Source Apportionment of Particulate Matter (PM10) in an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, a Review

Total Page:16

File Type:pdf, Size:1020Kb

Source Apportionment of Particulate Matter (PM10) in an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, a Review CORE Metadata, citation and similar papers at core.ac.uk Provided by Directory of Open Access Journals Debananda Roy et al Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 4( Version 1), April 2014, pp.97-113 RESEARCH ARTICLE OPEN ACCESS Source Apportionment of Particulate Matter (PM10) In an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, A Review. Debananda Roy1 & Gurdeep Singh2 Assistant Professor1, Professor2 1Dept. Environmental Science & Engineering, Marwadi Education Foundation & Group of Institutions, Rajkot (GTU), Gujarat, India 2Centre of Mining Environment / Department of Environmental Science & Engineering, Indian School of Mines, Dhanbad-826004 Abstract Coal based thermal power generation accounts for 44.7% of the world's electricity and coal alone provides about 80% of the total energy demand in India. Energy-intensive industries deteriorate the air quality of the residential areas due to release of different pollutants, especially a range of deleterious heavy metals like Hg, Cd, Cu, Pb, and Cr. Near about 53.3 percent of the coal produced every year in India has been used for thermal generation. Jharia Coalfield (JCF) is major contributor of coking coal in India. JCF receives particulate matter from various sources such as, opencast coal mining and its associated activities, thermal power stations, automobiles, generator sets fuel burning, construction activities, domestic coal, cooking gas burning, etc. and even the background contribution of natural dust (crustal origin) can not be ruled out, particularly, in the zones having loose topsoil. Concentration of particulate matter causes harmful impacts to the society. These multiple sources are contributing to particulates pollution in the study area. Apportionment of these sources indicating their contribution to ambient air pollution is vital for planning effective control strategies. Management of particulate pollution from various industrial sources in integrated industrial complexes such as JCF is a major area of concern. It can be assessed by determining emissions from various activities and resulting contribution of those multiple sources at various receptors using dispersion and receptor modeling through source apportionment study with respect to particulate matter (PM10) in JCF. Key Words: PM10, Jharia Coalfield, Source Apportionment, Industry, Receptor Modeling, Emission Inventory. I. Introduction issue due to increasing vehicle growth, distances The air we breathe is a mixture of gases, travelled and high rate of emissions. Pollutants from solid and liquid substances. Air pollution occurs these sources interact with soil and water and enter when the air contains substances in such quantities into the food chain (Zhang et al. 2007a). The PM has that could harm the comfort or health of humans and an adverse effect on human health too. Human animals, or could damage plants and materials (Alias exposure to high concentrations of PM10 can lead to et al. 2007; Hung 2013). Some substances generate several types of respiratory illness. PM is also from the natural sources while others are caused by responsible for the visibility reduction as it can also human activities. Emissions from industries and auto absorb and scatter sunlight of certain wavelengths exhausts are responsible for rising discomfort, (Dockery 1994). Long-term exposure to current increasing airborne diseases and deterioration of an ambient PM concentrations may lead to a marked artistic and cultural heritage in urban and industrial reduction in life expectancy. The reduction in life areas (Rao et al. 2003). expectancy is primarily due to increase of cardio Particulate pollution is a big area of concern pulmonary and lung cancer (WHO 2013). in the field of air pollution. The Particulate Matter Assessment of the air quality can provide (PM) in the air is the resultant of dispersion of dust useful insight for the development of the air quality from industrial (mining and non- mining) and allied management plan. The database developed on air activities, transportation, local vehicular movement quality also helps regulatory agencies to identify the and domestic fuel (coal, wood burning etc.) (Singh et locations where the natural resources and human al. 1992; Krishnamurthy 2005 and Lee et al. 2006). health could be at risk (Bart 1993; Costa and Dreher Vehicular pollution is also becoming an alarming 1997 and Murray et al. 2001). www.ijera.com 97 | P a g e Debananda Roy et al Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 4( Version 1), April 2014, pp.97-113 As per The Engineers Joint Council on Air industries are the industries that are specifically Pollution and its Control, USA", air pollution means established for power or electricity production, e.g., “the presence in the outdoor atmosphere of one or thermal power plants and coal