And Light-Directed Peptide Microarray Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

And Light-Directed Peptide Microarray Synthesis Development of Chip-Based Electrochemically- and Light-Directed Peptide Microarray Synthesis by Pallav Kumar A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved October 2013 by the Graduate Supervisory Committee: Neal Woodbury, Chair James Allen Stephen Johnston ARIZONA STATE UNIVERSITY December 2013 ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of- concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photocleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis i placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro- chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole. ii I would like to dedicate this work to my family and friends. First, to my loving parents, Shri Digvijay Kumar Sharma and Smt. Savita Sharma. Their unconditional love and support is a great source of strength to me. To my brothers, Pankaj Sharma and Neeraj Sharma who make me very proud and always love and support me. I am indebted to Neeraj for his steadfast support and faith in my abilities. I could not have accomplished this degree without his support. I would also like to dedicate this work to my sisters-in- law Aparna Sharma and Priyanka Sharma who are the new pillars of our family and are shouldering the responsibilities with great love and dedication. To the wonderful kids of my family, Vedagya, Riddhima, and Nandini who are a great source of happiness in our lives. To my wonderful friends, Abhishek Roy, Loren Howell, and Kul Bhushan who always love and support me and I feel blessed to have them. iii ACKNOWLEDGEMENTS My heartfelt thanks to my supervisory committee, Prof. Dr. Neal Woodbury, Prof. Dr. James Allen, and Prof. Dr. Stephen Johnston, for giving me a second chance to complete my degree. I shall ever remain greatly indebted to the committee. I am very grateful to Dr. Neal Woodbury for his support throughout my academic studies, for introducing me to microarray area, for his expert advice, for the supervision of my thesis, and especially for allowing me to complete my degree. He has been a great mentor and dealt with me with great patience and perseverance. I greatly admire his dedication to science, kindness, acumen, energy, patience, perseverance, creativity, and management skills. I offer special thanks to Dr. James Allen and Dr. JoAnn Williams for their support and guidance during the DOE project. Their focus on minute details of the experiments and strategizing future experiments always amazed me. I will try to develop these qualities earnestly and apply in my future endeavors. I would also like to thank Dr. Stephen Johnston for his support and guidance. Like many researchers, I too benefitted a lot from his willingness to safely use several scientific instruments of his lab. Several interactions with him and talented researchers of his lab broadened my perspective about peptide microarray area. I am very thankful to Dr. Arman Ghodousi, Dr. Zhan-Gong Zhao, and Dr. Allan Scruggs with whom I worked very closely on microarray related projects. Dr. Ghodousi taught me several key aspects of organic synthesis while studying the efficiency of different photo-labile protecting groups. His support and several discussions that we had iv were very helpful. Dr. Zhao and I worked together to develop peptide microarray fabrication capability on CombiMatrix platform. His expert advice in designing experiments and analyzing results were very helpful and was a learning experience. Dr. Scruggs and I worked together in understanding the capabilities of PotentioSense unit, and developing a protocol for measuring the redox assays involving high currents/voltages. During this period the discussions that we had, and his logical reasoning about the experiments and protocol development were very useful. I would like to thank Dr. Karl Maurer, Mr. Sho Fuji, and Dr. Kia Peyvan of CombiMatrix for all the technology support and guidance they provided. I would like to thank Mr. John Lopez and Dr. Zachary Laughrey of Proteomics Center at Arizona State University, Dr. Dan Brune of School of Life Sciences at Arizona State University, and Dr. Randall Nelson of The Biodesign Institute at Arizona State University for helping with MALDI characterization of microarray synthesis. I would also like to thank Kevin Brown for integrating Peptide synthesizer and Electro-synthesis instruments. I am very thankful to Carole Flores for providing every possible professional assistance and my thanks also go out to Mikayla Madjidi for editing my dissertation. Finally, I want to thank the DOE for financial support. In addition, I also want to thank the past and present members of Woodbury lab for all the fun along the way: Jinglin, Su Lin, Sean, Crystal, Jason, Shervin Shariari, Tram Lyna Vu, and Julie Noh, Matt, Jie, Guon, Wei, Evaldas, Amy, Doug, Jo, Laimonas, Terri, Haiyu, Trent, Rashaad, Michaela and April. v TABLE OF CONTENTS Page LIST OF TABLES ................................................................................................................... x LIST OF FIGURES .......................................................................................................... xii LIST OF EQUATIONS .................................................................................................. xvii LIST OF SCHEMES...................................................................................................... xviii CHAPTER 1. GENERAL INTRODUCTION TO PEPTIDE MICROARRAYS ...................................... 