2 the Laws of Black Hole Thermodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2010.09481V1 [Gr-Qc] 19 Oct 2020 Ally Neutral Plasma Start to Be Relevant
Radiative Penrose process: Energy Gain by a Single Radiating Charged Particle in the Ergosphere of Rotating Black Hole Martin Koloˇs, Arman Tursunov, and ZdenˇekStuchl´ık Research Centre for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezruˇcovon´am.13,CZ-74601 Opava, Czech Republic∗ We demonstrate an extraordinary effect of energy gain by a single radiating charged particle inside the ergosphere of a Kerr black hole in presence of magnetic field. We solve numerically the covariant form of the Lorentz-Dirac equation reduced from the DeWitt-Brehme equation and analyze energy evolution of the radiating charged particle inside the ergosphere, where the energy of emitted radiation can be negative with respect to a distant observer in dependence on the relative orientation of the magnetic field, black hole spin and the direction of the charged particle motion. Consequently, the charged particle can leave the ergosphere with energy greater than initial in expense of black hole's rotational energy. In contrast to the original Penrose process and its various modification, the new process does not require the interactions (collisions or decay) with other particles and consequent restrictions on the relative velocities between fragments. We show that such a Radiative Penrose effect is potentially observable and discuss its possible relevance in formation of relativistic jets and in similar high-energy astrophysical settings. INTRODUCTION KERR SPACETIME AND EXTERNAL MAGNETIC FIELD The fundamental role of combined strong gravitational The Kerr metric in the Boyer{Lindquist coordinates and magnetic fields for processes around BH has been and geometric units (G = 1 = c) reads proposed in [1, 2]. -
Energetics of the Kerr-Newman Black Hole by the Penrose Process
J. Astrophys. Astr. (1985) 6, 85 –100 Energetics of the Kerr-Newman Black Hole by the Penrose Process Manjiri Bhat, Sanjeev Dhurandhar & Naresh Dadhich Department of Mathematics, University of Poona, Pune 411 007 Received 1984 September 20; accepted 1985 January 10 Abstract. We have studied in detail the energetics of Kerr–Newman black hole by the Penrose process using charged particles. It turns out that the presence of electromagnetic field offers very favourable conditions for energy extraction by allowing for a region with enlarged negative energy states much beyond r = 2M, and higher negative values for energy. However, when uncharged particles are involved, the efficiency of the process (defined as the gain in energy/input energy) gets reduced by the presence of charge on the black hole in comparison with the maximum efficiency limit of 20.7 per cent for the Kerr black hole. This fact is overwhelmingly compensated when charged particles are involved as there exists virtually no upper bound on the efficiency. A specific example of over 100 per cent efficiency is given. Key words: black hole energetics—Kerr-Newman black hole—Penrose process—energy extraction 1. Introduction The problem of powering active galactic nuclei, X-raybinaries and quasars is one of the most important problems today in high energy astrophysics. Several mechanisms have been proposed by various authors (Abramowicz, Calvani & Nobili 1983; Rees et al., 1982; Koztowski, Jaroszynski & Abramowicz 1978; Shakura & Sunyaev 1973; for an excellent review see Pringle 1981). Rees et al. (1982) argue that the electromagnetic extraction of black hole’s rotational energy can be achieved by appropriately putting charged particles in negative energy orbits. -
Quantum-Corrected Rotating Black Holes and Naked Singularities in (2 + 1) Dimensions
PHYSICAL REVIEW D 99, 104023 (2019) Quantum-corrected rotating black holes and naked singularities in (2 + 1) dimensions † ‡ Marc Casals,1,2,* Alessandro Fabbri,3, Cristián Martínez,4, and Jorge Zanelli4,§ 1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, CEP 22290-180, Brazil 2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland 3Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, C. Dr. Moliner 50, 46100 Burjassot, Spain 4Centro de Estudios Científicos (CECs), Arturo Prat 514, Valdivia 5110466, Chile (Received 15 February 2019; published 13 May 2019) We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 þ 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum- backreacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature. -
Final Fate of a Massive Star
