Membrane Protein Modified Electrodes in Bioelectrocatalysis

Total Page:16

File Type:pdf, Size:1020Kb

Membrane Protein Modified Electrodes in Bioelectrocatalysis catalysts Review Membrane Protein Modified Electrodes in Bioelectrocatalysis Huijie Zhang y, Rosa Catania y and Lars J. C. Jeuken * School of Biomedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; [email protected] (H.Z.); [email protected] (R.C.) * Correspondence: [email protected]; Tel.: +44-113-343-3829 These authors have contributed equally. y Received: 18 November 2020; Accepted: 3 December 2020; Published: 6 December 2020 Abstract: Transmembrane proteins involved in metabolic redox reactions and photosynthesis catalyse a plethora of key energy-conversion processes and are thus of great interest for bioelectrocatalysis- based applications. The development of membrane protein modified electrodes has made it possible to efficiently exchange electrons between proteins and electrodes, allowing mechanistic studies and potentially applications in biofuels generation and energy conversion. Here, we summarise the most common electrode modification and their characterisation techniques for membrane proteins involved in biofuels conversion and semi-artificial photosynthesis. We discuss the challenges of applications of membrane protein modified electrodes for bioelectrocatalysis and comment on emerging methods and future directions, including recent advances in membrane protein reconstitution strategies and the development of microbial electrosynthesis and whole-cell semi-artificial photosynthesis. Keywords: membrane protein; bioelectrocatalysis; electrode modification; biofuel cells; photosynthesis; liposomes; hybrid vesicles; microbial electrosynthesis 1. Introduction Membrane proteins constitute 20–30% of all proteins encoded by both prokaryotic and eukaryotic cells. They perform a wide variety of functions, including material transport, signal transduction, catalysis, proton and electron transport (Figure1)[ 1]. They are also key to a number of earth’s most fundamental reactions, such as respiration and photosynthesis [2,3]. Redox enzymes in the respiratory chain catalyse a variety of fundamental processes for energy conversion and fuel production, including H2 oxidation, O2 reduction, and carbon and nitrogen cycling. Membrane proteins that are involved in the light reaction of photosynthesis harvest light and facilitate electron transfer essential for solar energy conversion. The amphiphilic nature of membrane proteins makes them difficult to isolate, study and manipulate. Despite these challenges, membrane proteins have been widely advocated and studied for applications in bioelectrocatalysis, such as biofuel cells [4] and semi-artificial photosynthesis [5]. Here, we will review electrochemical studies of membrane proteins with the view to using these systems for bioelectrocatalysis. To aid discussion later on, we will briefly introduce a small selection of membrane enzymes active in bioenergy conversion, although this is far from a comprehensive list. We will then summarise the main strategies to immobilise membrane proteins on electrodes and discuss common techniques used to characterise these electrodes, including electrochemistry, spectroscopy, spectroelectrochemistry, microscopy and quartz crystal microbalance. Finally, some critical application challenges and potential future research directions will be highlighted that might find application in bioelectrocatalysis. Specifically, we will focus on two emerging directions. One is the reconstitution of membrane proteins into hybrid vesicles to extend their functional lifetime. The other is the use of microorganisms for microbial electrosynthesis and semi-artificial photosynthesis. Catalysts 2020, 10, 1427; doi:10.3390/catal10121427 www.mdpi.com/journal/catalysts Catalysts 2020, 10, x FOR PEER REVIEW 2 of 28 Catalystsvesicles2020 to, 10extend, 1427 their functional lifetime. The other is the use of microorganisms for microbial2 of 29 electrosynthesis and semi-artificial photosynthesis. Figure 1. Representative functions of transmembrane proteins. Figure 1. Representative functions of transmembrane proteins. 