mines. Energy- more contaminants such as dust, fumes, gas, mist, intensive industries deteriorate the air quality of the odour, smoke or vapour in quantities, of residential areas due to release of different pollutants, characteristics, and of duration, such as to be especially a range of deleterious heavy metals like injurious to human, plant, or animal life or to Hg, Cd, Cu, Pb, and Cr (Messey et al. 2013). property which unreasonably interfere with the Electricity has become an essential part of our daily comfortable enjoyment of the life and property”. life. Coal based thermal power is meeting about two According to the World Health Organisation (1971), third of the total requirement of global power. Coal air pollution may be defined as “substances put into alone provides about 80% of the total energy demand the air by the activity of mankind into concentrations in India. Total primary energy demand in the world sufficient to cause harmful effect to the health, will grow by 54% by the year of 2030; it is projected vegetation, property or to the enjoyment of his to grow at an average rate of 1.6% per year. property”. Electricity growth is even stronger and is projected to The Air (Prevention and Control of be almost double from 2004 to 2030 (growing at Pollution) Act, 1981 of India describes air pollutant average 2.6% per year from 17,408 TWh to 33,750 and air pollution as: “Air pollutant means any solid, TWh). Demand of electricity is increasing most liquid or gaseous substance (including noise) present dramatically in developing countries like China and in the atmosphere in such concentration as may or India. China and India together account for 45% of tend to be injurious to human beings or other living the increase in energy sector, in the present scenario creatures or plants or property or environment.” (World Energy Outlook 2012). Concern about air pollution especially with Coal based thermal power generation reference to PM is receiving importance worldwide accounts for 44.7% of the world's electricity. Other (Azad and Kitada 1998; Salam et al. 2003 and resources are providing over 55.3% of world Cachier et al. 2005). Fine suspended particulate electricity (nuclear 20.6%, oil 1.1%, natural gas matter pose the most widespread and acute risks. It is 22.3% and hydro & other 11.3%). It is especially very well known that industrial installations suitable for large-scale, base-load electricity demand. producing bricks, iron, fertilisers and glass, coal-fired The demand of coal power is increasing all over the power stations etc. are the most important sources of world (CEA 2013). Global energy scenario is given particulate pollution (Arnesen 1997 and 1998; Cronin in Fig 1. et al. 2000; Haidouti et al. 1993 and Stevens et al. In recent years, India’s energy consumption 1997). has been increasing at one of the fastest rates in the Airborne particulate matter varies widely world due to population growth and economic in its physical and chemical composition, source and development. During the 5-year period ended March particle size. PM10 particles (the fraction of 31, 2013, the Compound Annual Growth Rate particulates in air of very small size (<10μm) are of (CAGR) of consumption of petroleum products was major current concern, as they are small enough to approximately 4.6% (Source: PPAC, August 2013), penetrate deep into the lungs and so potentially pose compared to a CAGR for Gross Domestic Product significant health risks (Begum et al. 2004). A major (GDP) of 7.6% (Reserve Bank of India) for the same source of fine primary particles is combustion period. Despite the overall increase in energy processes, in particular diesel combustion, where demand, per capita energy consumption in India is transport of hot exhaust vapour into a cooler exhaust still very low compared to other developing pipe can lead to spontaneous nucleation of “carbon” countries. particles before emission. The atmospheric lifetime Now a days, India has one of the highest of particulate matter is strongly related to particle potential for the effective use of renewable energy. size, but may be as long as 10 days for particles of India is the world’s fifth largest producer of wind about 1mm in diameter. power after Denmark, Germany, Spain, and the USA. There is a significant potential in India for generation 1.1 Energy Scenario in World of power from renewable energy sources, like small Technologies of energy production and hydro, biomass, and solar energy. It is estimated that environmental pollution are intimately linked with national SHP (small-hydro power) potential is about each other (Nriagu et al. 1996). Energy-intensive 15000 MW (World Energy Outlook 2012). www.ijera.com 98 | P a g e Debananda Roy et al Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 4( Version 1), April 2014, pp.97-113 21% Nuclear Oil 45% 1% Gas 22% Hydro & Other Coal 11% (Source: Consumer Energy Alliance 2013) Fig. 1: Share of Coal Energy in Global Electricity Generation 1.2 Energy Scenario in India creating incentives for increasing the efficiency with Power sector has grown at an exceptional which energy is used.
