Wood Energy in the ECE Region
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FAOSTAT-Forestry Definitions
FOREST PRODUCTS DEFINITIONS General terms FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Item Item Code Definition code coniferous C Coniferous All woods derived from trees classified botanically as Gymnospermae, e.g. Abies spp., Araucaria spp., Cedrus spp., Chamaecyparis spp., Cupressus spp., Larix spp., Picea spp., Pinus spp., Thuja spp., Tsuga spp., etc. These are generally referred to as softwoods. non-coniferous NC Non-Coniferous All woods derived from trees classified botanically as Angiospermae, e.g. Acer spp., Dipterocarpus spp., Entandrophragma spp., Eucalyptus spp., Fagus spp., Populus spp., Quercus spp., Shorea spp., Swietonia spp., Tectona spp., etc. These are generally referred to as broadleaves or hardwoods. tropical NC.T Tropical Tropical timber is defined in the International Tropical Timber Agreement (1994) as follows: “Non-coniferous tropical wood for industrial uses, which grows or is produced in the countries situated between the Tropic of Cancer and the Tropic of Capricorn. The term covers logs, sawnwood, veneer sheets and plywood. Plywood which includes in some measure conifers of tropical origin shall also be covered by the definition.” For the purposes of this questionnaire, tropical sawnwood, veneer sheets and plywood shall also include products produced in non-tropical countries from imported tropical roundwood. Please indicate if statistics provided under "tropical" in this questionnaire may include species or products beyond the scope of this definition. Year Data are requested for the calendar year (January-December) indicated. 2 Transactions FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Element Element Code Definition code 5516 Production Quantity Removals The volume of all trees, living or dead, that are felled and removed from the forest, other wooded land or other felling sites. -
Quality Wood Chip Fuel Depends on the Size of the Installation in Which It Is to Be Used: Pieter D
Harvesting / Transportation No. 6 The quality requirements for wood chip Quality wood chip fuel depends on the size of the installation in which it is to be used: Pieter D. Kofman 1 Small boilers (<250 kW) require a high quality wood fuel with a low moisture content (<30%) and a small, even chip with few, if any, Quality wood fuel depends mainly on: oversize or overlong particles. A • moisture content, low level of fungal spores is required. • particle size distribution, Medium boilers (250 kW<X<1 MW) • tree species, are more tolerant of moisture content (30-40%) and can handle a • bulk density, coarser chip than small boilers. • level of dust and fungal spores in the fuel, and Still, the amount of oversize and overlong particles should be • ash content. limited. A low level of fungal spores is required. Good quality wood chip fuel is produced by machines with sharp knives, with the ability to vary the size of chip produced to meet end-user specifications. Other Large boilers (>1 MW) are tolerant machines use hammers or flails to reduce particle size and produce hogfuel, of both moisture content (30-55%) and chip quality. The level of fungal which is unsuitable for use in small installations. Large installations can, spores can be higher because however, also have problems in handling and combusting hogfuel. For forest these installations usually take thinnings and other roundwood, chipping is the preferred option. their combustion air from the chip silo which reduces spore This note deals with wood chips only, even though there are other wood fuels, concentrations in and around the such as hogfuel, sawdust, firewood, peelings from fence posts, etc. -
SHELTON RESEARCH, INC. 1517 Pacheco St
SHELTON RESEARCH, INC. 1517 Pacheco St. P.O. Box 5235 Santa Fe, NM 87502 505-983-9457 EVALUATim OF LOW-EMISSION WOOD STOVES by I Jay W. Shelton and Larry W. Gay Shelton Research, Inc. P.O. Box 5235 ! 1517 Pacheco Street Santa Fe, New Mexico 87501 [ June 23, 1986 FINAL REPORT I OON1RACT A3-122-32 Prepared for CALIFORNIA AIR RESOURCES BOARD P.O. Box 2815 1102 Q Street Sacramento, California 95812 Shelton Research, Ince Research Report No. 1086 I, TABLE CF CDmN.rS la PAGE 1' 1 LIST Clii' T~S••••••••••••••••••••••••••••• I~ LIST OF FIGURES •••••••••••••••••••••••••••• ii r } 1. SlM'v1ARY AND CINa.,USICNS •••••••••••••••••••• 1 ~- 2. RE~T1rns•••••••••••••••••••••••••••• 3 ! 3. I N'IRmJCTI. rn••••••••••••••••••••••••••••••• 4 4. APPLIANCE AND FUEL SELECTirn••••••••••••••• 5 5. 'IEa-IN"I oo_, JI'IIDAOI. •••.•••••...•.•••••.•••. 14 Test cycles •••••••••••••••••••••••••••••• 14 Installation••••••••••••••••••••••••••••• 16 Stove Q?eration•••••••••••••••••••••••••• 16 Fuel Properties•••••••••••••••••••••••••• 16 Measursnent Methods •••••••••••••••••••••• 18 Data Acquisition and Processing•••••••••• 29 r; 6. RESlJI..,TS. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30 J Introduction••••••••••••••••••••••••••••• 30 Units for Fmissions •••••••••••••••••••••• 30 E:x: tra Tes ts •• ., •• "•••••••••••••••••••••••• 30 Particulate Matter ••••••••••••••••••••••• 31 Oeosote•••••• ., •••••••••••••••••••••••••• 32 P.AII. ••••••••••• o • •••••••••••••••••••••••• 32 l NOx •••••••••• t.10••·········· ............. 32 .Amoonia and cyanide•••••••••••••••••••••• -