1 Abstract .......................................................................................................................... 1 Introduction ................................................................................................................... 1 Microarray Technology ............................................................ 3 Peptides at Molecular Level ..................................................... 5 Peptide Synthesis ...................................................................... 5 Peptide Microarray Synthesis ................................................... 7 Project Organization ............................................................... 11 Note ......................................................................................... 23 References.................................................................................................................... 24 2. INVESTIGATION OF THE 2-(2-NITROPHENYL)PROPOXYCARBONYL PROTECTING GROUP SUBSTITUENT-EFFECT ON THE RATE OF PHOTOLYSIS AND YIELD OF AMINE ............................................................................ 30 Abstract ........................................................................................................................ 30 Introduction ................................................................................................................. 31 vi CHAPTER Page Results and Discussion .............................................................................................. 32 Materials and Methods .............................................................................................. 40 Conclusion ..................................................................................................................
Recommended publications
  • Nanoengineered Chiral Pt-Ir Alloys for High-Performance Enantioselective Electrosynthesis
    ARTICLE https://doi.org/10.1038/s41467-021-21603-8 OPEN Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis Sopon Butcha1,2, Sunpet Assavapanumat2, Somlak Ittisanronnachai2, Veronique Lapeyre1, ✉ ✉ Chularat Wattanakit 2 & Alexander Kuhn 1,2 fi 1234567890():,; The design of ef cient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past dec- ades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asym- metric electrosynthesis (>95 %ee), combined with high electrochemical stability. 1 University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607 Pessac, France. 2 School of Molecular
    [Show full text]
  • The Electrosynthesis of Organic Compounds
    The Electrosynthesis of Organic Compounds By Professor Martin Fleischmann, Ph.D., and Derek Pletcher, Ph.D. Department of Chemistry, University of Southampton reactions such as substitutions and cyclisa- The decelopment of electrochemical tions. routes in the industrial production of In order to explain the interest in electro- organic compounds is beginning to chemistry it is convenient to contrast electro- attract considerable interest. Already chemical reactions with homogeneous or two large-scale processes are in opera- heterogeneous reductions and oxidations tion, one producing adiponitrile from using hydrogen and air or oxygen. The free acrylonitrile, an intermediate step in the energy change, AGO, of these processes is manufacture of Nylon 66, and the other equivalent to a cell potential, E”, given by producing lead tetra-ethyl anti-lcnock AG= --nFE’ compounds. This article reviews the By referring to a scale of free energies or basic electrochemistry involved in this electrode potentials, Figure I, it is evident type OJ; synthesis and outlines the great that such spontaneous reactions are only pos- possibilities being opened up by ad- sible within the potential range limited by the vances in technique, in reactor design reduction of oxygen or the oxidation of and in the development of new types of hydrogen. This driving force only amounts electrode structures in which platinum to approximately 0.5 eV or 10 kcals/mole. By and its associated metuls will play an contrast, it is possible to carry out electro- important part. chemical reactions at potentials between +3.5 V and -2.5 V even in aqueous solution, if suitable electrolytes and electrodes are In recent years research in the field of chosen.
