AC Fields 339, 346, 351 Adsorption – Enzymes 14, 250 – Nonspecific 45
Total Page:16
File Type:pdf, Size:1020Kb
389 Index a biocathodes 243ff. AC fi elds 339, 346, 351 – air diffusion 252 adsorption – hydrogel-based 252 – enzymes 14, 250 – oxygen reduction reaction (ORR) 243ff. – nonspecifi c 45, 217 – polarization plots 251 – proteins 13f., 174 biocompatible 12, 16, 42ff. – reactivity 111 bioelectrocatalysis, see biocatalysis – surface-specifi c 111 biofuel cell (BFC) 3, 229ff. – vesicle 197f. – development 6, 26 alcohol dehydrogenase 260f. – electron transfer (ET) 29ff. alkanethiols 98, 100 – enzymatic glucose/O2 38 amperometric biosensors 1ff. – enzyme-based, see enzymatic fuel cell anesthesia 377f., 380 (EFC) antibodies 3, 53f. – principle 31 antigen 3, 53f. biofuel cell 2f., 5f., 9f., 29, 31f., 36ff., 55, ascorbate oxidase 244 57 assembled biofuel cells 255 bioinorganic hybrids 85 atomic force microscopy (AFM) 85, 92 biological recognition element 1ff., 7, 16, – contact mode 287 23f., 29, 36, 38, 44ff., 56f., 59 – fl uidity of biomimetic membranes 200f. biological recognition 4, 11 – small unilamellar vesicles 198 – element 27, 45 – TERS 291 biomimetic layers 107f., 143f., 183, 190 atomic force microscopy 85 – fl uidity 200f. Au atom mining 104 – formation of lipid fi lms 194ff. Au–nanoparticle hybrids 120 – gold-supported 201 AuNP–azurin hybrid 123 – rapid solvent exchange 200 AuNP–protein hybrids 123 – vesicle fusion 196ff. azurin 113f., 123, 125 biomimetic membrane 189ff., 200f., 220 biosensor architecture 2f., 5, 13ff., 18ff., b 38f., 55f., 59 bending rigidity 338, 347 biosensor stability 28, 43 between laboratory precision, see – long-term 4, 6, 16, 28, 44 reproducibility – storage 28 bias voltage 92, 95, 97 – working 28 bilayer lipid membranes 107 biosensor bilayer lipid membranes, see membranes – accuracy 28 bilirubin oxidase 244, 246 – amperometric 1ff. bioanodes 235ff. – applications 22 biocatalysis 5f., 122, 232f., 246 – architecture 11, 14ff. Advances in Electrochemical Science and Engineering. Edited by Richard C. Alkire, Dieter M. Kolb, and Jacek Lipkowski © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32885-7 390 Index – BFC, see biofuel cell cholesterol 107, 175f., 180, 183, 345, 347ff., – characteristics 21, 25 352, 355, 358 – development 8ff. clinical use 369, 377 – dynamic range 27 cofactor 7, 14, 30 – EFC, see enzymatic fuel cell – fl avin adenine dinucleotide (FAD) 32f., – electrochemical 40 42, 232, 235 – fi rst-generation 7, 11 – NAD+ 242, 312f. – glucose 21, 32f., 46, 239 – protein-integrated 30f. – implanted 42ff. coherent multi-electron transfer 105, 126 – nano- 38f., 41 coherent scattering 148, 157, 161f., 171 – nucleic acid-based 48ff. Cole–Cole plot 193ff. – MFC, see microbial fuel cell composite, see hybrid – micro- 44 condensed matter molecular charge transfer – optimization 20, 26 theory 87 – performance 18f., 25ff. conductive polymers 17 – precision, see measurement conductivity – research 23ff. – long-range off-resonance 125 – response 18, 20 – oligonucleotides 99 – second-generation 7f. – short oligonucleotides 97 – set-up 3ff. – single molecules 85f., 98f. – tapered voltammetric enzyme 44 confocal microscopy 336, 343, 348, 355 – third-generation 