Mean Annual Volume Increment of Selected Industrial Species
Forestry Department Food and Agriculture Organization of the United Nations Forest Plantations Thematic Papers MEAN ANNUAL VOLUME INCREMENT OF SELECTED INDUSTRIAL FOREST PLANTATION SPECIES Based on the work of Luis Ugalde and Osvaldo Pérez Consultants Edited by D. J. Mead April 2001 Forest Resources Development Service Working Paper FP/1 Forest Resources Division FAO, Rome (Italy) Forestry Department 2 Disclaimer The Forest Plantation Thematic Papers report on issues and activities in forest plantations as prepared for FRA 2000. These working papers do not reflect any official position of FAO. Please refer to the FAO website (http://www.fao.org/forestry) for official information. The purpose of these papers is to provide early information on on-going activities and programmes, and to stimulate discussion. Comments and feedback are welcome. For further information please contact: Mr. Jim Carle, Senior Forestry Officer (Plantations and Protection), Forest Resources Development Service Forest Resources Division Forestry Department FAO Viale delle Terme di Caracalla I-00100 Rome (Italy) e-mail: [email protected] For quotation: FAO (2001). Mean annual volume increment of selected industrial forest plantation species by L Ugalde & O Pérez. Forest Plantation Thematic Papers, Working Paper 1. Forest Resources Development Service, Forest Resources Division. FAO, Rome (unpublished). 3 ABSTRACT This paper provides a global overview of forest plantation growth rates, with a particular focus on mean annual volume increment (MAI) of the main species planted in developing countries. Documented growth data from both trials and plantations is presented, and the difficulty of translating trial data to commercial scale is highlighted. The main technical issues and pitfalls relating to MAI measurement and the preparation and growth models used are included. -
Tree Care Handbook
Minnesota SWCD Forestry Association Tree Handbook Dear Tree Planter. With headlines reporting the continuing deforestation of the tropical rain forest, one may ask the question: Are America’s forests in danger of disappearing? Because people such as yourself practice reforestation, our forested acres are actually growing in size. About one-third of the United States, or 731 million acres is covered with trees. That’s about 70 percent of the forest that existed when Columbus discovered America. Almost one third of this is set aside in permanent parks and wilderness areas. Minnesotans’ have planted an average of 12 million trees annually; enough trees to cover over 15,000 acres per year. Good land stewards are planting trees for many good reasons. The results of their efforts can be seen in reduced soil erosion, improved air and water quality, healthy forest industries, enhanced wildlife habitat and generally a more attractive surrounding for us to live in. Aspen has become the most prominent tree in Minnesota’s forests. After clearcutting, aspen regenerates readily by sprouting from its root system or by drifting seeds onto disturbed sites. Most of the other major species in Minnesota need some help from tree planters to ensure that they make up a part of the new forest. The following pages will help explain how to plant and care for a tree seedling. There is a section on the general characteristics and planting requirements of the tree and shrub species commonly planted for conservation purposes in Minnesota. The professionals working in conservation throughout Minnesota thank you for planting, nurturing and wisely using one of Minnesota’s greatest treasures its renewable trees. -
Selling Your Timber
Selling Your Timber A timber sale is a serious matter requiring careful preparation. The results of many years of past timber growth are at stake, and the condition of the forest after the sale profoundly affects its productivity for many years to come. Basics to Consider If profit is your primary objective, avoid the temptation to make a “quick sale.” Think about what you are going to do, and don’t be pressured Your best interest should 1. Hire a Registered Consulting Forester into making a decision. Using the competitive bid be the top priority of anyone to Help With the Planning and Sale of process can maximize your profits. you hire to assist in your timber sale. They should Your Timber fully disclose and resolve Selling timber can be a source of great satisfaction compromised. It reduces opportunities for any existing or potential to a landowner. It may also be surprising, frustrating misunderstandings between you and the buyer and/or conflicts of interest. and stressful, especially for landowners who conduct logger, helps ensure the harvest will maximize financial timber sales infrequently. returns for all parties, protects water quality and Relying on the expertise of a registered consulting maintains or enhances forest productivity. Reforestation forester for help with harvest planning and timber sales alternatives should also be planned prior to timber reduces the likelihood that sellers or buyers will be harvests to ensure that the specific harvest methods caught off guard - and that helps landowners get the used complement long-term forest management goals. Tax Implications highest return for their timber. -