FINAL FATE OF A MASSIVE STAR Modern science has introduced the world to plenty of strange ideas, but surely one of the strangest is the fate of a massive star that has reached the end of its life. Having exhausted the fuel that sustained it for millions of years, the star is no longer able to hold itself up under its own weight, and it starts collapsing catastrophically. Modest stars like the sun also collapse but they stabilize again at a smaller size, whereas if a star is massive enough, its gravity overwhelms all the forces that might halt the collapse. From a size of Fig. 1 Black Hole (Artist’s conception) millions of kilometers across, the star crumples to a pinprick smaller than the dot on an “i.” What is the final fate of such massive collapsing stars? This is one of the most exciting questions in astrophysics and modern cosmology today. An amazing inter-play of the key forces of nature takes place here, including the gravity and quantum mechanics. This phenomenon may hold the key secrets to man’s search for a unified understanding of all forces of nature. It also may have most exciting connections and implications for astronomy and high energy astrophysics. This is an outstanding unresolved issue that excites physicists and the lay person alike. The story really began some eight decades ago when Subrahmanyan Fig. 2 An artist’s conception of Chandrasekhar probed the question of final fate of stars such as the Sun. He naked singularity showed that such a star, on exhausting its internal nuclear fuel, would stabilize as a `white dwarf', which is about a thousand kilometers in size. -
Schwarzschild Black Hole Can Also Produce Super-Radiation Phenomena
Schwarzschild black hole can also produce super-radiation phenomena Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University According to traditional theory, the Schwarzschild black hole does not produce super radiation. If the boundary conditions are set in advance, the possibility is combined with the wave function of the coupling of the boson in the Schwarzschild black hole, and the mass of the incident boson acts as a mirror, so even if the Schwarzschild black hole can also produce super-radiation phenomena. Keywords: Schwarzschild black hole, superradiance, Wronskian determinant I. INTRODUCTION In a closely related study in 1962, Roger Penrose proposed a theory that by using point particles, it is possible to extract rotational energy from black holes. The Penrose process describes the fact that the Kerr black hole energy layer region may have negative energy relative to the observer outside the horizon. When a particle falls into the energy layer region, such a process may occur: the particle from the black hole To escape, its energy is greater than the initial state. It can also show that in Reissner-Nordstrom (charged, static) and rotating black holes, a generalized ergoregion and similar energy extraction process is possible. The Penrose process is a process inferred by Roger Penrose that can extract energy from a rotating black hole. Because the rotating energy is at the position of the black hole, not in the event horizon, but in the area called the energy layer in Kerr space-time, where the particles must be like a propelling locomotive, rotating with space-time, so it is possible to extract energy . -
Spacetime Warps and the Quantum World: Speculations About the Future∗
Spacetime Warps and the Quantum World: Speculations about the Future∗ Kip S. Thorne I’ve just been through an overwhelming birthday celebration. There are two dangers in such celebrations, my friend Jim Hartle tells me. The first is that your friends will embarrass you by exaggerating your achieve- ments. The second is that they won’t exaggerate. Fortunately, my friends exaggerated. To the extent that there are kernels of truth in their exaggerations, many of those kernels were planted by John Wheeler. John was my mentor in writing, mentoring, and research. He began as my Ph.D. thesis advisor at Princeton University nearly forty years ago and then became a close friend, a collaborator in writing two books, and a lifelong inspiration. My sixtieth birthday celebration reminds me so much of our celebration of Johnnie’s sixtieth, thirty years ago. As I look back on my four decades of life in physics, I’m struck by the enormous changes in our under- standing of the Universe. What further discoveries will the next four decades bring? Today I will speculate on some of the big discoveries in those fields of physics in which I’ve been working. My predictions may look silly in hindsight, 40 years hence. But I’ve never minded looking silly, and predictions can stimulate research. Imagine hordes of youths setting out to prove me wrong! I’ll begin by reminding you about the foundations for the fields in which I have been working. I work, in part, on the theory of general relativity. Relativity was the first twentieth-century revolution in our understanding of the laws that govern the universe, the laws of physics. -