Recommended publications
  • Table 9. Major U.S. Coal Mines, 2019
    Table 9. Major U.S. Coal Mines, 2020 Rank Mine Name / Operating Company Mine Type State Production (short tons) 1 North Antelope Rochelle Mine / Peabody Powder River Mining LLC Surface Wyoming 66,111,840 2 Black Thunder / Thunder Basin Coal Company LLC Surface Wyoming 50,188,766 3 Antelope Coal Mine / Navajo Transitional Energy Com Surface Wyoming 19,809,826 4 Freedom Mine / The Coteau Properties Company Surface North Dakota 12,592,297 5 Eagle Butte Mine / Eagle Specialty Materials LLC Surface Wyoming 12,303,698 6 Caballo Mine / Peabody Caballo Mining, LLC Surface Wyoming 11,626,318 7 Belle Ayr Mine / Eagle Specialty Materials LLC Surface Wyoming 11,174,953 8 Kosse Strip / Luminant Mining Company LLC Surface Texas 10,104,901 9 Cordero Rojo Mine / Navajo Transitional Energy Com Surface Wyoming 9,773,845 10 Buckskin Mine / Buckskin Mining Company Surface Wyoming 9,699,282 11 Spring Creek Coal Company / Navajo Transitional Energy Com Surface Montana 9,513,255 12 Rawhide Mine / Peabody Caballo Mining, LLC Surface Wyoming 9,494,090 13 River View Mine / River View Coal LLC Underground Kentucky 9,412,068 14 Marshall County Mine / Marshall County Coal Resources Underground West Virginia 8,854,604 15 Bailey Mine / Consol Pennsylvania Coal Company Underground Pennsylvania 8,668,477 16 Falkirk Mine / Falkirk Mining Company Surface North Dakota 7,261,161 17 Mc#1 Mine / M-Class Mining LLC Underground Illinois 7,196,444 18 Tunnel Ridge Mine / Tunnel Ridge, LLC Underground West Virginia 6,756,696 19 Lively Grove Mine / Prairie State Generating Company
    [Show full text]
  • REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water
    REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water March 2014 U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation EPA 542-R-14-001 Contents Contents .......................................................................................................................................... 2 Acronyms and Abbreviations ......................................................................................................... 5 Notice and Disclaimer..................................................................................................................... 7 Introduction ..................................................................................................................................... 8 Methodology ................................................................................................................................... 9 Passive Technologies Technology: Anoxic Limestone Drains ........................................................................................ 11 Technology: Successive Alkalinity Producing Systems (SAPS).................................................. 16 Technology: Aluminator© ............................................................................................................ 19 Technology: Constructed Wetlands .............................................................................................. 23 Technology: Biochemical Reactors .............................................................................................
    [Show full text]
  • Coal and Coal Mining in Washington
    State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development ED DAVIS , Director DIVISION OF MINES AND MINING SHELDON L. GLOVER, Supervisor • Report of Investigations No. 4 Coal and Coal Mining in Washington By STEPHEN H. GREEN OLYMPIA STA1'E PRINTING PL ANT 19'1 (' CONTENTS Page Foreword .. 3 Introduction . • . 5 Selected bibliography . 6 Historical . 7 Coal areas of the State. 8 :Northwestern Washington ..................................... 8 King County . 9 Pierce County . 10 Southwestern Washington ..................................... 11 Kittitas County .. ............ .. ........................... 11 Anthracite . 12 Whatcom County ............................ .................... 12 Lewis County ........ ................... ....................... 13 Coal production ..................................... .. ..... ........ 18 Coal mining methods.. 20 Coke industry ...... ·.... -· ................ , ......... : ................ 16 Conditions affecting mining.. 20 Carbonization and hydrogenation of coal. ............................... 17 Fuel briquets . 16 :New prospects and developments.. 41 Present status of the coal mining industry ............................... 24 Properties operating in 1943. 25 King County . 26 Kittitas County . 38 Lewis County . 36 Pierce County . 33 Thurston County . 35 Whatcom County .......................... ..... ................ 25 ILLUSTRATIONS Figure 1. Map showing principal coal areas of Washington ........ Facing 8 Figure 2. Graph of production 1860-1942, inclusive .
