The Design of a Lunar Global Navigation Satellite System Tekilanand Persaud University of Florida, Gainesville, Florida, 32612

Total Page:16

File Type:pdf, Size:1020Kb

The Design of a Lunar Global Navigation Satellite System Tekilanand Persaud University of Florida, Gainesville, Florida, 32612 The Design of a Lunar Global Navigation Satellite System Tekilanand Persaud University of Florida, Gainesville, Florida, 32612 An optimal Lunar navigation system was designed by finding the minimum total Delta-V required to launch and maintain a system over its entire lifetime for a design space of constellations. Considerations were made for the two largest orbital perturbations, those from third gravitational bodies, and from anisotropic Lunar gravity. The results show that the first two optimal constellations from the set of those tested are two Walker-Delta configurations with a semimajor axis of 5700 km and five orbital planes and a semimajor axis of 6700 km with three planes, both with a 75° inclination. The third was a Walker-Star configuration with a semimajor axis of 9200 km and three planes. All optimal configurations had 15 satellites. Key words – satellite constellation design, GNSS mean anomaly in their orbit. Additional configurations were I. Introduction investigated using star and delta configurations supplemented S space exploration continues into the mid-21st century, with satellites in halo orbits around the Earth-Moon Lagrange Athe need for navigation systems in the vicinity of other points. Examples of star and delta configurations are shown in celestial bodies arises from motivations such as servicing the appendix. human operations and precisely locating unmanned systems for When choosing between star (polar) and delta (inclined) economic and scientific purposes. The peculiarities of the configurations, it is important to consider the primary Earth-Moon system are both detrimental and advantageous to drawbacks between each: star patterns provide strong polar the design of a Lunar Global Navigation Satellite System coverage due to the intersection of all of the orbits above the (GNSS); the low mass of the Moon means that satellites in its poles. However, this makes coverage at the equator orbit are heavily perturbed by third bodies, and mass comparatively sparse. Both delta and star configurations were concentrations (mascons) caused by magma upwellings in the tested. The presence of water ice at the Moon’s poles makes Moon create a highly anisotropic gravity field. However, the them attractive sites for exploration and future Lunar bases; star presence of the Earth may be exploited to place spacecraft at configurations with redundant polar coverage would thus be the nearby Earth-Moon Lagrangian points to reduce the total more desirable [4]. number of spacecraft needed for a GNSS constellation. The spacecraft bus was allowed to vary from masses Previous work has determined the minimum number of typically seen in modern navigation systems [5] to spacecraft as satellites required for total GNSS coverage of an arbitrary small as CubeSats. The cost of the spacecraft itself and its spherical body [1]. Some literature even addresses the particular corresponding launch cost to obtain the mission orbit are non- case of the minimum satellites required for coverage of the negligible. Since recent advances in microelectronics have Moon using CubeSats [2]. Still, more general studies [3] have allowed for the use of CubeSats for navigation [2], both determined the optimal constellations for a spherical body using CubeSats in the < 6U range and traditional spacecraft bus sizes algorithms such as symmetric/inclined-plane orbits and streets were considered. of coverage, including the time required to find the optimal When designing orbits around the Moon, two major solution for total coverage for each algorithm. However, these considerations must be made for the semimajor axis of the orbit: approaches are implicitly predicated on the satellite count itself perturbations from Lunar mascons and gravitational contributing to the majority of the cost; over the lifetime of the perturbations from third bodies. The former’s strength relative constellation, other factors, such as launch Delta-V (ΔV) costs, to the first-order term of the Moon’s gravity increases with stationkeeping, and disposal, may contribute costs high enough decreasing semimajor axis [6] and the latter’s relative strength to warrant their exploration and minimization, especially for to the Moon’s gravity increases with increasing semimajor axis, constellations on other celestial bodies. This paper constitutes a making the two conflicting parameters to be optimized. Forces minimization of the first two of these costs for traditional from third bodies such as the Sun and Earth are included as symmetric, inclined orbits. perturbations due to the orbits being within the sphere of influence of the Moon [7]. Lunar gravity models have been developed by multiple II. Configurations and Considerations gravity mapping missions. In particular, the Gravity Recovery Regular, periodic configurations were selected using the and Interior Laboratory (GRAIL) mission provides the most Walker-Delta and Walker-Star configurations commonly used recent and comprehensive Lunar gravity model. GRAIL has for contemporary navigation systems. For delta configurations, determined that the Lunar surface gravity field varies by as orbit planes with fixed-inclinations have their ascending nodes much as 1.913 Gals (1.913 × 10−3 g) [6]. This corresponds to equally spaced about a central body. For star configurations, a value within 2% of the perturbation force