    [Show full text]
  • Improving Microbial Electrosynthesis of Polyhydroxybutyrate (PHB) From
    bioRxiv preprint doi: https://doi.org/10.1101/214577; this version posted November 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improving microbial electrosynthesis of polyhydroxybutyrate (PHB) from CO2 by Rhodopseudomonas palustris TIE-1 using an immobilized iron complex modified cathode Karthikeyan Rengasamy, Tahina Onina Ranaivoarisoa, Rajesh Singh, Arpita Bose* Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, USA. Abstract Microbial electrosynthesis (MES) is a promising bioelectrochemical approach to produce biochemicals. A previous study showed that Rhodopseudomonas palustris TIE-1 can directly use poised electrodes as electron donors for photoautotrophic growth at cathodic potentials that avoid electrolytic H2 production (photoelectroautotrophy). To make TIE-1 an effective biocatalyst for MES, we need to improve its electron uptake ability and growth under photoelectroautotrophic conditions. Because TIE-1 interacts with various forms of iron while using it as a source of electrons for photoautotrophy (photoferrotrophy), we tested the ability of iron-based redox mediators to enhance direct electron uptake. Our data show that soluble iron cannot act as a redox mediator for electron uptake by TIE-1 from a cathode poised at +100mV vs. Standard Hydrogen electrode. We then tested whether an immobilized iron-based redox mediator Prussian Blue (PB) can enhance electron uptake by TIE-1. Chronoamperometry indicates that cathodic current uptake by TIE-1 increased from 1.47 ± 0.04 to 5.6 ± 0.09 µA/cm2 (3.8 times) and the production of the bioplastic, polyhydroxybutyrate (PHB) improved from 13.5 ± 0.2 g/L to 18.8 ± 0.5 g/L (1.4 times) on electrodes coated with PB.
    [Show full text]
  • Peptide Synthesis: Chemical Or Enzymatic
    Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.10 No.2, Issue of April 15, 2007 © 2007 by Pontificia Universidad Católica de Valparaíso -- Chile Received June 6, 2006 / Accepted November 28, 2006 DOI: 10.2225/vol10-issue2-fulltext-13 REVIEW ARTICLE Peptide synthesis: chemical or enzymatic Fanny Guzmán Instituto de Biología Pontificia Universidad Católica de Valparaíso Avenida Brasil 2950 Valparaíso, Chile Fax: 56 32 212746 E-mail: [email protected] Sonia Barberis Facultad de Química, Bioquímica y Farmacia Universidad Nacional de San Luis Ejército de los Andes 950 (5700) San Luis, Argentina E-mail: [email protected] Andrés Illanes* Escuela de Ingeniería Bioquímica Pontificia Universidad Católica de Valparaíso Avenida Brasil 2147 Fax: 56 32 2273803 E-mail: [email protected] Financial support: This work was done within the framework of Project CYTED IV.22 Industrial Application of Proteolytic Enzymes from Higher Plants. Keywords: enzymatic synthesis, peptides, proteases, solid-phase synthesis. Abbreviations: CD: circular dichroism CLEC: cross linked enzyme crystals DDC: double dimer constructs ESI: electrospray ionization HOBT: hydroxybenzotriazole HPLC: high performance liquid hromatography KCS: kinetically controlled synthesis MALDI: matrix-assisted laser desorption ionization MAP: multiple antigen peptide system MS: mass spectrometry NMR: nuclear magnetic resonance SPS: solution phase synthesis SPPS: solid-phase peptide synthesis t-Boc: tert-butoxycarbonyl TCS: thermodynamically controlled synthesis TFA: trifluoroacetic acid Peptides are molecules of paramount importance in the medium, biocatalyst and substrate engineering, and fields of health care and nutrition. Several technologies recent advances and challenges in the field are analyzed. for their production are now available, among which Even though chemical synthesis is the most mature chemical and enzymatic synthesis are especially technology for peptide synthesis, lack of specificity and relevant.