2. Membrane Proteins in Biofuel Conversion and Photosynthesis 2. Membrane Proteins in Biofuel Conversion and Photosynthesis 2.1. Membrane Enzymes in Biofuel Conversion 2.1. MembraneNature offers Enzymes highly in specialised Biofuel Conversion enzyme machineries that can be exploited for (bio)fuel conversion. AmongNature them, offers membrane-bound highly specialised hydrogenases, enzyme found machineries in many bacteria,that can archaea be exploited and lower for eukaryotes, (bio)fuel areconversion. metalloenzymes Among capablethem, membrane-bound of catalysing the reversiblehydrogenases, oxidation found of Hin2 manyto protons bacteria, and electronsarchaea and [6]. Depending on the metal located in the active site, three phylogenetically unrelated classes can be lower eukaryotes, are metalloenzymes capable of catalysing the reversible oxidation of H2 to protons identified:and electrons [NiFe], [6]. Depending [FeFe] and, on less the common, metal located [Fe] hydrogenases. in the active site, Most three hydrogenases phylogenetically are rapidly unrelated and almostclasses completelycan be identified: inactivated [NiFe], by [FeFe] O2 [7]. and, However, less common, aerobic or[Fe] facultative hydrogenases. aerobic Most H2-oxidising hydrogenases bacteria are have a particular subtype of O -tolerant [NiFe] hydrogenase, which withstands the presence of O and rapidly and almost completely2 inactivated by O2 [7]. However, aerobic or facultative aerobic2 H2- are membrane-bound hydrogenases (MBHs) [8]. The most studied O -tolerant [NiFe] hydrogenases oxidising bacteria have a particular subtype of O2-tolerant [NiFe] hydrogenase,2 which withstands the are found in Ralstonia eutropha, Ralstonia metallidurans, Aquifex aeolicus, Hydrogenovibrio marinus and presence of O2 and are membrane-bound hydrogenases (MBHs) [8]. The most studied O2-tolerant Escherichia[NiFe] hydrogenases coli. MBHs are are multimeric found in proteins Ralstonia with oneeutropha large, subunitRalstonia and metallidurans one small subunit,, Aquifex bound aeolicus to the, periplasmicHydrogenovibrio side ofmarinus the cytoplasmic and Escherichia membrane coli. throughMBHs are a transmembrane multimeric proteins protein with (b-type one cytochrome) large subunit [8]. Theand [NiFe]one small active subunit, site, with bound the same to the configuration periplasmi asc side other of [NiFe] the cytoplasmic hydrogenases, membrane is deeply through buried ina thetransmembrane large subunit. protein MBHs ( coupleb-type cytochrome) oxidation of hydrogen[8]. The [NiFe] in the acti largeve subunitsite, with to the the same reduction configuration of either menaquinone-7as other [NiFe] orhydrogenases, ubiquinone-8 is in thedeeplyb-type buried cytochrome in the inlarge the subunit. membrane. MBHs couple oxidation of hydrogenIn the in respiratory the large subunit chain, to terminal the reduction oxidases of either catalyse menaquinone-7 the reduction or ubiquinone-8 of molecular in oxygen the b-type to watercytochrome without in formationthe membrane. of reactive oxygen species (ROS). They oxidise quinones (ubiquinone and menaquinoneIn the respiratory oxidases) chain, or cytochromes terminal oxidases (cytochrome catalysec oxidases) the reduction and can of be molecular classed into oxygen haem-copper to water oxidaseswithout [formation9], bd oxidases of reactive [10] or alternativeoxygen species oxidases (ROS). [11]. They For instance, oxidise cytochromequinones (ubiquinonebo3 enzymes and are haem-coppermenaquinone oxidases oxidases) in or bacteria cytochromes such as (cytochromeE. coli and couple c oxidases) oxidation and ofcan ubiquinol-8 be classed tointo the haem-copper reduction of oxygen [12]. Cytochrome bd is a quinol-dependent terminal oxidase found exclusively in prokaryotes oxidases [9], bd oxidases [10] or alternative oxidases [11]. For instance, cytochrome bo3 enzymes are andhaem-copper is structurally oxidases unrelated in bacteria to haem-copper such as E. coli oxidases and couple [13]. oxidation of ubiquinol-8 to the reduction of oxygenNitrate [12]. reductases Cytochrome are molybdoenzymes bd is a quinol-dependent capable of reducing terminal nitrate oxidase (NO found3−) to nitriteexclusively (NO2 −in). Thisprokaryotes enzyme and family is structurally can be found unrelated in eukaryotic to haem-copper and prokaryotic oxidases cells. [13]. Eukaryotic nitrate reductases are present in plants, algae and fungi, and are involved in the assimilation of nitrate. Prokaryotic nitrate Nitrate reductases are molybdoenzymes capable of reducing nitrate (NO3−) to nitrite (NO2−). This reductasesenzyme family are classified can be found into threein eukaryotic classes: assimilatory and prokaryotic nitrate cells. reductases Eukaryotic (Nas), nitrate periplasmic reductases nitrate are reductasespresent in plants, (Nap) algae and respiratory and fungi, nitrateand are reductase involved in (Nar). the assimilation The latter are of nitrate. transmembrane Prokaryotic enzymes nitrate whichreductases use nitrate are classified as the electron into three acceptor classes: of assimilatory an anaerobic nitrate respiratory reductases chain [(Nas),14]. Facultative periplasmic anaerobic nitrate bacteriareductases use (Nap) these alternativeand respiratory respiratory nitrate enzymes reductase in oxygen (Nar). depletedThe latter environments, are transmembrane replacing enzymes oxygen withwhich di usefferent nitrate electron as the acceptorselectron acceptor [15]. For of