strength from Earth 90° inclination orbits are equally-spaced by their ascending node [1]. Within each plane, all satellites are equally spaced by 1 University of Florida Table 1 - Parameters for Constellations Variable Value 15 : 15 : 90 푖 (inclination, degrees) 90 3500 : 100 : 10000 푎 (semimajor axis, km) (푅푀표표푛 + 200) : 50 : (푅푀표표푛 + 2000) 2 : 1 : 10 푝 (orbit planes) 2 : 1 : 10 10 : 1 : 50 푛 (satellite count) 10 : 1 : 1000 0 : 4 : 4 퐿 (number of libration point satellites) 0 : 4 : 4 The format of the parameter values is given in (initial value):(step):(final value). Permutation sets of these five variables were taken using the respective line from each variable (i.e. permutation set one consists of the first line of 푎, 푖, 푝, 푛, and 퐿). Inclinations only 90 degrees correspond to star configurations. A set of low- altitude star configurations with many satellites was tested. 푅푀표표푛 = 1738 푘푚 is the equatorial radius of the Moon. These extremely low altitude orbits were tested at an inclination of 90° because of previous literature which found stable orbits within 2° of this inclination [22]. Three additional constellations corresponding to the Moon-radius scaled versions of GPS, GLONASS, and Galileo were also tested. at a Lunar altitude of 200 km, and decays to less than 1.0% the Earth vector will rotate at the same rate as this rotation. perturbative strength of Earth’s gravity at a semimajor axis of Over a ten-year propagation, the Sun vector will 5500 km. similarly rotate around the selenocentric frame ten Perturbations from non-gravitational sources such as solar times. radiation pressure (SRP), infrared emission, and Lunar albedo 3. Non-gravitational perturbation forces are negligible at radiation pressure are finite but small enough to ignore, using all altitudes. These include SRP, albedo pressure, data from GRAIL as a reference. SRP was the largest non- infrared emission, and the Lunar atmosphere. The gravitational perturbation for this mission and introduced an perturbative strength of harmonic terms is reduced error on the order of 1% of the range of gravitational forces on below 1.0% of Earth’s perturbative strength at the Lunar surface [6]. For CubeSats, this error is expected to be semimajor axes greater than 5500 km and may be proportionally smaller based on the spacecraft’s surface area. neglected beyond this point to improve computation Although further from the Lunar surface, these forces become times. more significant due to the decreased strength of variations felt 4. Effects such as apsidal precession, evection, libration, due to anisotropies in Lunar gravity, they remain the same precession of the line of nodes, and other perturbations relative to Sun and Earth gravitational perturbations, which are to the Moon’s orbit are negligible due to their small on the order of Lunar gravity field variations at the Lunar magnitude relative to their mean value [8]. surface. Thus, these non-gravitational perturbations may be 5. Line of sight is enough to provide coverage to a point. neglected without significant discrepancies between the real No considerations were made towards limitations on and computed total optimal ΔV for stationkeeping. the cone of contact for instrumentation and antennae. Ground segment optimization and placement was not Furthermore, points of contact on the Lunar surface considered in computation due to the current uncertainty in the were assumed to have no elevation mask limitations due practicalities and details of such an establishment. For the same to irregular terrain. reasons, considerations for the end-of-life disposal of all 6. Halo orbits around Earth-Moon libration points will spacecraft were withheld. have small enough deviations from the libration point and have periods short enough that satellites at these III. Computation points may be modelled as being at the libration point itself. This removes the need to solve for the halo orbits A. Approximations in the circular restricted three-body problem. Simplifying assumptions were made to expedite the 7. The differences in ΔV needed to cause commercial computation process: rocket booster stages carrying the satellites to reach the 1. The
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • Aas 11-509 Artemis Lunar Orbit Insertion and Science Orbit Design Through 2013
    AAS 11-509 ARTEMIS LUNAR ORBIT INSERTION AND SCIENCE ORBIT DESIGN THROUGH 2013 Stephen B. Broschart,∗ Theodore H. Sweetser,y Vassilis Angelopoulos,z David C. Folta,x and Mark A. Woodard{ As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit in- sertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth’s gravity and restrictive spacecraft capabili- ties to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future eccentric orbiter missions at planetary moons. INTRODUCTION The Acceleration, Reconnection, Turbulence and Electrodynamics of the Moons Interaction with the Sun (ARTEMIS) mission is currently operating two spacecraft in lunar orbit under funding from the Heliophysics and Planetary Science Divisions with NASA’s Science Missions Directorate. ARTEMIS is an extension to the successful Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission [1] that has relocated two of the THEMIS spacecraft from Earth orbit to the Moon [2, 3, 4]. ARTEMIS plans to conduct a variety of scientific studies at the Moon using the on-board particle and fields instrument package [5, 6]. The final portion of the ARTEMIS transfers involves moving the two ARTEMIS spacecraft, known as P1 and P2, from Lissajous orbits around the Earth-Moon Lagrange Point #1 (EML1) to long-lived, eccentric lunar science orbits with periods of roughly 28 hr.