    [Show full text]
  • Peptide Services090320.Ai
    FlexPeptideTM Ensures Delivery & Quality! cGMP Peptide: Up to kilograms can be synthesized Mirror-Image Peptide Drug Discovery Services (Cat.No. SC1211) GenScript constructs libraries with natural L-peptides, which are easily amendable. These libraries are then screened with synthetic mirror-image D-forms of the target proteins to identify potent leads that can guide the synthesis of their mirror-image D-peptides. Competitive Advantages Services Include Delivery Specifications Synthesis and purification of D-enantiomers of target protein Chemically synthesized and purified D-enantiomers of the target protein Synthesis and screening of L-peptide libraries Libraries of chemically synthesized L-peptides Construction and screening of L-peptide phage display libraries Libraries of L-peptide phage display Synthesis of D-enantiomers of isolated peptide leads D-enantiomers of the isolated L-peptide leads Functional characterization data of the leads (if applicable) QC reports Custom Recombinant Peptide Services (Cat.No. SC1082) Due to the fact that long peptides (> 150 residues) or complicated peptides (multiple disulfide bonds) are prohibitively expensive to synthesize chemically. GenScript has developed a proprietary recombinant peptide system that complements our standard chemical peptide synthesis service. The powerful combination of these two-protocol allows GenScript to provide our customers with any peptide of any length on any scale. Competitive Advantages Services Include Key Features • Any length • Superior precision • Any sequence • Outstanding procedure • Any scale • Scalable system Custom Peptide Services • Low cost • Batch-to-Batch consistency FlexPeptideTM Ensures Delivery & Quality! Recommended Purity Levels Standard Peptide Synthesis GenScript proposes a range of different purity levels to help you make the right choice for your application.
    [Show full text]
  • Microbial Electrosynthesis for Acetate Production from Carbon Dioxide: Innovative Biocatalysts Leading to Enhanced Performance
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance Aryal, Nabin Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Aryal, N. (2017). Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance. Novo Nordisk Foundation Center for Biosustainability. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance PhD Thesis written by Nabin Aryal Supervisor Tian Zhang Co-supervisor Pier-Luc Tremblay © PhD Thesis 2017 Nabin Aryal Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kemitorvet 220, 2800 kgs. Lyngby Denmark ii Preface The following PhD thesis is written as a partial fulfillment of the requirement from the Technical University of Denmark (DTU) to obtain a PhD degree.
    [Show full text]
  • Synthesis of Proteins by Automated Flow Chemistry
    Synthesis of Proteins by Automated Flow Chemistry Authors: N. Hartrampf1, A. Saebi1†, M. Poskus1†, Z. P. Gates1, A. J. Callahan1, A. E. Cowfer1, S. Hanna1, S. Antilla1, C. K. Schissel1, A. J. Quartararo1, X. Ye1, A. J. Mijalis1,2, M. D. Simon1, A. Loas1, S. Liu1,3, C. Jessen4, T. E. Nielsen4 and B. L. Pentelute1* 5 Affiliations: 1 Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. 2 Current address: Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, 10 MA 02115, USA. 3 Current address: Department of Chemistry, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China. 4 Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark. *Correspondence to: [email protected] 15 † authors contributed equally. Abstract: Ribosomes produce most proteins of living cells in seconds. Here we report highly efficient 20 chemistry matched with an automated fast-flow instrument for the direct manufacturing of peptide chains up to 164 amino acids over 328 consecutive reactions. The machine is rapid - the peptide chain elongation is complete in hours. We demonstrate the utility of this approach by the chemical synthesis of nine different protein chains that represent enzymes, structural units, and regulatory factors. After purification and folding, the synthetic materials display biophysical and enzymatic 25 properties comparable to the biologically expressed proteins. High-fidelity automated flow chemistry is an alternative for producing single-domain proteins without the ribosome. One Sentence Summary: A benchtop automated machine synthesizes protein chains in hours. 30 Main Text: Mechanical pumps, valves, solid supports and computers have transformed the way we perform chemical reactions.