Recommended publications
  • Electro-Organic Reactions and Redox Active Biomolecules: a Student Diary*
    these techniques. Some group members also told me that they use liquid chromatography-mass spectrometry (LC- MS), and it is a great help in analyzing their reaction products. Methods like atomic force microscopy, scanning electron microscopy, and surface FTIR are used in the group for characterization of the electrode surfaces they make. A week or so later: I have done my first electrochemical synthesis experiment. I did cyclic voltammetry Electro-organic Reactions in undergraduate analytical lab, so it was not totally new. The reactor cell I used was like two connected beakers in a water jacket (Fig. 1). One beaker is and Redox Active Biomolecules: the working electrode compartment, and the other is the counter electrode compartment, separated by a salt bridge. A Student Diary* This is so that products from the two compartments do not combine to give by James F. Rusling and Albert J. Fry undesirable products. The reactor had a carbon cloth working electrode, which is a cool material, like a conducting It is early December, and I have been in chemistry grad school black fabric that you cut to the right for about 3 months. It is a big transition, and a bit tougher size with scissors. It has a large surface than I expected. The courses are not too hard, but the focus area to facilitate the catalytic reaction. The reactor has counter and reference here is very much on research. I have chosen the group in electrodes, and is hooked up to a which I will do my thesis research, and I am happy about that.
    [Show full text]
  • Nanoengineered Chiral Pt-Ir Alloys for High-Performance Enantioselective Electrosynthesis
    ARTICLE https://doi.org/10.1038/s41467-021-21603-8 OPEN Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis Sopon Butcha1,2, Sunpet Assavapanumat2, Somlak Ittisanronnachai2, Veronique Lapeyre1, ✉ ✉ Chularat Wattanakit 2 & Alexander Kuhn 1,2 fi 1234567890():,; The design of ef cient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past dec- ades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asym- metric electrosynthesis (>95 %ee), combined with high electrochemical stability. 1 University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607 Pessac, France. 2 School of Molecular
    [Show full text]
  • Application of Voltammetry in Biomedicine-Recent
    Macedonian Journal of Chemistry and Chemical Engineering, Vol. 39, No. 2, pp. 153–166 (2020) MJCCA9 – 803 ISSN 1857-5552 e-ISSN 1857-5625 Received: September 23, 2020 DOI: 10.20450/mjcce.2020.2152 Accepted: October 8, 2020 Original scientific paper APPLICATION OF VOLTAMMETRY IN BIOMEDICINE RECENT ACHIEVEMENTS IN ENZYMATIC VOLTAMMETRY Rubin Gulaboski1, Valentin Mirceski2,3 1Faculty of Medical Sciences, Goce Delčev University, Štip, Republic of Macedonia 2Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia 3Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403 Lodź, Poland [email protected]; [email protected] Protein-film voltammetry (PFV) is considered the simplest methodology to study the electrochem- istry of lipophilic redox enzymes in an aqueous environment. By anchoring particular redox enzymes on the working electrode surface, it is possible to get an insight into the mechanism of enzyme action. The PFV methodology enables access to the relevant thermodynamic and kinetic parameters of the enzyme- electrode reaction and enzyme-substrate interactions, which is important to better understand many meta- bolic pathways in living systems and to delineate the physiological role of enzymes. PFV additionally provides important information which is useful for designing specific biosensors, simple medical devices and bio-fuel cells. In the current review, we focus on some recent achievements of PFV, while presenting some novel protocols that contribute to a better communication between redox enzymes and the working electrode. Insights to several new theoretical models that provide a simple strategy for studying electrode reactions of immobilized enzymes and that enable both kinetic and thermodynamic characterization of enzyme-substrate interactions are also provided.