13f., 232 contrast variation 168, 174 – tip 45 cooperative charge transport 117 – working potential 15 Coulomb charging effects 121 – working range 27 critical poration potential 349f. biosensors 1ff., 5ff., 7ff., 13f., 16ff., 20ff., current 24f., 29f., 32, 36ff., 54ff., 59 – –bias voltage relation 92, 97 Boltzmann constant 88, 338 – density 38, 41, 90, 235, 239f., 250f. Born approximation 151f., 152, 154 – stationary diffusion 41 – distorted wave (DWBA) 154 current–bias relation 95 brain tumor electroporation 381 current–bias voltage relation 97 butanethiol 101 current–overpotential relation 95, 97 cysteine 97, 100, 102f. c cystine 102 cancer 378, 380f., 383ff. cytochrome b562 113, 115, 125 carbon nanotubes (CNT) 235, 242, 250 cytochrome c oxidase (COX) 207 – -modifi ed surface 33 cytochrome c oxidase 116, 123 – multiwalled (MWCNTs) 35, 40, 250f., cytochrome c 113 260 cytochrome c4 116, 118 – nanobiosensors 39ff. – single-walled (SWCNTs) 40, 242, 251 d catalytic enzyme activity 5, 15, 32 DC pulses 339ff. cell homeostasis 373 de Broglie waves 144 cellobiose dehydrogenase 242 Debye length 41 cells 369f., 372ff., 376f., 379, 382ff. density functional theory (DFT) 102f., channel 294f. – -forming lipid 210 deposition – ion- 216f., 219 – electro- 289 – micro- 256 – Langmuir–Blodgett 285 – single 213f. – pinhole free 279 charge diffusion 16f., 19, 25, 35f., 39, 41, 45, 55, – repulsion 20 58, 60 – transport mechanism 98 – analyte 45 charged lipids 345, 349f., 358 – coeffi cient of lipids 337 Index 391 – -controlled electrode process 35, 46 – working 93, 161f., 257 – lateral 202 electrodeformation 338ff. – linear 41 electrodeposition polymers 58 – oxygen 250 electrodeposition 10, 17, 20, 37, 40, 58 1,2-dimyristoyl-sn-glycero-3-phosphocholine – metal nanoparticles 40 107 – paints (EDPs) 37f., 42 dimyristoylphosphatidylcholine (DMPC) electron transfer (ET) 3, 6, 337, 350, 107f., 168f., 180f., 183, 202f. 353ff. Dirac delta function 153 – biofuel cells 29ff. direct electron transfer 2, 9, 232f. – biosensors 29ff. direct inversion 184 – cascades 14ff. DNA conduction 98 – coherent multi- 105, 126 DNA monolayers 173f. – direct (DET) 13f., 29, 232ff. DNA-based molecules 98 – distances 18, 33, 35 DPTL 191, 193, 201, 205ff., 210 – electrochemical 88ff. drug delivery 369ff. – heterogeneous 197, 310 – interfacial 87f., 98, 105, 112 e – intramolecular 112, 118, 244 edge tension 338, 341, 344, 348, 350ff. – long-range interfacial 90f. electric tension 339 – mediated (MET) 15, 36f., 233ff. electrochemical impedance spectroscopy – molecular 86 (EIS) 54f., 92, 191ff. – pathway 7, 16, 29, 32 – Cole–Cole plot 195 – rate-limiting effect 36 – lipid bilayers 191ff. – rates 6, 36f. – Nyquist plot 212f. – reversible 14 – spacer-based tBLMs 204f. – self-exchange collisions 241 – thiolipid-based tBLMs 205ff. – single steps 95 electrochemical – two- 35, 118 – cell confi guration 161ff. electron transfer 2f., 9, 57, 59 – double layer 96 electron tunneling 13, 87ff. electrochemotherapy 371, 377ff., 386 – coherent multi- 87 electrode surface – diabatic 91 – functionalized 29, 32 – factor 89f. – modifi cation 15 – single-molecule 94 – passivation 45 electron tunneling factor 89f. – redox proteins 29 electron electrode 