    [Show full text]
  • Health Impact Assessment of Coal and Clean Energy Options in Kentucky
    Health Impact Assessment of Coal and Clean Energy Options in Kentucky A Report from Kentucky Environmental Foundation By Elizabeth Walker, PhD Deborah Payne, MPH Acknowledgements The authors thankfully acknowledge the following experts for reviews and comments on drafts of this report: Carla Baumann, MSN, RN Philip Curd, M.D., MSPH Richard Futrell, PhD Michael Hendryx, PhD David Mannino, MD John Patterson, MD, MSPH Monica Unseld, PhD Any remaining errors are entirely our own. The authors also thank contributions of interviews carried out by students of Berea College’s Health in Appalachia course (HEA/APS 210), Fall 2010 and 2011. About Kentucky Environmental Foundation: The Kentucky Environmental Foundation (KEF) is a non-pro!t organization dedicated to securing solutions to environmental problems in a manner, which safeguards human health, promotes environmental justice, preserves ecological systems and encourages sustainability. Design and layout: Rob Gorstein Graphic Design, Inc. i Health Impact Assessment of Coal and Clean Energy Options in Kentucky Table of Contents Introduction .......................................................................................................................1 Executive Summary ............................................................................................................3 Health Impacts of Coal Mining ............................................................................................5 1. Surface mining ...........................................................................................................6
    [Show full text]
  • Study of Waste Water Quality Management in Iilawarra Coal Mines
    University of Wollongong Research Online Faculty of Engineering and Information Coal Operators' Conference Sciences 1998 Study of Waste Water Quality Management in IIlawarra Coal Mines R. N. Singh University of Wollongong H. B. Dharmappa University of Wollongong Muttucumaru Sivakumar University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/coal Recommended Citation R. N. Singh, H. B. Dharmappa, and Muttucumaru Sivakumar, Study of Waste Water Quality Management in IIlawarra Coal Mines, in Naj Aziz and Bob Kininmonth (eds.), Proceedings of the 1998 Coal Operators' Conference, Mining Engineering, University of Wollongong, 18-20 February 2019 https://ro.uow.edu.au/coal/268 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Study of Waste Water Quality Management in IIlawarra Coal Mines ABSTRACT This paper is concerned with two case histories of wastewater quality management in underground coal mines in the I1lawarra region. The first investigation briefly presents an analysis of mine water discharge having an extremely high concentration of suspended solids and consistently high barium concentrations, averaging 14.4 mg/l Barium, over the sampling period. A laboratory study of chemical precipitation processes has indicated that about 91% of barium could be removed by using ferric sulphate and lime. On the basis of the information obtained from the environmental audit process an alternative water treatment and reuse system incorporating 51% reduction in the water consumption with 32% less off-site discharge has been suggested (Thomas, 1995). The second case history is concerned with the storm water management at a mine situated in the Illawarra escarpment where only 20% of the wastewater generated in the colliery is discharged off -site.
    [Show full text]
  • The Environmental Impacts from Coal Cradle to Grave: the Environmental Impacts from Coal © 2001, Photostogo © 2001, Photostogo
    Cradle to Grave: The Environmental Impacts from Coal Cradle to Grave: The Environmental Impacts from Coal © 2001, PhotosToGo © 2001, PhotosToGo Clean Air Task Force 77 Summer Street, Boston, MA 02110 June, 2001 Clean Air Task Force 77 Summer Street, Boston, MA 02110 Tel: (617) 292-0234 Fax: (617) 292-4933 CATF gratefully acknowledges support for this report from the following foundations: The Turner Foundation The John Merck Fund The Joyce Foundation The Heinz Endowments The Rockefeller Brothers Fund The Energy Foundation The Kapor Foundation Credits: Writer: Martha Keating, Clean Air Task Force Editing: Ellen Baum, Clean Air Task Force Amy Hennen, Izaak Walton League of America Design Editor: Bruce Hill, Clean Air Task Force Design: Jill Bock Design Printing: Spectrum Printing & Graphics, Inc. June, 2001 Cradle to Grave: The Environmental Impacts from Coal Cradle to Grave: The Environmental Impacts from Coal he electric power industry is health. Some are known to cause the largest toxic polluter in cancer, others impair reproduc- the country, and coal, which tion and the normal development Tis used to generate over half of of children, and still others the electricity produced in the damage the nervous and immune U.S., is the dirtiest of all fuels.1 systems. Many are also respira- From mining to coal cleaning, tory irritants that can worsen from transportation to electricity respiratory conditions such as generation to disposal, coal asthma. They are an environmen- © 2001, PhotosToGo releases numerous toxic pollut- tal concern because they ants into our air, our waters and onto our lands.2 Nation- damage ecosystems. Power plants also emit large ally, the cumulative impact of all of these effects is quantities of carbon dioxide (CO2), the “greenhouse gas” magnified by the enormous quantities of coal burned each largely responsible for climate change.