    [Show full text]
  • Electrochemical Evidence That Pyranopterin Redox Chemistry Controls the Catalysis of Yedy, a Mononuclear Mo Enzyme
    Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme Hope Adamsona, Alexandr N. Simonovb, Michelina Kierzekc, Richard A. Rotheryc, Joel H. Weinerc, Alan M. Bondb, and Alison Parkina,1 aDepartment of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom; bSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia; and cDepartment of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved October 13, 2015 (received for review August 25, 2015) A long-standing contradiction in the field of mononuclear Mo explores the possibility that ligand-based redox chemistry plays a enzyme research is that small-molecule chemistry on active-site mimic role in YedY catalysis. compounds predicts ligand participation in the electron transfer YedY has been structurally characterized via both X-ray crys- reactions, but biochemical measurements only suggest metal-cen- tallography and X-ray absorption spectroscopy (XAS) (3, 8, 9). In tered catalytic electron transfer. With the simultaneous measurement most mononuclear Mo enzymes, heme groups and iron sulfur of substrate turnover and reversible electron transfer that is provided clusters are found within the same protein as the Mo center, but the by Fourier-transformed alternating-current voltammetry, we show only metal site in YedY is Mo, making this enzyme a helpfully that Escherichia coli YedY is a mononuclear Mo enzyme that recon- simple system for studying redox chemistry (Fig. 1) (1, 3). Within ciles this conflict. In YedY, addition of three protons and three elec- the active site, the X-ray structure was interpreted to show Mo(V) trons to the well-characterized “as-isolated” Mo(V) oxidation state is in a square pyramidal environment (3), identical to other members needed to initiate the catalytic reduction of either dimethyl sulfoxide of the “sulfite oxidase” family of mononuclear Mo enzymes.
    [Show full text]
  • The Electrosynthesis of Organic Compounds
    The Electrosynthesis of Organic Compounds By Professor Martin Fleischmann, Ph.D., and Derek Pletcher, Ph.D. Department of Chemistry, University of Southampton reactions such as substitutions and cyclisa- The decelopment of electrochemical tions. routes in the industrial production of In order to explain the interest in electro- organic compounds is beginning to chemistry it is convenient to contrast electro- attract considerable interest. Already chemical reactions with homogeneous or two large-scale processes are in opera- heterogeneous reductions and oxidations tion, one producing adiponitrile from using hydrogen and air or oxygen. The free acrylonitrile, an intermediate step in the energy change, AGO, of these processes is manufacture of Nylon 66, and the other equivalent to a cell potential, E”, given by producing lead tetra-ethyl anti-lcnock AG= --nFE’ compounds. This article reviews the By referring to a scale of free energies or basic electrochemistry involved in this electrode potentials, Figure I, it is evident type OJ; synthesis and outlines the great that such spontaneous reactions are only pos- possibilities being opened up by ad- sible within the potential range limited by the vances in technique, in reactor design reduction of oxygen or the oxidation of and in the development of new types of hydrogen. This driving force only amounts electrode structures in which platinum to approximately 0.5 eV or 10 kcals/mole. By and its associated metuls will play an contrast, it is possible to carry out electro- important part. chemical reactions at potentials between +3.5 V and -2.5 V even in aqueous solution, if suitable electrolytes and electrodes are In recent years research in the field of chosen.