    [Show full text]
  • Electrochemistry and Photoredox Catalysis: a Comparative Evaluation in Organic Synthesis
    molecules Review Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis Rik H. Verschueren and Wim M. De Borggraeve * Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-7693 Received: 30 March 2019; Accepted: 23 May 2019; Published: 5 June 2019 Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis. Keywords: electrosynthesis; electrocatalysis; photocatalysis; photochemistry; electron transfer; redox catalysis; radical chemistry; organic synthesis; green chemistry 1. Introduction Both electrochemistry as well as photoredox catalysis have gone through a recent renaissance, bringing forth a whole range of both improved and new transformations previously thought impossible. In their growth, inspiration was found in older established radical chemistry, as well as from cross-pollination between the two toolboxes. In scientific discussion, photoredox catalysis and electrochemistry are often mentioned alongside each other. Nonetheless, no review has attempted a comparative evaluation of both fields in organic synthesis. Both research areas use electrons as reagents to generate open-shell radical intermediates. Because of the similar modes of action, many transformations have been translated from electrochemical to photoredox methodology and vice versa.
    [Show full text]
  • Inkjet Printing for the Production of Protein Microarrays Mcwilliam Et Al Mimb Protein Microarrays Chapter 21
    Methods in Molecular Biology Protein Microarrays Chapter 21: Inkjet Printing for the Production of Protein Microarrays Iain McWilliam*, Marisa Chong Kwan, Duncan Hall Arrayjet Ltd., MIC, Roslin, EH25 9RE, UK * Corresponding Author Keywords i. Inkjet ii. Microarrayer iii. Protein microarray iv. Printing buffer v. Diagnostic microarray vi. Non-contact vii. JetSpyder viii. JetGuard ix. Microarray production x. Antibody microarray Introduction Since their inception in 1995, microarrays have been the icon of the ‘omics revolution. Whereas DNA can be printed onto a wide range of surface chemistries with a wide range of buffers, proteins must be printed in buffers which protect them and onto substrates which maintain their structural integrity, binding sites and activity. Common buffers for protein storage contain cryoprotectorants (e.g. glycerol (1) or ethylene glycol) which add to the often viscous nature of protein solutions, so the ability of a microarrayer to print such solutions without extensive modification is a distinct advantage when producing protein microarrays. The most popular substrates for protein microarrays, designed specifically with structural protection in mind, are made with thin nitrocellulose or hydrogel coatings and are fragile themselves, which encourages the use of a non—contact method of printing. When addressing production throughput requirements, the ability to handle multiple samples simultaneously and to print those samples quickly on—the—fly is important to minimise production timescales. The technology should also be scalable and robust enough to accommodate a shift from R+D level production to full—scale, manufacturing levels of production. Arrayjet has used the key factors of being able to print potentially viscous protein solutions with a non—contact printing method to develop a range of microarrayers, all centred around an industrially proven inkjet printhead, which are highly suited to printing high quality protein microarrays at all levels of production.
    [Show full text]
  • Microbial Electrosynthesis from Carbon Dioxide: Performance Enhancement and Elucidation of Mechanisms
    Microbial electrosynthesis from carbon dioxide: performance enhancement and elucidation of mechanisms Ludovic Jourdin Bachelor of Chemistry Master of Chemical Engineering National Graduate School of Chemistry, University of Montpellier, France A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Chemical Engineering Advanced Water Management Centre 1 Abstract Microbial electrosynthesis (MES) of organics from carbon dioxide has been recently put forward as an attractive technology for the renewable production of valuable multi-carbon reduced end-products and as a promising CO2 transformation strategy. MES is a biocathode-driven process that relies on the conversion of electrical energy into high energy-density chemicals. However, MES remains a nascent concept and there is still limited knowledge on many aspects. It is still unclear whether autotrophic microbial biocathode biofilms are able to self- regenerate under purely cathodic conditions without any external electron or organic carbon sources. Here we report on the successful development and long-term operation of an autotrophic biocathode whereby an electroactive biofilm was able to grow and sustain itself with CO2 and the cathode as sole carbon and electron source, respectively, with H2 as sole product. From a small inoculum of 15 mgCOD (in 250 mL), the bioelectrochemical system operating at -0.5 V vs. SHE enabled an estimated biofilm growth of 300 mg as COD over a period of 276 days. A critical aspect is that reported performances of bioelectrosynthesis of organics are still insufficient for scaling MES to practical applications. Selective microbial consortia and biocathode material development are of paramount importance towards performance enhancement.
