389

Index a biocathodes 243ff. AC fi elds 339, 346, 351 – air diffusion 252 adsorption – hydrogel-based 252 – 14, 250 – oxygen reduction reaction (ORR) 243ff. – nonspecifi c 45, 217 – polarization plots 251 – 13f., 174 biocompatible 12, 16, 42ff. – reactivity 111 bioelectrocatalysis, see biocatalysis – surface-specifi c 111 biofuel cell (BFC) 3, 229ff. – vesicle 197f. – development 6, 26 alcohol dehydrogenase 260f. – electron transfer (ET) 29ff. alkanethiols 98, 100 – enzymatic glucose/O2 38 amperometric biosensors 1ff. – -based, see enzymatic fuel cell anesthesia 377f., 380 (EFC) antibodies 3, 53f. – principle 31 antigen 3, 53f. biofuel cell 2f., 5f., 9f., 29, 31f., 36ff., 55, ascorbate oxidase 244 57 assembled biofuel cells 255 bioinorganic hybrids 85 atomic force microscopy (AFM) 85, 92 biological recognition element 1ff., 7, 16, – contact mode 287 23f., 29, 36, 38, 44ff., 56f., 59 – fl uidity of biomimetic membranes 200f. biological recognition 4, 11 – small unilamellar vesicles 198 – element 27, 45 – TERS 291 biomimetic layers 107f., 143f., 183, 190 atomic force microscopy 85 – fl uidity 200f. Au atom mining 104 – formation of lipid fi lms 194ff. Au–nanoparticle hybrids 120 – gold-supported 201 AuNP–azurin hybrid 123 – rapid solvent exchange 200 AuNP– hybrids 123 – vesicle fusion 196ff. azurin 113f., 123, 125 biomimetic membrane 189ff., 200f., 220 biosensor architecture 2f., 5, 13ff., 18ff., b 38f., 55f., 59 bending rigidity 338, 347 biosensor stability 28, 43 between laboratory precision, see – long-term 4, 6, 16, 28, 44 reproducibility – storage 28 bias voltage 92, 95, 97 – working 28 bilayer lipid membranes 107 biosensor bilayer lipid membranes, see membranes – accuracy 28 bilirubin oxidase 244, 246 – amperometric 1ff. bioanodes 235ff. – applications 22 biocatalysis 5f., 122, 232f., 246 – architecture 11, 14ff.

Advances in Electrochemical Science and Engineering. Edited by Richard C. Alkire, Dieter M. Kolb, and Jacek Lipkowski © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32885-7 390 Index

– BFC, see biofuel cell cholesterol 107, 175f., 180, 183, 345, 347ff., – characteristics 21, 25 352, 355, 358 – development 8ff. clinical use 369, 377 – dynamic range 27 cofactor 7, 14, 30 – EFC, see enzymatic fuel cell – fl avin adenine dinucleotide (FAD) 32f., – electrochemical 40 42, 232, 235 – fi rst-generation 7, 11 – NAD+ 242, 312f. – glucose 21, 32f., 46, 239 – protein-integrated 30f. – implanted 42ff. coherent multi-electron transfer 105, 126 – nano- 38f., 41 coherent scattering 148, 157, 161f., 171 – nucleic acid-based 48ff. Cole–Cole plot 193ff. – MFC, see microbial fuel cell composite, see hybrid – micro- 44 condensed matter molecular charge transfer – optimization 20, 26 theory 87 – performance 18f., 25ff. conductive polymers 17 – precision, see measurement conductivity – research 23ff. – long-range off-resonance 125 – response 18, 20 – oligonucleotides 99 – second-generation 7f. – short oligonucleotides 97 – set-up 3ff. – single molecules 85f., 98f. – tapered voltammetric enzyme 44 confocal microscopy 336, 343, 348, 355 – third-generation 13f., 232 contrast variation 168, 174 – tip 45 cooperative charge transport 117 – working potential 15 Coulomb charging effects 121 – working range 27 critical poration potential 349f. biosensors 1ff., 5ff., 7ff., 13f., 16ff., 20ff., current 24f., 29f., 32, 36ff., 54ff., 59 – –bias voltage relation 92, 97 Boltzmann constant 88, 338 – density 38, 41, 90, 235, 239f., 250f. Born approximation 151f., 152, 154 – stationary diffusion 41 – distorted wave (DWBA) 154 current–bias relation 95 brain tumor electroporation 381 current–bias voltage relation 97 butanethiol 101 current–overpotential relation 95, 97 cysteine 97, 100, 102f. c cystine 102