    [Show full text]
  • Dynamical Analysis of Rendezvous and Docking with Very Large Space Infrastructures in Non-Keplerian Orbits
    DYNAMICAL ANALYSIS OF RENDEZVOUS AND DOCKING WITH VERY LARGE SPACE INFRASTRUCTURES IN NON-KEPLERIAN ORBITS Andrea Colagrossi ∗, Michele` Lavagna y, Simone Flavio Rafano Carna` z Politecnico di Milano Department of Aerospace Science and Technology Via La Masa 34 – 20156 Milan (MI) – Italy ABSTRACT the whole mission scenario is the so called Evolvable Deep Space Habitat: a modular space station in lunar vicinity. A space station in the vicinity of the Moon can be exploited At the current level of study, the optimum location for as a gateway for future human and robotic exploration of the space infrastructure of this kind has not yet been determined, Solar System. The natural location for a space system of this but a favorable solution can be about one of the Earth-Moon kind is about one of the Earth-Moon libration points. libration points, such as in a EML2 (Earth-Moon Lagrangian The study addresses the dynamics during rendezvous and Point no 2) Halo orbit. Moreover, the final configuration of docking operations with a very large space infrastructure in a the entire system is still to be defined, but it is already clear EML2 Halo orbit. The model takes into account the coupling that in order to assemble the structure several rendezvous and effects between the orbital and the attitude motion in a Circular docking activities will be carried out, many of which to be Restricted Three-Body Problem environment. The flexibility completely automated. of the system is included, and the interaction between the Unfortunately, the current knowledge about rendezvous in modes of the structure and those related with the orbital motion cis-lunar orbits is minimal and it is usually limited to point- is investigated.
    [Show full text]
  • What Is the Interplanetary Superhighway?
    What is the InterPlanetary Suppgyerhighway? Kathleen Howell Purdue University Lo and Ross Trajectory Key Space Technology Mission-Enabling Technology Not All Technology is hardware! The InterPlanetary Superhighway (IPS) • LELow Energy ObitfSOrbits for Space Mi Miissions • InterPlanetary Superhighway—“a vast network of winding tunnels in space” that connects the Sun , the planets, their moons, AND many other destinations • Systematic mapping properly known as InterPlanetary Transport Network Simó, Gómez, Masdemont / Lo, Howell, Barden / Howell, Folta / Lo, Ross / Koon, Lo, Marsden, Ross / Marchand, Howell, Lo / Scheeres, Villac/ ……. Originates with Poincaré (1892) Applications to wide range of fields Different View of Problems in N-Bodies • Much more than Kepler and Newton imagined • Computationally challenging Poincaré (1854-1912) “Mathematics is the art of giving the same name to different things” Jules Henri Poincaré NBP Play 3BP Wang 2BP New Era in Celestial Mechanics Pioneering Work: Numerical Exploration by Hand (Breakwell, Farquhar and Dunham) Current Libration Point Missions Goddard Space Flight Center • z WIND SOHO ACE MAPGENESIS NGST Courtesy of D. Folta, GSFC Multi-Body Problem Orbit propagated for 4 conic periods: • Change our perspective 4*19 days = 75.7 days Earth Earth Sun To Sun Inertial View RotatingRotating View View Inertial View (Ro ta tes w ith two b odi es) Aeronautics and Astronautics Multi-Body Problem • Change our perspective • Effects of added gravity fields Earth Earth TSTo Sun Rotating View Inertial View Equilibrium
    [Show full text]
  • 1. Two Objects Attract Each Other Gravitationally. If the Distance Between Their Centers Is Cut in Half, the Gravitational Force A) Is Cut to One Fourth
    MULTIPLE CHOICE REVIEW – GRAVITATION (Dynamics Part 3) 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B) is cut in half. C) doubles. D) quadruples 2. Two objects, with masses m1 and m2, are originally a distance r apart. The magnitude of the gravitational force between them is F. The masses are changed to 2m1 and 2m2, and the distance is changed to 4r. What is the magnitude of the new gravitational force? A) F/16 B) F/4 C) 16F D) 4F 3. As a rocket moves away from the Earth's surface, the rocket's weight A) increases. B) decreases. C) remains the same. D) depends on how fast it is moving. 4. A hypothetical planet has a mass of half that of the Earth and a radius of twice that of the Earth. What is the acceleration due to gravity on the planet in terms of g, the acceleration due to gravity at the Earth? A) g B) g/2 C) g/4 D) g/8 5. Two planets have the same surface gravity, but planet B has twice the mass of planet A. If planet A has radius r, what is the radius of planet B? A) 0.707r B) r C) 1.41r D) 4r 6. A planet is discovered to orbit around a star in the galaxy Andromeda, with the same orbital diameter as the Earth around our Sun. If that star has 4 times the mass of our Sun, what will the period of revolution of that new planet be, compared to the Earth's orbital period? A) one-fourth as much B) one-half as much C) twice as much D) four times as much 7.