371f., 375ff., 381f. – acceptors 15, 87, 91, 233 – carbon-fi ber micro- 44 – donors 15, 87 – carbon paper 252 – exchange energy 88 – CNT-modifi ed 40f. – hopping 36, 98, 125 – counter 93, 209, 257 electronic spillover 123 – glassy carbon 35, 41, 239, 249, 257 electronic transmission coeffi cient 88, – graphite felt 250 96 – fouling 20, 40, 44 electronic – gold 41, 46, 107f. – broadening 95 – interdigitated (IDE) 54 – transmission coeffi cient 88, 96 – macro- 42 electropermeabilization 370, 371f., 376 – mercury 14 electrophoretic 370, 375f. – micro- 41, 44f., 47 electroporation 369ff. – nano- 39, 41 electroporation threshold 341, 349 – nanogap 88, 92, 94 electroporation, see membrane – reference 93, 161f., 214 electroporation – single-crystal 100 electrorefl ectance spectroscopy 92 – three-dimensional 259f. electrotransfer 369ff. 392 Index endoscopic electroporation 377 gene electrotransfer 369ff. enzymatic fuel cell (EFC) 31, 229ff. giant unilamellar vesicle (GUV) 337ff., – design 231, 233 344, 348, 350f., 353, 356 – enzyme electron transfer 231ff. glucose dehydrogenases 32ff. – glucose–oxygen 256, 257f. glucose oxidase (GOx) 1f., 7, 9, 21, 32, 34, – long-term stability 230 57, 235ff. – membraneless 230, 242 glucose oxidation 235, 240ff., 255 – microfl uidic 256 gold contrast-matched water 165 – modular stack half-cell 257 gold nanoparticles 112, 120 – redox polymer-mediated 258f. gold-supported thiolipid-based tBLM 205, – –sensor system 230 210 – thermodynamic losses 239 gramicidin 107f., 194, 203f., 207ff., 216 enzyme cascade 243, 259, 261 Green function 91 enzyme electrodes 59 enzyme 3, 5f., 9f., 14ff., 18, 29, 31f., 42, 44, h 46, 48f., 57f., 60 Heaviside function 153 – activity 5f., 15, 17, 20, 32 4α-helix proteins 113f. – apo- 231f. heme group proteins 113 – co- 231f. high-throughput screening 41 – cofactor 7, 14, 30, 232 homocysteine 97, 100 – covalent attachment 14, 29 horse heart cytochrome c 114 – dehydrogenases 30, 32 human insulin 106, 109, 111 – electrodes 3 hybrid bilayers 170, 173 – inhibitors 6 hybrid – laccase 29 – Au–nanoparticle 120ff. – metallo- 112, 114 – DMPC–cholesterol vesicles 180f., 183, – multiple copper oxidases (MCOs) 244ff. 203 – peroxidases 29, 32 – enzyme–nanoparticle 35, 42, 94 – stability 6, 12 – lipid–DNA 174 – wild-type 114f., 241f. – metalloprotein–nanoparticle 113 extracellular volume 373f., 376 – polymer–lipid 217 – SLN–ATP 212f. f hybridization fast digital imaging 339, 351, 358 – detection 50ff. Fermi pseudo potential 147 – plasmon 281 Fermi – probe–target 52 – energy 88, 94 – surface hybridization assays 51 – level 93ff. hydrogenase 235, 242 – potential 149 hydrogen-bonded networks 97 – pseudo potential 147 hydrophilic spacer 190ff., 196, 201, 204, ferrocene 239f. 206, 211, 215f., 222 Fick’s fi rst law 197 hydrophilic “fi rst-generation” biosensors 7, 11 – amino acids 112 fl avin adenine dinucleotide 232 – domain 190 fl uorescence recovery after photobleaching – redox hydrogels 36 (FRAP) 200 – spacers 190f., 207 – thiolipid-based tBLMs 215 hydrophobic – spacer-based tBLMs 204 – binders 250 fructose dehydrogenase 242 – domain 190 fusion dynamics 354 – surfaces 101, 174, 191, 197 g i gated intramolecular electron transfer 118 imaging gel-phase