cancer 378, 380f., 383ff. b562 113, 115, 125 carbon nanotubes (CNT) 235, 242, 250 cytochrome c oxidase (COX) 207 – -modifi ed surface 33 cytochrome c oxidase 116, 123 – multiwalled (MWCNTs) 35, 40, 250f., cytochrome c 113

260 cytochrome c4 116, 118 – nanobiosensors 39ff. – single-walled (SWCNTs) 40, 242, 251 d catalytic enzyme activity 5, 15, 32 DC pulses 339ff. cell homeostasis 373 de Broglie waves 144 cellobiose dehydrogenase 242 Debye length 41 cells 369f., 372ff., 376f., 379, 382ff. density functional theory (DFT) 102f., channel 294f. – -forming lipid 210 deposition – ion- 216f., 219 – electro- 289 – micro- 256 – Langmuir–Blodgett 285 – single 213f. – pinhole free 279 charge diffusion 16f., 19, 25, 35f., 39, 41, 45, 55, – repulsion 20 58, 60 – transport mechanism 98 – analyte 45 charged lipids 345, 349f., 358 – coeffi cient of lipids 337 Index 391

– -controlled electrode process 35, 46 – working 93, 161f., 257 – lateral 202 electrodeformation 338ff. – linear 41 electrodeposition polymers 58 – oxygen 250 electrodeposition 10, 17, 20, 37, 40, 58 1,2-dimyristoyl-sn-glycero-3-phosphocholine – metal nanoparticles 40 107 – paints (EDPs) 37f., 42 dimyristoylphosphatidylcholine (DMPC) electron transfer (ET) 3, 6, 337, 350, 107f., 168f., 180f., 183, 202f. 353ff. Dirac delta function 153 – biofuel cells 29ff. direct electron transfer 2, 9, 232f. – biosensors 29ff. direct inversion 184 – cascades 14ff. DNA conduction 98 – coherent multi- 105, 126 DNA monolayers 173f. – direct (DET) 13f., 29, 232ff. DNA-based molecules 98 – distances 18, 33, 35 DPTL 191, 193, 201, 205ff., 210 – electrochemical 88ff. drug delivery 369ff. – heterogeneous 197, 310 – interfacial 87f., 98, 105, 112 e – intramolecular 112, 118, 244 edge tension 338, 341, 344, 348, 350ff. – long-range interfacial 90f. electric tension 339 – mediated (MET) 15, 36f., 233ff. electrochemical impedance spectroscopy – molecular 86 (EIS) 54f., 92, 191ff. – pathway 7, 16, 29, 32 – Cole–Cole plot 195 – rate-limiting effect 36 – lipid bilayers 191ff. – rates 6, 36f. – Nyquist plot 212f. – reversible 14 – spacer-based tBLMs 204f. – self-exchange collisions 241 – thiolipid-based tBLMs 205ff. – single steps 95 electrochemical – two- 35, 118 – cell confi guration 161ff. electron transfer 2f., 9, 57, 59 – double layer 96 electron tunneling 13, 87ff. electrochemotherapy 371, 377ff., 386 – coherent multi- 87 electrode surface – diabatic 91 – functionalized 29, 32 – factor 89f. – modifi cation 15 – single-molecule 94 – passivation 45 electron tunneling factor 89f. – redox proteins 29 electron electrode 371f., 375ff., 381f. – acceptors 15, 87, 91, 233 – carbon-fi ber micro- 44 – donors 15, 87 – carbon paper 252 – exchange energy 88 – CNT-modifi ed 40f. – hopping 36, 98, 125 – counter 93, 209, 257 electronic spillover 123 – glassy carbon 35, 41, 239, 249, 257 electronic transmission coeffi cient 88, – graphite felt 250 96 – fouling 20, 40, 44 electronic – gold 41, 46, 107f. – broadening 95 – interdigitated (IDE) 54 – transmission coeffi cient 88, 96 – macro- 42 electropermeabilization 370, 371f., 376 – mercury 14 electrophoretic 370, 375f. – micro- 41, 44f., 47 electroporation 369ff. – nano- 39, 41 electroporation threshold 341, 349 – nanogap 88, 92, 94 electroporation, see membrane – reference 93, 161f., 214 electroporation – single-crystal 100 electrorefl ectance spectroscopy 92 – three-dimensional 259f. electrotransfer 369ff. 392 Index