    [Show full text]
  • Improving Microbial Electrosynthesis of Polyhydroxybutyrate (PHB) From
    bioRxiv preprint doi: https://doi.org/10.1101/214577; this version posted November 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improving microbial electrosynthesis of polyhydroxybutyrate (PHB) from CO2 by Rhodopseudomonas palustris TIE-1 using an immobilized iron complex modified cathode Karthikeyan Rengasamy, Tahina Onina Ranaivoarisoa, Rajesh Singh, Arpita Bose* Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, USA. Abstract Microbial electrosynthesis (MES) is a promising bioelectrochemical approach to produce biochemicals. A previous study showed that Rhodopseudomonas palustris TIE-1 can directly use poised electrodes as electron donors for photoautotrophic growth at cathodic potentials that avoid electrolytic H2 production (photoelectroautotrophy). To make TIE-1 an effective biocatalyst for MES, we need to improve its electron uptake ability and growth under photoelectroautotrophic conditions. Because TIE-1 interacts with various forms of iron while using it as a source of electrons for photoautotrophy (photoferrotrophy), we tested the ability of iron-based redox mediators to enhance direct electron uptake. Our data show that soluble iron cannot act as a redox mediator for electron uptake by TIE-1 from a cathode poised at +100mV vs. Standard Hydrogen electrode. We then tested whether an immobilized iron-based redox mediator Prussian Blue (PB) can enhance electron uptake by TIE-1. Chronoamperometry indicates that cathodic current uptake by TIE-1 increased from 1.47 ± 0.04 to 5.6 ± 0.09 µA/cm2 (3.8 times) and the production of the bioplastic, polyhydroxybutyrate (PHB) improved from 13.5 ± 0.2 g/L to 18.8 ± 0.5 g/L (1.4 times) on electrodes coated with PB.
    [Show full text]
  • Microbial Electrosynthesis for Acetate Production from Carbon Dioxide: Innovative Biocatalysts Leading to Enhanced Performance
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance Aryal, Nabin Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Aryal, N. (2017). Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance. Novo Nordisk Foundation Center for Biosustainability. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance PhD Thesis written by Nabin Aryal Supervisor Tian Zhang Co-supervisor Pier-Luc Tremblay © PhD Thesis 2017 Nabin Aryal Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kemitorvet 220, 2800 kgs. Lyngby Denmark ii Preface The following PhD thesis is written as a partial fulfillment of the requirement from the Technical University of Denmark (DTU) to obtain a PhD degree.
    [Show full text]
  • Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
    molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa.
    [Show full text]
  • Electrochemical Properties of Gsnos by Protein Film Voltammetry
    180 Chapter 6 Electrochemical Properties of gsNOS by Protein Film Voltammetry 181 6.1 Abstract The accurate measurement of a protein’s electrochemical properties is an important part of understanding its function. Several methods have been developed to facilitate communication between deeply buried protein metal centers and electrodes. One such technique, protein film voltammetry (PFV), involves the immobilization of proteins on the surface of electrodes by various means. Such techniques can result in clear signals from proteins, allowing the measurement of not only reduction potentials but kinetics as well. Two types of PFV have been employed in the study of the nitric oxide sythase from Geobacillus stearothermophilus. First, a mutant of this NOS was covalently connected to a gold electrode. It was hypothesized that the use of a hydrophilic linker would maintain a normal aqueous environment around the enzyme and avoid the shifting of potentials (a common problem in PFV). When it was found that this technique still resulted in measuring responses with significantly shifted potentials (as compared with those measured by redox titration in solution), a more traditional film was employed. The kinetics of gsNOS was studied in DDAB films and compared with the mammalian inducible isoform. It was found to show similar behavior, and experiments are still underway to further characterize the kinetics of wild type and three mutants of gsNOS (W70H, W70F, and W70Y, introduced in Chapter 3). 182 6.2 Introduction and Background Key to the function of most metalloenzymes is the redox activity of transition metals. These metals have the unique ability, as distinct from most organic molecules, to easily access multiple oxidation states.