Code of Practice for Wood Processing Facilities (Sawmills & Lumberyards)
CODE OF PRACTICE FOR WOOD PROCESSING FACILITIES (SAWMILLS & LUMBERYARDS) Version 2 January 2012 Guyana Forestry Commission Table of Contents FOREWORD ................................................................................................................................................... 7 1.0 INTRODUCTION ...................................................................................................................................... 8 1.1 Wood Processing................................................................................................................................. 8 1.2 Development of the Code ................................................................................................................... 9 1.3 Scope of the Code ............................................................................................................................... 9 1.4 Objectives of the Code ...................................................................................................................... 10 1.5 Implementation of the Code ............................................................................................................. 10 2.0 PRE-SAWMILLING RECOMMENDATIONS. ............................................................................................. 11 2.1 Market Requirements ....................................................................................................................... 11 2.1.1 General .......................................................................................................................................... -
Sustainability Report for Georgia's Forests
Executive Summary Georgia’s forests are being sustainably managed to meet the numerous needs of our state today. To ensure our forests will continue to meet the needs of present generations and the projected demands for future generations, many challenges must be addressed. Forest sustainability is dependent on both environmental and economic sustainability. A challenge to either element is a challenge to both elements. Success will depend on proactive decisions by our state leaders and the entire forestry and conservation communities addressing a myriad of forestry-related issues. Georgia boasts more than 24 million acres of forestland. Georgia’s forest inventory volumes are at an all-time high. We have 49 percent more cubic feet of wood growing in Georgia than we did 40 years ago. However, the state’s population is increasing at a record rate. Urbanization continues to be a threat to forest sustainability. Further, recent increases in population and changing land-use patterns have made ongoing forest management more difficult in some areas of the state. These and other trends threaten forest sustainability and the numerous economic, environmental, and social benefits that our forests provide. This report describes both forestland (all forests including those not available for commercial harvest – 24.6 million acres) and timberland (all forests that are available for commercial harvest – 23.9 million acres). (GFC 2016) Georgia’s forest area has remained stable over the past 50 years at about 24 million acres. Approximately 91 percent of this acreage is privately owned, giving Georgia more privately-owned acres of timberland than any other state in the nation. -
Regulation on Forest Products Processing and Marketing
Forestry Development Authority Regulation No. 112-08 Regulation on the Forest Products Processing and Marketing WHEREAS, the National Forestry Reform Law of 2006 establishes a transparent framework, for the use, management and protection of forest resources that balances the commercial, community, and conservation priorities of the Republic; and WHEREAS, the economic potential of processed wood products has not been appreciated, there has been too much exportation of crude round logs with evidence of low percentage of primary processed wood for both domestic and export market, no value-added wood product, low recovery rate of wood processing industry, problem of waste disposal; and WHEREAS, industrialization of the wood industry in general and the processing of wood into secondary/value-added products in particular are essential elements for the realization of the potential sustainable utilization of Liberia‘s forest resources; and WHEREAS, sustainable utilization of forest resources concept is not only to maintain the value of forest resources, but rather it also has a huge potential for creating employment, income and wealth for the Liberia populations; and WHEREAS, local small-scale wood enterprises are not fully capacitated and unregulated which in essence has resulted into unsustainable use and marketing of wood products, wastage of wood products, constant exposure of wood products to deteriorating agents; and WHEREAS, the lack of standard units of measurement for Liberia domestic wood market and unregulated import of wood products, -
2010 Directory of Maine's Primary Wood Processors