endoscopic electroporation 377 gene electrotransfer 369ff. enzymatic fuel cell (EFC) 31, 229ff. giant unilamellar vesicle (GUV) 337ff., – design 231, 233 344, 348, 350f., 353, 356 – enzyme electron transfer 231ff. glucose dehydrogenases 32ff. – glucose–oxygen 256, 257f. glucose oxidase (GOx) 1f., 7, 9, 21, 32, 34, – long-term stability 230 57, 235ff. – membraneless 230, 242 glucose oxidation 235, 240ff., 255 – microfl uidic 256 gold contrast-matched water 165 – modular stack half-cell 257 gold nanoparticles 112, 120 – redox polymer-mediated 258f. gold-supported thiolipid-based tBLM 205, – –sensor system 230 210 – thermodynamic losses 239 gramicidin 107f., 194, 203f., 207ff., 216 enzyme cascade 243, 259, 261 Green function 91 enzyme electrodes 59 enzyme 3, 5f., 9f., 14ff., 18, 29, 31f., 42, 44, h 46, 48f., 57f., 60 Heaviside function 153 – activity 5f., 15, 17, 20, 32 4α-helix proteins 113f. – apo- 231f. group proteins 113 – co- 231f. high-throughput screening 41 – cofactor 7, 14, 30, 232 homocysteine 97, 100 – covalent attachment 14, 29 horse heart cytochrome c 114 – dehydrogenases 30, 32 human insulin 106, 109, 111 – electrodes 3 hybrid bilayers 170, 173 – inhibitors 6 hybrid – 29 – Au–nanoparticle 120ff. – metallo- 112, 114 – DMPC–cholesterol vesicles 180f., 183, – multiple copper oxidases (MCOs) 244ff. 203 – peroxidases 29, 32 – enzyme–nanoparticle 35, 42, 94 – stability 6, 12 – lipid–DNA 174 – wild-type 114f., 241f. – metalloprotein–nanoparticle 113 extracellular volume 373f., 376 – polymer–lipid 217 – SLN–ATP 212f. f hybridization fast digital imaging 339, 351, 358 – detection 50ff. Fermi pseudo potential 147 – plasmon 281 Fermi – probe–target 52 – energy 88, 94 – surface hybridization assays 51 – level 93ff. 235, 242 – potential 149 hydrogen-bonded networks 97 – pseudo potential 147 hydrophilic spacer 190ff., 196, 201, 204, ferrocene 239f. 206, 211, 215f., 222 Fick’s fi rst law 197 hydrophilic “fi rst-generation” biosensors 7, 11 – amino acids 112 fl avin adenine dinucleotide 232 – domain 190 fl uorescence recovery after photobleaching – redox hydrogels 36 (FRAP) 200 – spacers 190f., 207 – thiolipid-based tBLMs 215 hydrophobic – spacer-based tBLMs 204 – binders 250 fructose dehydrogenase 242 – domain 190 fusion dynamics 354 – surfaces 101, 174, 191, 197

g i gated intramolecular electron transfer 118 imaging gel-phase membrane 338, 342ff., 358 – amino acids cysteine 98ff. gene delivery 369ff. – bio-related small redox molecules 105ff. Index 393