    [Show full text]
  • Spacecraft Trajectories in a Sun, Earth, and Moon Ephemeris Model
    SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL A Project Presented to The Faculty of the Department of Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Romalyn Mirador i ABSTRACT SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL by Romalyn Mirador This project details the process of building, testing, and comparing a tool to simulate spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model can be used to find complex trajectories but would need to include other perturbations like gravity harmonics to model more accurate trajectories. i ACKNOWLEDGEMENTS I would like to thank my family and friends for their continuous encouragement and support throughout all these years. A special thank you to my advisor, Dr. Capdevila, and my friend, Dhathri, for mentoring me as I work on this project. The knowledge and guidance from the both of you has helped me tremendously and I appreciate everything you both have done to help me get here. ii Table of Contents List of Symbols ............................................................................................................................... v 1.0 INTRODUCTION
    [Show full text]
  • Download Paper
    Cis-Lunar Autonomous Navigation via Implementation of Optical Asteroid Angle-Only Measurements Mark B. Hinga, Ph.D., P.E. ∗ Autonomous cis- or trans-Lunar spacecraft navigation is critical to mission success as communication to ground stations and access to GPS signals could be lost. However, if the satellite has a camera of sufficient qual- ity, line of sight (unit vector) measurements can be made to known solar system bodies to provide observations which enable autonomous estimation of position and velocity of the spacecraft, that can be telemetered to those interested space based or ground based consumers. An improved Gaussian-Initial Orbit Determination (IOD) algorithm, based on the exact values of the f and g series (free of the 8th order polynomial and range guessing), for spacecraft state estimation, is presented here and exercised in the inertial coordinate frame (2-Body Prob- lem) to provide an initial guess for the Batch IOD that is performed in the Circular Restricted Three Body Problem (CRTBP) reference frame, which ultimately serves to initialize a CRTBP Extended Kalman Filter (EKF) navigator that collects angle only measurements to a known Asteroid 2014 EC (flying by the Earth) to sequentially estimate position and velocity of an observer spacecraft flying on an APOLLO-like trajectory to the Moon. With the addition of simulating/expressing the accelerations that would be sensed in the IMU plat- form frame due to delta velocities caused by either perturbations or corrective guidance maneuvers, this three phase algorithm is able to autonomously track the spacecraft state on its journey to the Moon while observing the motion of the Asteroid.