Arxiv:1605.04629V2 [Gr-Qc]
Implementing black hole as efficient power plant Shao-Wen Wei ∗, Yu-Xiao Liu† Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, People’s Republic of China Abstract Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature- entropy chart, it is found that the work, heat, and efficiency of the engine are free of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the compact formula for the efficiency is obtained. And the heat, work and efficiency are worked out. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work, and such black hole heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole. PACS numbers: 04.70.Dy, 05.70.Ce, 07.20.Pe Keywords: Black hole, heat engine, phase transition arXiv:1605.04629v2 [gr-qc] 7 Jun 2019 ∗ [email protected] † [email protected] 1 I. INTRODUCTION Black hole has been a fascinating object since general relativity predicted its existence. Compared with other stars, a black hole has sufficient density and a huge amount of energy. Near a black hole, there are many high energy astrophysical phenomena related to the energy flow, such as the power jet and black holes merging. -
Return of the Quantum Cosmic Censor
Return of the quantum cosmic censor Shahar Hod The Ruppin Academic Center, Emeq Hefer 40250, Israel and The Hadassah Institute, Jerusalem 91010, Israel (Dated: November 8, 2018) The influential theorems of Hawking and Penrose demonstrate that spacetime singularities are ubiquitous features of general relativity, Einstein’s theory of gravity. The utility of classical general relativity in describing gravitational phenomena is maintained by the cosmic censorship principle. This conjecture, whose validity is still one of the most important open questions in general relativity, asserts that the undesirable spacetime singularities are always hidden inside of black holes. In this Letter we reanalyze extreme situations which have been considered as counterexamples to the cosmic censorship hypothesis. In particular, we consider the absorption of fermion particles by a spinning black hole. Ignoring quantum effects may lead one to conclude that an incident fermion wave may over spin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when quantum effects are properly taken into account, the integrity of the black-hole event horizon is irrefutable. This observation suggests that the cosmic censorship principle is intrinsically a quantum phenomena. Spacetime singularities that arise in gravitational col- the relation lapse are always hidden inside of black holes, invisible to M 2 Q2 a2 0 , (1) distant observers. This is the essence of the weak cosmic − − ≥ censorship conjecture (WCCC), put forward by Penrose where a J/M is the specific angular momentum of forty years ago [1, 2, 3, 4]. The validity of this hypothesis the black≡ hole. Extreme black holes are the ones which is essential for preserving the predictability of Einstein’s saturate the relation (1). -
A Treatise on Astronomy and Space Science Dr
SSRG International Journal of Applied Physics Volume 8 Issue 2, 47-58, May-Aug, 2021 ISSN: 2350 – 0301 /doi:10.14445/23500301/ IJAP-V8I2P107 © 2021 Seventh Sense Research Group® A Treatise on Astronomy and Space Science Dr. Goutam Sarker, SM IEEE, Computer Science & Engineering Department, National Institute of Technology, Durgapur Received Date: 05 June 2021 Revised Date: 11 July 2021 Accepted Date: 22 July 2021 Abstract — Astronomy and Space Science has achieved a VII details naked singularity of a rotating black hole. tremendous enthuse to ardent humans from the early Section VIII discusses black hole entropy. Section IX primitive era of civilization till now a days. In those early details space time, space time curvature, space time pre-history days, primitive curious men looked at the sky interval and light cone. Section X presents the general and and got surprised and overwhelmed by the obscure special theory of relativity. Section XI details the different uncanny solitude of the universe along with all its definitions of time from different viewpoint as well as terrestrial bodies. This only virulent bustle of mankind different types of time. Last but not least Section XII is the regarding the outer space allowed him to open up conclusion which sums up all the previous discussions. surprising and splendid chapter after chapter and quench his thrust about the mysterious universe. In the present II. PRELIMINARIES OF ASTRONOMY paper we are going to discuss several important aspects According to Big Bang Theory [1,3,4,8], our universe and major issues of astronomy and space science. Starting originated from initial state of very high density and from the formation of stars it ended up to black holes – temperature. -