– functional electron transfer interface metalloproteins 112f. – Ag–SAM–aqueous 277 – functionalized alkanethiols 98ff. – air–water 198f., 218, 336 – homocysteine 98ff. – electrochemical 85, 87 – in situ 97 – electrode–solution 87 – nucleobases 97 – polymer–lipid 217 – single biomolecules 85ff. – solid–liquid 86, 168 immobilization matrix 4, 15ff., 21, 25, 45 – switchable DNA 52 immobilization 4, 8, 10, 12f., 15ff., 21, 23, interfacial potential difference 202, 309 25, 29, 31, 34f., 40f., 44ff., 49ff., 56, 59 interference elimination 24 – biomimetic 309 intracellular volume 373 – biomolecules 41 ion channel 190, 204f., 209, 217, 219, 222f. – biorecognition 23 iron–sulfur proteins 113 – co- 252 IRRAS 107f. – enzymes 14, 17, 30f., 241, 256 irreversible electroporation 370, 378 – matrix 16f., 21, 40 – nanoparticles 288 k – nucleic acid (NA) 49 kinematic approximation 152f., 164 – process 31 kinetic isotope effect 306 – redox mediator 12 kinetics immunoreactions 54f. – electrodes 244 immunosensors 41, 52ff. – electron transfer (ET) 17, 19, 117 – enzyme-linked immunosorbent assay – enzyme 19 (ELISA) 54f. – real-time 306 – labeled 53f. – vesicle fusion 196 – unlabeled 54 – X-rays 145 In situ STM 85, 107, 110, 119 In situ STS 105 l in vitro lab-on-a-chip device 41 – biosensors 43f. laccase 234, 244ff., 249ff., 258, 260 – single-cell 47 Langmuir–Blodgett transfer 194, 198 in vivo Langmuir–Blodgett–Schaefer technique – biosensors 42ff. 107, 194, 197ff. – medical research 42f. Langmuir–Schaefer transfer 194, 198 – microsensors 20, 25 layer, see sensing layer incoherent scattering 148, 157, 161f., 171 limit of detection (LOD) 27 indium tin oxide (ITO) 200 linker molecular monolayer 102 infrared refl ection absorption spectroscopy lipid bilayers 195f., 337ff. (IRRAS) 107f., 170 lipid multilayers 169 – Fourier-transform (FT-IRRAS) 206 lipid phase transition 337 – photon polarization modulation lipid rafts, see liquid-ordered state (PM-IRRAS) 202 liposomes 336 – thiolipid-based tBLMs 206 liquid-disordered state 214f. insulin adsorption 111 liquid-ordered state 214f., 354 insulin monolayers 110 lithography 51f., 283ff. insulin 107, 109ff. Los Alamos Neutron Science Centre insulin, see human insulin (LANSCE) 154 interaction lysis tension 338, 341, 349 – electrode–electrode 307 – electronic–vibrational 90 m – linker–protein 100 mapping – lipid–lipid 175 – microscopic electronic 116f. – membrane–substrate 169 – single molecule 110 – molecule–electrode 96 – thermodynamic ET 117 – nucleus–nucleus 147 Marcus theory 14 394 Index