    [Show full text]
  • Cislunar Tether Transport System
    FINAL REPORT on NIAC Phase I Contract 07600-011 with NASA Institute for Advanced Concepts, Universities Space Research Association CISLUNAR TETHER TRANSPORT SYSTEM Report submitted by: TETHERS UNLIMITED, INC. 8114 Pebble Ct., Clinton WA 98236-9240 Phone: (206) 306-0400 Fax: -0537 email: [email protected] www.tethers.com Report dated: May 30, 1999 Period of Performance: November 1, 1998 to April 30, 1999 PROJECT SUMMARY PHASE I CONTRACT NUMBER NIAC-07600-011 TITLE OF PROJECT CISLUNAR TETHER TRANSPORT SYSTEM NAME AND ADDRESS OF PERFORMING ORGANIZATION (Firm Name, Mail Address, City/State/Zip Tethers Unlimited, Inc. 8114 Pebble Ct., Clinton WA 98236-9240 [email protected] PRINCIPAL INVESTIGATOR Robert P. Hoyt, Ph.D. ABSTRACT The Phase I effort developed a design for a space systems architecture for repeatedly transporting payloads between low Earth orbit and the surface of the moon without significant use of propellant. This architecture consists of one rotating tether in elliptical, equatorial Earth orbit and a second rotating tether in a circular low lunar orbit. The Earth-orbit tether picks up a payload from a circular low Earth orbit and tosses it into a minimal-energy lunar transfer orbit. When the payload arrives at the Moon, the lunar tether catches it and deposits it on the surface of the Moon. Simultaneously, the lunar tether picks up a lunar payload to be sent down to the Earth orbit tether. By transporting equal masses to and from the Moon, the orbital energy and momentum of the system can be conserved, eliminating the need for transfer propellant. Using currently available high-strength tether materials, this system could be built with a total mass of less than 28 times the mass of the payloads it can transport.
    [Show full text]
  • Tidal Tomography to Probe the Moon's Mantle Structure Using
    Tidal Tomography to Probe the Moon’s Mantle Structure Using Lunar Surface Gravimetry Kieran A. Carroll1, Harriet Lau2, 1: Gedex Systems Inc., [email protected] 2: Department of Earth and Planetary Sciences, Harvard University, [email protected] Lunar Tides Gravimetry of the Lunar Interior VEGA Instrument through the Moon's PulSE • Gedex has developed a low cost compact space gravimeter instrument , VEGA (Vector (GLIMPSE) Investigation Gravimeter/Accelerometer) Moon • Currently this is the only available gravimeter that is suitable for use in space Earth GLIMPSE Investigation: • Proposed under NASA’s Lunar Surface Instrument and Technology Payloads • ca. 1972 MIT developed a space gravimeter (LSITP) program. instrument for use on the Moon, for Apollo 17. That instrument is long-ago out of • To fly a VEGA instrument to the Moon on a commercial lunar lander, via NASA’s production and obsolete. Commercial Lunar Payload Services (CLPS) program. VEGA under test in thermal- GLIMPSE Objectives: VEGA Space Gravimeter Information vacuum chamber at Gedex • Prove the principle of measuring time-varying lunar surface gravity to probe the lunar • Measures absolute gravity vector, with no • Just as the Moon and the Sun exert tidal forces on the Earth, the Earth exerts tidal deep interior using the Tidal Tomography technique. bias forces on the Moon. • Determine constraints on parameters defining the Lunar mantle structure using time- • Accuracy on the Moon: • Tidal stresses in the Moon are proportional to the gravity gradient tensor field at the varying gravity measurements at a location on the surface of the Moon, over the • Magnitude: Effective noise of 8 micro- Moon’s centre, multiplies by the distance from the Moon’s centre.
    [Show full text]
  • Lunar Sourcebook : a User's Guide to the Moon
    3 THE LUNAR ENVIRONMENT David Vaniman, Robert Reedy, Grant Heiken, Gary Olhoeft, and Wendell Mendell 3.1. EARTH AND MOON COMPARED fluctuations, low gravity, and the virtual absence of any atmosphere. Other environmental factors are not The differences between the Earth and Moon so evident. Of these the most important is ionizing appear clearly in comparisons of their physical radiation, and much of this chapter is devoted to the characteristics (Table 3.1). The Moon is indeed an details of solar and cosmic radiation that constantly alien environment. While these differences may bombard the Moon. Of lesser importance, but appear to be of only academic interest, as a measure necessary to evaluate, are the hazards from of the Moon’s “abnormality,” it is important to keep in micrometeoroid bombardment, the nuisance of mind that some of the differences also provide unique electrostatically charged lunar dust, and alien lighting opportunities for using the lunar environment and its conditions without familiar visual clues. To introduce resources in future space exploration. these problems, it is appropriate to begin with a Despite these differences, there are strong bonds human viewpoint—the Apollo astronauts’ impressions between the Earth and Moon. Tidal resonance of environmental factors that govern the sensations of between Earth and Moon locks the Moon’s rotation working on the Moon. with one face (the “nearside”) always toward Earth, the other (the “farside”) always hidden from Earth. 3.2. THE ASTRONAUT EXPERIENCE The lunar farside is therefore totally shielded from the Earth’s electromagnetic noise and is—electro- Working within a self-contained spacesuit is a magnetically at least—probably the quietest location requirement for both survival and personal mobility in our part of the solar system.
    [Show full text]