https://orcid.org/0000-0001-8108-1938 ----------------------------------------------------------------------------------------------------------------------- Abstract. The family Polynoidae includes a group of scale worms which is abundant in several marine environments, and many members are associated with other invertebrates. The genus Harmothoe is one of the largest in number of species within the polynoids, with more than 150 described species. We summarize in a checklist information relative to 23 nominal species of Harmothoe from South America, with valid names, synonyms and original citations, discuss possible taxonomic problems, and provide illustrations of specimens from the northeastern coast of Brazil. Redescriptions of two species based on new specimens collected along the littoral of the State of Pernambuco, northeastern Brazil, are included. Harmotthoe fuscapinae and Harmothoe lanceocirrata are reported for the first time for Brazilian waters. Key words: Scale worms, polynoids; South Atlantic, new records.
    [Show full text]
  • Relationships Between Organic Carbon and Fodichnia Morphology
    Relationships between Organic Carbon and Fodichnia Morphology TYLER E. HAUCK Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada, T6G 2E3, Email: [email protected] SHAHIN E. DASHTGARD Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada, T6G 2E3 MURRAY K. GINGRAS Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada, T6G 2E3 RRH: RESOURCE DISTRIBUTION CONTROLS ON FODICHNIA MORPHOLOGY LRH: HAUCK ET AL. Keywords: Organic carbon, Chiridotea caeca, Pascichnia, Intertidal, Neoichnology, Bioturbation 1 ABSTRACT Grazing trackways of the Valviferan isopod Chiridotea caeca are examined to establish relationships between trackway complexity and morphology, and the distribution of food (organic carbon). These isopods burrow up to 1 cm beneath the surface within ripple troughs and plane-bedded sand of the upper intertidal zone. The burrows are grouped into three forms based on trackway complexity and the degree of looping and trackway crossover in planview. Sediment samples taken directly from the furrows of the trails are used to establish the total organic-carbon content associated with each type of burrow morphology. There is an increase in organic-carbon content from burrows of low complexity (linear), to burrows of high complexity (convolute with many crossovers), suggesting that benthic food content directly influences the behavior of C. caeca, which is manifest in the trackway morphology. Detailed study of trackway architecture further reveals a relationship between C. caeca and food content leading to the recognition of three grazing styles, which are directly associated with the plan-view morphology of the trackway.
    [Show full text]
  • 2018 Bibliography of Taxonomic Literature
    Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Guide to Estuarine and Inshore Bivalves of Virginia
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1968 Guide to Estuarine and Inshore Bivalves of Virginia Donna DeMoranville Turgeon College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Turgeon, Donna DeMoranville, "Guide to Estuarine and Inshore Bivalves of Virginia" (1968). Dissertations, Theses, and Masters Projects. Paper 1539617402. https://dx.doi.org/doi:10.25773/v5-yph4-y570 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. GUIDE TO ESTUARINE AND INSHORE BIVALVES OF VIRGINIA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Master of Arts LIBRARY o f the VIRGINIA INSTITUTE Of MARINE. SCIENCE. By Donna DeMoranville Turgeon 1968 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts jfitw-f. /JJ'/ 4/7/A.J Donna DeMoranville Turgeon Approved, August 1968 Marvin L. Wass, Ph.D. P °tj - D . dvnd.AJlLJ*^' Jay D. Andrews, Ph.D. 'VL d. John L. Wood, Ph.D. William J. Hargi Kenneth L. Webb, Ph.D. ACKNOWLEDGEMENTS The author wishes to express sincere gratitude to her major professor, Dr.
    [Show full text]