Maxwell stress tensor 340f. metalloproteins 87, 112 mediated electron transfer 2, 233 metal fi lm over nanosphere (MFON) melittin 171ff., 205, 211, 216 structures 283, 286ff. membrane domains 336, 354f. – Ag fi lm (AgFON) 286f. membrane elasticity 338, 354 – Au fi lm (AuFON) 286 membrane electroporation 335ff. Michaelis–Menten constant 241 – fl uid phase 338ff. Michaelis–Menten equation 212f. – gene electrotransfer 369, 381ff. microarrays 48 – irreversible 370 microbial fuel cell (MFC) 229 – medical use 369, 373ff. microreactors, see vesicle electrofusion – reversible 370 Mie theory 280, 290 membrane instability 347, 350 model membranes 335ff. membrane viscosity 344 modes 87, 275 membrane molecular charge transfer theory 89 – biomimetic layer 107f., 143f., 183, 190ff. molecular dynamics (MD) 102 – cell plasma 336 molecular interfacial ET theory 86 – charged lipids 349f. momentum transfer vector 151, 154f., – cholesterol-doped 347ff. 157f., 164, 167, 169ff., 177, 181 – edge tension 350ff. multicenter metalloproteins 117 – electrodeformation 338 multicopper oxidase 244 – extramembrane domains 216 muscle 375, 377f., 382ff. – gel-phase 337f., 342ff. – gold-supported 201, 205ff. n – hybrid bilayers (HBMs) 170ff. nanoparticles (NPs) 39f., 42 – inclusions 345ff. – Ag 288 – lipid 107f., 169, 190, 201ff. – AuNPs in liquid-state environment 120ff. – mechanical properties 337ff. – carbon 250 – mercury-supported thiolipid-based tBLMs – core–shell 279, 281 210ff. – metallic 4, 93 – model 335ff. nanosensors 60 – perturbation 370 neutron refl ectivity (NR) 143f., 152ff. – polymer-cushioned bilayer lipid – background 163 membranes (pBLMs) 190, 216f. – continuum limit 149f. – protein-tethered bilayer lipid membranes – data acquisition 162ff. (ptBLMs) 190, 220ff. – electrochemistry–NR studies 161, 164f., – rheological properties 337ff. 175 – resistances 220 – hybrid bilayer membranes (HBMs) 170ff. – self-cleaning nanocomposite hydrogel 46 – silicon-supported bilayers 168ff. – S-layer stabilized bilayer lipid membranes – specular refl ectivity 149ff. (ssBLMs) 190, 218f. – thiolipid-based tBLMs 206 – solid-supported bilayer lipid membranes neutron refl ectivity 107f. (sBLMs) 169, 190, 192, 196, 201ff. neutron scattering 143ff. – solvent-free BML 202, 210 – -contrast measurements 169 – spacer-based tBLMs 204 – DMPC–cholesterol bilayer 180f., 183 – tethered bilayer lipid membranes (tBLMs) – kinematic approach 151f., 164, 184 190, 203ff. – momentum transfer vector 154, 169, 181 – thickness 346 – refl ectometer operation 154f. – thiolipid-based tBLMs 205ff. neutron – thiolipid–spacer-based tBLMs 215f. – coherence length 156f., 181 – voltage-gated proteins 175, 219 – fl ux 147, 157 mercaptopropionic acid 101 – kinetic energy 149 mercury-supported thiolipid-based tBLM – refractive index 150, 163 210f. – refl ection amplitude 150 metalloenzymes 87, 112 – refl ectivity, cell designs 160 Index 395

– scattering length 146ff., 164 probing energy tip 95 – scattering length density 146, 148f. 173f. – scattering cross section 147, 160 protein engineering 241 – transmission amplitude 150 protein fi lm voltammetry 87 nicotinamide adenine dinucleotide 232 protein unfolding 111 NIST Centre for Neutron Research (NCNR) proteins, see enzyme 154, 157 protein-tethered bilayer lipid membrane nitrite reductase 119f. (ptBLM) 190, 216 nuclear proteoliposome 198ff., 208 – activation factor 89 proton transfer 35, 86 – reorganization free energy 88, 90 pulse generator 369, 377f. nucleic acids 48, 57 pyrroloquinoline quinone 232 nucleobases 97 Nyquist plot 193, 212 q quantum dots (QDs), see nanoparticles o quantum mechanical tunneling effect 86 oligonucleotides 376 quantum-dot synthesis 356 oncology quartz crystal microbalance (QCM) 54, 85, optical microscope 197 – thiolipid-based tBLMs 205, 209 – dissipation monitoring (QCM-D) 197 optical microscopy 341, 358 osmium 240ff., 252, 254, 258 r overpotential 88, 92f. radioactive tracers 376 – –current relation 92, 106, 115, 121f. Raman spectroscopy 270ff. oxidation – shell-isolated nanoparticle-enhanced – direct 11 (SHINERS) 292 – glucose 235ff. – tip-enhanced (TERS) 291f., 302 oxidoreductases 6 rapid solvent exchange 194, 200 oxygen reduction reaction 234, 243f., 246, reagentless biosensors 16f., 38 252, 255f. redox enzymes – covalent attachment 14, 29 p – multiple 14, 16