    [Show full text]
  • 2021 River Basin Management Plan
    2021 River Basin Management Plan Mine waters challenge Published: 22/10/2019 Contents 1. Summary .................................................................................................................. 1 2. Mine water pressures ............................................................................................... 3 3. Addressing the challenge ......................................................................................... 6 4. Future challenges and actions .................................................................................. 9 5. Case studies: abandoned metal mines ................................................................... 12 6. Choices ................................................................................................................... 17 7. Contacts and supporting information ...................................................................... 18 8. References ............................................................................................................. 18 1. Summary Mining played a major part in Britain’s rich industrial history, but this also led to thousands of abandoned mines left scattered across our landscape. Most of these mines closed well over 100 years ago but they still pollute our rivers, harm fish, river insects and ecosystems and can have an adverse impact on economic activity. Discharges from abandoned mines continue to pollute over 1,500km (3%) of rivers in England. Pollution from coal mines is easy to see, because the iron rich water they
    [Show full text]
  • Air Pollution Due to Opencast Coal Mining and It's Control in Indian Context M K Ghose • and S R Maj Ee Centre of Mining Environment
    Jou rn al of Scientific & Industrial Research Vol. 60, October 200 I, pp 786-797 Air Pollution due to Opencast Coal Mining and It's Control in Indian Context M K Ghose • and S R Maj ee Centre of Mining Environment. In dian School of Mines, Dhanb ad 826004, India Received: 29 Janu ary 200 I; accept ed : 29 June 200 I Open cast mining dominates th e coal production scenario in India. It creates more serious air pollution prob le m in the area. Coal producti on scenari o and its impact on air quality is descri bed. To maint ain th e energy demand in opencast min ing i~ growing at a phenomenon rate. There is no wcll-clefinccl method for assess in g the impact on air qu alit y clu e to minin g projects. An investi gati on is condu cted to evalu ate th e impact on ai r enviro nment due to opcncast coal mining. Emi ssion fac tor dat a arc utili zed for computati on of du st ge neration due to different mining ac ti viti es. Approach for the selec ti on of work zo ne and ambient air monitoring stations arc cl cscribccl. Work zone air qu alit y, ambient air qu alit y, and seasonal va riati ons arc di sc ussed. whi ch shows hi gh po llution potential clue to SPM. The statu s of air pollution clue to opencast mining is evaluated and its impac t on air environment is assessed. Characteristics SPM show a great concern to human hea lth .
    [Show full text]
  • Coal Mine Methane (CMM) Finance Guide Updated July 2019
    EPA-400-D-09-001 Coal Mine Methane (CMM) Finance Guide Updated July 2019 Introduction such as the Kyoto Protocol’s Clean Development Mechanism and Joint Global methane emissions from the coal Implementation originally created financial mining sector can be reduced through markets and incentives to develop projects recovery and utilization projects that collect that reduce GHG emissions, and the California methane gas from coal mines for productive and Quebec Cap-and-Trade programs have use or through destruction when an economic expanded to include CMM offsets. More use is not feasible. recently, Article 6 of the Paris Agreement The U.S. Environmental Protection Agency’s provides a pathway for international (EPA’s) Coalbed Methane Outreach Program cooperation through markets and carbon (CMOP) is a voluntary program with the goal pricing associated with Nationally Determined of reducing methane emissions from coal Contributions. Third, multinational mining activities. Our mission is to promote collaborative initiatives such as the Global the profitable recovery and utilization of coal Methane Initiative (www.globalmethane.org) mine methane (CMM), a potent greenhouse have focused on overcoming policy, gas (GHG) that contributes to climate change regulatory, legal, and technical barriers that if emitted to the atmosphere. When collected inhibit project development. and used for energy, CMM is a valuable fuel Often, the critical barrier to developing CMM source. projects is securing financing. This is due, in CMOP estimates that more than 200 CMM part, to the lack of awareness of the sources projects exist worldwide. Many more project of finance and limited understanding of the opportunities exist in emerging market requirements to secure financing.