Maine State Library Digital Maine Forest Service Documents Maine Forest Service 9-14-2011 2010 Directory of Maine's Primary Wood Processors Maine Forest Service Forest Policy and Management Division Follow this and additional works at: https://digitalmaine.com/for_docs Recommended Citation Maine Forest Service, "2010 Directory of Maine's Primary Wood Processors" (2011). Forest Service Documents. 253. https://digitalmaine.com/for_docs/253 This Text is brought to you for free and open access by the Maine Forest Service at Digital Maine. It has been accepted for inclusion in Forest Service Documents by an authorized administrator of Digital Maine. For more information, please contact [email protected]. 2010 Directory of Maine’s Primary Wood Processors Robert J. Lilieholm, Peter R. Lammert, Greg R. Lord and Stacy N. Trosper Maine Forest Service Department of Conservation 22 State House Station Augusta, Maine 04333-0022 School of Forest Resources University of Maine Orono, Maine 04469-5755 December 2010 Table of Contents Introduction ......................................................................................................................... 1 Maine's Primary Wood Processors I. Stationary Sawmills ............................................................................................. 4 II. Portable Sawmills ............................................................................................. 67 III. Pulp and Paper Manufacturers ...................................................................... 106 IV. Stand-Alone -
Bibliography of Wood Distillation
Bibliography of WoodDistillation T.CL[). Compiled by Gerald A.Walls Arranged by Morrie Craig BibliographY 5 October 1966 For.stProductsResearch FOREST RESEARCHLABORATORY OREGON STATEUNIVERSITY Corvallis PROGRAM AND PURPOSE The Forest Research Laboratoryof the School of Forestry combines a well-equipped laboratory witha staff of forest and wood scientists in program designed to improve the forestresource and promote full uti- lization of forest products. Theextensive research done by the Labora tory is supported by the forest industryand by state and federal funds. The current report results fromstudies in forest products, where wood scientists and technologists,chemists, and engineers are con- cerned with properties, processing,utilization, and marketing of wood and of timber by-products. The PROGRAM of research includes identifying and developing chemicals fromwood, improving pulping of wood and woodresidues, investigating and improving manufacturingtechniques, extending life of wood by treating, developing better methods ofseasoning wood for higher quality and reduced costs, cooperating with forest scientists to determineeffects of growing conditionson wood properties, and evaluating engineering properties ofwood and wood- based materials and structures. The PURPOSE of researchon forest products is to expand markets, create new jobs, and bringmore dollar returns, thus advancing the interests of forestry and forestindustries, by > developing products from residuesand timber now wasted, and > improving treatment and designof present wood products. Table of Contents INTRODUCTION 3 BOOKS 4 ARTICLES AND BULLETINS 5 PATENTS 46 Australia 46 Austria 46 Be1giun 46 Canada 47 Czechoslovakia 47 Denmark 47 France 47 Germany 51 Great Britain 52 India 55 Italy 55 Japan 55 Netherlands 56 Norway 56 Poland 56 Russia 56 Spain 57 Sweden 57 Switzerland 58 United States 59 Bibliography of Wood Distillation INTRODUCTION This bibliography is a revision and extension to1964 of Bibli- ography of Wood Distillation, 1907-1953published in 1955. -
Energy Evaluation of Biochar Obtained from the Pyrolysis of Pine Pellets
J Therm Anal Calorim (2016) 126:1879–1887 DOI 10.1007/s10973-016-5683-4 Energy evaluation of biochar obtained from the pyrolysis of pine pellets 1 2 3 3 Lidya B. Santos • Maria V. Striebeck • Marisa S. Crespi • Jorge M. V. Capela • 3 1 Clovis A. Ribeiro • Marcelo De Julio Received: 1 June 2015 / Accepted: 3 July 2016 / Published online: 22 July 2016 Ó Akade´miai Kiado´, Budapest, Hungary 2016 Abstract The wood pellets are mainly used in heating compared to pellets in nature, showing a greater amount of environments, commercial and residential, as well as fuel energy per unit, high stability, reduced moisture content for production of thermal and electric energy in industrial and reduced ash content. The kinetic of combustion to plants. Furthermore, the heterogeneity and variable mois- biochar in oxygen-rich atmosphere showed the dependence ture content, combined with the high cost of transport, are between the activation energy and conversion degree, with limiting challenges that must be overcome with new a continuous decrease in the activation energy, character- technologies and new products. In this context, torrefaction istic of complex processes comprised by initial reversible and pyrolysis are attractive alternatives for increasing reaction followed by an irreversible one. energy density and decreasing the moisture content of the samples, based on thermochemical conversion in a non- Keywords Energetic characterization Á Torrefaction Á oxidizing atmosphere. Samples were produced to perform Pyrolysis Á Pine pellets Á Biochar Á Non-isothermal kinetic the energetic characterization of biochar from pine pellet using different heating rates 5–30 °C min-1, different residence temperatures 200, 280 and 570 °C and different Introduction residence time (1 and 0.5 h).