P. stutzeri cytochrome c4 117 redox hydrogels 10, 36, 38, 42, 46, 60, percolation 91, 125 240f., 254f. permeabilization 370ff., 375ff., 379, 383 – electron conducting 36 photon polarization modulation infrared – osmium complex-modifi ed 36f., 42, refl ection absorption spectroscopy 240f., 254 (PM-IRRAS) 202 redox mediator 4, 6f., 10ff., 15f., 18, 20, 23, platinum 231, 243ff., 256f. 32f., 35f., 38, 41, 46, 50, 58ff. polymer – artifi cial 12, 32 – conductive 17 – free-diffusing 11ff. – redox-relay modifi ed 38 – natural 12, 32 – spacer layer 275 – soluble 12 polymer-cushioned bilayer lipid membrane redox metalloproteins 86, 100, 110, 112, 114 (pBLM) 190, 216 – electrocatalytic action 119f. pore lifetime 344 – multicenter 114 pore 352, 371 redox potential 4ff. – dynamic 352 redox substrate/co-substrate 233 – ion-selected 212 redox-active dyes 48 – lifetime 344 reductive desorption 87, 99 – radius 352 reorganization free energy 90, 94 potential reproducibility 7, 16, 24, 28, 38 – of zero charge (PZC) 210f., 295f., 308 – biosensor 28, 38 – transmembrane 214, 339ff. – glassy carbon anode surface area 257 396 Index

resealing 371, 373, 376 self-assembled resolution – multilayer 46 – molecular-scale 143 – templates 288 – single-molecule 109ff. sensing layer – spectral 95 – biomimetic phospholipid 107f., 143f., reversible electroporation 370, 378 183 roughness – complex multicomponent immobilization – bilayer 172, 191 35 – coinage metals 278 – defect-free 107 – membrane 347 – delamination 45 – substructure 287 – leakage 20 – surface 269, 279, 282, 288 – porosity 45 – stability 14 s signal scanning electrochemical microscope – response 18 (SECM) 2, 14, 41, 57, 61 – -to-noise ratio 27, 41, 160 scanning electron microscopy (SEM) 283f., single-electron charging 121 288 size exclusion 20 scanning probe microscopy 85 skin 378, 381ff. scanning tunneling microscopy (STM) 85 S-layer stabilized bilayer lipid membrane – Au–nanoparticle 123f. (ssBLM) 190, 218

– cys mutant cytochrome b562 114f. small unilamellar vesicle (SUV) 168, 196 – cysteine 102ff. solid-supported bilayer lipid membrane – high-resolution (HR) 98, 101, 103, 110 (sBLM) 190, 201 – homocysteine 102ff. spallation sources 154 – image simulations 104 specular refl ection 143, 158, 163 – in situ 85ff. sphere segment voids (SSVs) 289ff. – sub-molecular 103 stability 2, 4, 6, 12, 14, 16, 18, 24, 28f., 32,