    [Show full text]
  • Microbial Electrosynthesis from Carbon Dioxide: Performance Enhancement and Elucidation of Mechanisms
    Microbial electrosynthesis from carbon dioxide: performance enhancement and elucidation of mechanisms Ludovic Jourdin Bachelor of Chemistry Master of Chemical Engineering National Graduate School of Chemistry, University of Montpellier, France A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Chemical Engineering Advanced Water Management Centre 1 Abstract Microbial electrosynthesis (MES) of organics from carbon dioxide has been recently put forward as an attractive technology for the renewable production of valuable multi-carbon reduced end-products and as a promising CO2 transformation strategy. MES is a biocathode-driven process that relies on the conversion of electrical energy into high energy-density chemicals. However, MES remains a nascent concept and there is still limited knowledge on many aspects. It is still unclear whether autotrophic microbial biocathode biofilms are able to self- regenerate under purely cathodic conditions without any external electron or organic carbon sources. Here we report on the successful development and long-term operation of an autotrophic biocathode whereby an electroactive biofilm was able to grow and sustain itself with CO2 and the cathode as sole carbon and electron source, respectively, with H2 as sole product. From a small inoculum of 15 mgCOD (in 250 mL), the bioelectrochemical system operating at -0.5 V vs. SHE enabled an estimated biofilm growth of 300 mg as COD over a period of 276 days. A critical aspect is that reported performances of bioelectrosynthesis of organics are still insufficient for scaling MES to practical applications. Selective microbial consortia and biocathode material development are of paramount importance towards performance enhancement.
    [Show full text]
  • Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns
    Send Orders of Reprints at [email protected] Current Genomics, 2013, 14, 11-24 11 Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns 1,2, 1 1 1 Harald König *, Daniel Frank , Reinhard Heil and Christopher Coenen 1Institute for Technology Assessment and Systems Analysis (ITAS); 2Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, PO box 3640, 76021 Karlsruhe, Germany Abstract: New organisms and biological systems designed to satisfy human needs are among the aims of synthetic ge- nomics and synthetic biology. Synthetic biology seeks to model and construct biological components, functions and or- ganisms that do not exist in nature or to redesign existing biological systems to perform new functions. Synthetic genom- ics, on the other hand, encompasses technologies for the generation of chemically-synthesized whole genomes or larger parts of genomes, allowing to simultaneously engineer a myriad of changes to the genetic material of organisms. Engi- neering complex functions or new organisms in synthetic biology are thus progressively becoming dependent on and con- verging with synthetic genomics. While applications from both areas have been predicted to offer great benefits by mak- ing possible new drugs, renewable chemicals or clean energy, they have also given rise to concerns about new safety, en- vironmental and socio-economic risks – stirring an increasingly polarizing debate. Here we intend to provide an overview on recent progress in biomedical and biotechnological applications of synthetic genomics and synthetic biology as well as on arguments and evidence related to their possible benefits, risks and governance implications. Received on: May 22, 2012- Revised on: October 11, 2012- Accepted on: October 12, 2012 Keywords: Applications, Benefits, Biofuels, Biomedicine, Environment, Risks, Synthetic genomics, Synthetic biology.
    [Show full text]
  • Organic Electrosynthesis Amps up the Potential for Synthetic Innovation
    Vol. 4 No.2 March 2020 Organic electrosynthesis amps up the potential for synthetic innovation, while technological advances decrease the resistance for entry into this electrifying field By Matthew Hartle, Ph.D. Abstract Organic electrochemistry is an area that is receiving more attention as chemists face pressures to synthesize more complex molecular targets in a more efficient fashion. The pressure comes from many corners including a desire to develop processes that are greener and more sustainable while producing significantly fewer toxic wastes and a reduction in manufacturing costs. It helps that many electrochemical processes are safer to operate and can be inherently linked to renewable energies. While innovations in beaker-scale electrolysis1 have opened the field to the typical organic bench chemist, a technology gap exists for scaling the reactions to the production level.2 Here we review several recent organic transformations that could either scale to larger flow-cell type systems or require further optimization in parallel with scale-up, as examples where the technology gap could be bridged. The Electrosynthesis Company is well-positioned to bridge the gap that exists between the bench and commercialization. A technology gap exists in scale-up of organic electrochemistry Reduction and oxidation are a short topic in the typical college organic chemistry class. Redox topics are relegated to the reduction of multiple bonds to alkenes or alkanes and the oxidation of oxygen groups to form carboxylic acids. Graduate-level organic chemistry classes also tend to follow the typical idea of organic chemical transformations being substitutions, eliminations, and concerted mechanisms without a deep description of reductions and oxidations of each process beyond hydrogenations or heterogeneous oxidations.
    [Show full text]