    [Show full text]
  • Peptide Synthesis and Modification As a Versatile Strategy for Probes Construction
    University of Pennsylvania ScholarlyCommons Master of Chemical Sciences Capstone Projects Department of Chemistry 8-11-2017 Peptide Synthesis and Modification as a ersatileV Strategy for Probes Construction Jieliang Wang University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/mcs_capstones Part of the Chemistry Commons Wang, Jieliang, "Peptide Synthesis and Modification as a ersatileV Strategy for Probes Construction" (2017). Master of Chemical Sciences Capstone Projects. 7. https://repository.upenn.edu/mcs_capstones/7 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mcs_capstones/7 For more information, please contact [email protected]. Peptide Synthesis and Modification as a ersatileV Strategy for Probes Construction Abstract Peptide synthesis and modification is a ersatilev chemical biology strategy to construct probes and sensors of a variety of types of biological activity, including protein/protein interactions, protein localization, and proteolysis. In my thesis work, I have made probes for three distinct biological applications. To do so, I have used a combination of solid phase peptide synthesis (SPPS), native chemical ligation (NCL), protein expression, and S-alkylation to construct probes with desired functional groups, while minimizing the perturbation to the native structure. In the first project, I constructed photo- crosslinking probes to study the difference in protein-protein interactions of N-terminal acetylated (N-ac) histone H4 peptide versus non-acetylated histone H4 peptide. One protein was identified yb Western blot with binding preference to N-Ace histone H4 peptide. In the second separate project, I constructed probes to study the toxicity mechanism of proline/arginine dipeptide PRx from amyotrophic lateral sclerosis (ALS) associated gene C9ORF72.
    [Show full text]
  • Process Development for Manufacturing Stochastic Peptide Microarrays
    Process Development for Manufacturing Stochastic Peptide Microarrays Zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURSWISSENSCHAFTEN (Dr.-Ing.) von der KIT-Fakultät für Maschinenbau des Karlsruher Instituts für Technologie (KIT) angenommene DISSERTATION von M.Sc. Roman Popov Tag der mündlichen Prüfung: 20. März 2018 Hauptreferent: apl. Prof. Dr. Alexander Nesterov-Müller Korreferenten: Prof. Dr. Jan Korvink Prof. Dr.-Ing. Matthias Franzreb Dieses Werk ist unter einer Creative Commons Namensnennung – Nicht-kommerziell – Weitergabe unter gleichen Bedingungen 4.0 International Lizenz (CC BY-NC-SA 4.0) lizensiert: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de This document is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0): https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en Abstract Tackling the challenges of developing therapies for cancer, infections, or immune system disorders requires understanding and manipulation of the metabolic pathways related to a disease state or a pathogen. An essential role in the corresponding biochemical cascades is played by proteins of various types, whose functions are manifested through their interactions with other molecules. In basic and applied research, the functionality and binding properties of proteins are more often studied using peptide microarrays, which are collections of protein fragments displayed on a solid support in a spot array format. Commercially available peptide microarrays are manufactured using various methods, which result in different spot densities and costs per spot. While being relatively simple and straightforward to implement, the wide-spread SPOT- technique provides less than a thousand of peptides on a standard size substrate, which is not sufficient for many biological applications.
    [Show full text]