– wild-type cytochrome b562 114f. 40, 43ff., 51, 56 scanning tunneling spectroscopy (STS) – adsorbed sensing layer 14 105f. – chemical 40 scattering – enzyme 6, 31 – coherent 148, 156 – long-term 4, 6, 12, 16, 190, 230 – cross sections 147 – redox potential 14 – incoherent 148, 157 – thermal 286 – length density (SLD) 148ff. standard operating procedures 377ff. – length parameter 146f. stretching elasticity modulus 338 Schrödinger equation 150 supported phospholipid bilayers 175 “second-generation” biosensors 7 surface plasmon resonance (SPR) selectivity 5, 18ff., 20, 24, 27, 43ff., 48, spectroscopy 54, 195 59f. – lipid bilayers 195ff. – biosensor 43 – thiolipid-based tBLMs 205 – biocatalytic reaction 31 surface plasmon resonance (SPR) 195 – coeffi cient 27 surface – surface-enhanced Raman spectroscopy – adsorption layer model 301f. (SERS) 279 – area 250, 255, 257 self-assembled monolayer (SAM) 2, 10, – charge 143, 176, 272 13f., 57, 60f., 29, 86, 104 – low index 98, 109f. – alkanethiol-based 99 – modifi cation 15 – highly ordered 99 – plasmon polaritons 273 – -modifi ed Au(111) electrode surfaces 118 – reconstructed 110f. – phosphate-terminated 170 – structuring 282ff. – thiol 170, 172 – transducer 3, 6, 15 Index 397 surface-enhanced hyper Raman scattering two-photon fl uorescence lifetime imaging 286 microscopy (TP-FLIM) 201 surface-enhanced Raman spectroscopy two-step electrochemical tunneling 105 (SERS) 269ff. tyrosinase 255 – amino acids 299ff. – bilirubin 315 v – electrochemistry 282ff. validation 20, 24f. – -Emelting 298f. vascular lock 377 – fl avin adenine dinucleotide (FAD) 313 vesicle fusion 170, 194, 196ff., 201f., 204, – glucose 315 207f., 215 – in situ studies 275f., 314 vesicle microreactors 355ff. – intensity 273f. vesicle – neurotransmitters 311f. – adsorption 197f. – nicotinamide adenine dinucleotide (NAD+) – cholesterol-doped membranes 347ff. 312f. – deformation 338ff. – nucleic acids 296ff. – electrofusion 353ff. surface-enhanced resonance Raman – electroporation 350ff. spectroscopy (SERRS) 275ff. – fusion 196ff. – DNA bases 292ff. – giant 335ff. – electrochemistry 282ff. – giant unilamellar (GUV) 337ff. – enzymes 303, 308f. – large unilamellar (LUV) 196f. – in situ studies 275f. – multidomain 355 – multiplexed 278 – salt solutions 345ff. – nucleotides 292ff. – small unilamellar (SUV) 196f. – peptides 299ff. – stability 345ff. – proteins 303ff. voltage-to-distance ratio 371 voltammetric surface coverage analysis t 103 tethered bilayer lipid membrane (tBLM) voltammetry 190, 203, 220 – cyclic (CV) 20, 30, 118, 161, 205f., 239 thiolipid 190f., 196, 200f., 205f., 208, 210f., – differential pulse (DPV) 20, 106, 121f. 215f. – fast-scan 6, 20, 309 thiolipopeptide 205f., 208 – high-resolution capacitive 100 “third-generation” biosensors 13 – linear 92 three-dimensional network 114 – metalloprotein 112 tissue 369, 371ff., 385 – molecular fi lm (MFV) 87, 100 transducer 3, 6, 13 – protein fi lm (PFV) 87, 97f., 110, 113 – macroscopic 39f. – slow-scan 6 – nanometric 41 – square wave (SWV) 20 – physicochemical 48 transfection 174 w transmembrane potential 339ff., 349 Wronskian function 151 transmembrane transport 108 transmission coeffi cient 89 x transmittivity 150 X-ray refl ectivity 158f., 168, 175ff. tumor 369, 377ff., 384 X-ray tunneling – fl ux 157 – current 95 – kinetic energies 145 – gap 94, 96 – refl ectivity 152, 158f., 168, 176ff. – gated 106 – radiation 144f. – junction 94 tunneling percolation 91 y tunneling spectroscopy 92, 105 yeast cytochrome c 114