    [Show full text]
  • Characterization of Particulate Matter (PM10) Related to Surface Coal Mining Operations in Appalachia
    Atmospheric Environment 54 (2012) 496e501 Contents lists available at SciVerse ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Short communication Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia Viney P. Aneja a,*, Aaron Isherwood b, Peter Morgan b a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA b Sierra Club Environmental Law Program, San Francisco, CA 94105-3441, USA article info abstract Article history: This study investigates the environmental exposure of residents of a community in southwest Virginia to Received 20 June 2011 respirable concentrations of dust (PM-10 i.e. PM10) generated by trucks hauling coal from surface coal Received in revised form mining operations. The study site is representative of communities in southwest Virginia and other parts 13 February 2012 of Appalachia that are located in narrow hollows where homes are placed directly along roads that Accepted 15 February 2012 experience heavy coal truck traffic. Preliminary air sampling (Particulate Matter i.e. PM10) was conducted for a period of approximately Keywords: two weeks during early August 2008 in the unincorporated community of Roda, Virginia, at two locations Surface coal mining (about a mile apart along Roda Road (Route 685) in Wise County, Virginia). For the purposes of this study PM10 Elemental analysis (a combination of logistics, resource, and characterization of PM) we sited the PM samplers near the road Electron microscopy to ascertain the micro exposure from the road. The results revealed high levels of PM10 (the mean 3 3 Air toxic adjusted 24-h concentration at the Campbell Site 250.2 mgmÀ ( 135.0 mgmÀ ); and at the Willis 3 ¼ Æ 3 Site 144.8 60.0 mgmÀ ).
    [Show full text]
  • Environmental Impact of Methane Released from Coal Mines
    MATEC Web of Conferences 305, 00030 (2020) https://doi.org/10.1051/matecconf/202030500030 SESAM 2019 Environmental impact of methane released from coal mines Nicolae Ianc1*, Corneliu Boantă1, Ion Gherghe1, Cristian Tomescu1 1National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32-34 G-ral Vasile Milea Street, Petrosani, Hunedoara, Romania Abstract. Methane gas accompanying coal deposits was formed as a result of successive stages of the anaerobic process of vegetal material transformation into coal, at high temperatures and pressures, without external oxygen supply. During the metamorphism process, the content of C, H and O is modified, meaning an increase in carbon content, a decrease in hydrogen and oxygen, the nitrogen and sulphur content remaining constant. During this process, water and carbon dioxide is generated, the water being generated in the first transformation phases. Within the slow oxidation process, gas products result by using the oxygen content in plants, especially methane and carbon dioxide due to the fermentation stimulated by bacteria. Methane released into the atmosphere following the mining of coal have double ecological impact, participating in the destruction of the ozone layer and at the same time contributing to the enhancement of the greenhouse effect. At the same time, methane gas released into the atmosphere during coal mining may be used by mining operators as primary power resource for covering the power requirements of the mine or it can be used for commercial purposes. 1 Introduction The methane gas that accompanies the coal deposits was formed as a product in the successive stages of the process of anaerobic conversion of the vegetal material into coal at high temperatures and pressures, during the carbonization process, without oxygen supply from the outside.
    [Show full text]
  • AP-42 11.9 Western Surface Coal Mining
    Revision of Emission Factors for AP-42 Section 11.9 Western Surface Coal Mining Revised Final Report For U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emission Factor and Inventory Group Research Triangle Park, NC 27711 Attn: Ron Myers (MD-14) EPA Contract 68-D2-0159 Work Assignment No. 4-02 MRI Project No. 4604-02 September 1998 Revision of Emission Factors for AP-42 Section 11.9 Western Surface Coal Mining Revised Final Report For U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emission Factor and Inventory Group EPA Contract 68-D2-0159 Work Assignment No. 4-02 MRI Project No. 4604-02 September 1998 NOTICE The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under Contract No. 68-D2-0159 to Midwest Research Institute. It has been reviewed by the Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, and has been approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. iii PREFACE This report was prepared by Midwest Research Institute (MRI) for the Office of Air Quality Planning and Standards (OAQPS), U. S. Environmental Protection Agency (EPA), under Contract No. 68-D2-0159, Work Assignment No.4-02. Mr. Ron Myers was the requester of the work. Approved for: MIDWEST RESEARCH INSTITUTE Roy Neulicht Program Manager Environmental Engineering Department Jeff Shular, Director Environmental Engineering Department July 1998 iv TABLE OF CONTENTS Page Section 1 Introduction ...................................................... 1 Section 2 Revision of AP-42 Section on Western Surface Coal Mining .................
    [Show full text]