Gr-Qc] 3 Nov 2014 I’Avzef O.9,Is ,(00 147–151
JETP Letters, 2010, Vol. 92, No. 3, pp. 125-129. On the collisions between particles in the vicinity of rotating black holes 1) A. A. Griba, Yu. V. Pavlovb aTheoretical Physics and Astronomy Department, The Herzen University, 48, Moika, St. Petersburg, 191186, Russia e-mail: andrei [email protected] bInstitute of Problems in Mechanical Engineering, RAS, 61 Bolshoy, V.O., St. Petersburg, 199178, Russia e-mail: [email protected] Submitted 9 June 2010 Scattering of particles in the gravitational field of rotating black holes is considered. It is shown that scat- tering energy of particles in the centre of mass system can obtain very large values not only for extremal black holes but also for nonextremal ones. Extraction of energy after the collision is investigated. It is shown that due to the Penrose process the energy of the particle escaping the hole at infinity can be large. Contradictions in the problem of getting high energetic particles escaping the black hole are resolved. In [1] we put the hypothesis that active galactic nu- the cases of multiple scattering. In the first part we cal- clei can be the sources of ultrahigh energy particles in culate this energy, reproduce the results of [9, 10, 11] cosmic rays observed recently by the AUGER group and show that in some cases (multiple scattering) the (see [2]) due to the processes of converting dark mat- results of [10, 11] on the limitations of the scattering ter formed by superheavy neutral particles into visible energy for nonextremal black holes are not valid. particles — quarks, leptons (neutrinos), photons. -
The Collisional Penrose Process
Noname manuscript No. (will be inserted by the editor) The Collisional Penrose Process Jeremy D. Schnittman Received: date / Accepted: date Abstract Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole's event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy parti- cles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrar- ily high center-of-mass energy in the limit of extremal black hole spin. The re- sulting particles can escape with high efficiency, potentially erving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole. Keywords black holes · ergosphere · Kerr metric 1 Introduction We begin with a brief overview of the Kerr metric for spinning, stationary black holes [1]. By far the most convenient, and thus most common form of the Kerr metric is the form derived by Boyer and Lindquist [2]. In standard spherical coor- -
Conformal Field Theory and Black Hole Physics
CONFORMAL FIELD THEORY AND BLACK HOLE PHYSICS Steve Sidhu Bachelor of Science, University of Northern British Columbia, 2009 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree MASTER OF SCIENCE Department of Physics and Astronomy University of Lethbridge LETHBRIDGE, ALBERTA, CANADA c Steve Sidhu, 2012 Dedication To my parents, my sister, and Paige R. Ryan. iii Abstract This thesis reviews the use of 2-dimensional conformal field theory applied to gravity, specifically calculating Bekenstein-Hawking entropy of black holes in (2+1) dimen- sions. A brief review of general relativity, Conformal Field Theory, energy extraction from black holes, and black hole thermodynamics will be given. The Cardy formula, which calculates the entropy of a black hole from the AdS/CFT duality, will be shown to calculate the correct Bekenstein-Hawking entropy of the static and rotating BTZ black holes. The first law of black hole thermodynamics of the static, rotating, and charged-rotating BTZ black holes will be verified. iv Acknowledgements I would like to thank my supervisors Mark Walton and Saurya Das. I would also like to thank Ali Nassar and Ahmed Farag Ali for the many discussions, the Theo- retical Physics Group, and the entire Department of Physics and Astronomy at the University of Lethbridge. v Table of Contents Approval/Signature Page ii Dedication iii Abstract iv Acknowledgements v Table of Contents vi 1 Introduction 1 2 Einstein’s field equations and black hole solutions 7 2.1 Conventions and notations . 7 2.2 Einstein’s field equations .