Ontogeny of Nestmate Recognition Cues in the Red Carpenter Ant (Camponotus Floridanus) Behavioral and Chemical Evidence for the Role of Age and Social Experience

Total Page:16

File Type:pdf, Size:1020Kb

Ontogeny of Nestmate Recognition Cues in the Red Carpenter Ant (Camponotus Floridanus) Behavioral and Chemical Evidence for the Role of Age and Social Experience Behavioral Ecology Behav Ecol Sociobiol (1988) 22:175-183 and Sociobiology Spfinger-Verlag 1988 Ontogeny of nestmate recognition cues in the red carpenter ant (Camponotus floridanus) Behavioral and chemical evidence for the role of age and social experience Laurence Morel 1,, Robert K. Vander Meer 2, and Barry K. Lavine 3 1 CNRS, Equipe Ethologie, Marseille, France 2 USDA-ARS, Insects Affecting Man and Animals Laboratory, Gainesville, Florida, USA a Department of Chemistry, Clarkson University, Postdam, New York, USA Received May 16, 1987 / Accepted September 25, 1987 Summary. A combination of behavioral and chem- quently the recognition response displayed to their ical analyses was used to investigate the nature bearer, change with age. 3) Social experience is of nestmate recognition cues and the effects of necessary to develop or acquire a colony-specific worker age and social experience on these cues in label. The role of age and social experience on nest- the ant Camponotus floridanus. Five categories of mate recognition in social Hymenoptera is dis- workers were tested: foragers, 5-day old and 0-day cussed. old callows, 5-day old and 0-day old naive callows. Bioassays consisted of introductions of dead workers from these categories into their own colo- nies or into an alien colony after the following Introduction treatments: 1) killed by freezing, 2) solvent- An increasing number of papers have been pub- washed, 3) solvent-washed and coated with a nest- lished in the past few years about kin and nestmate mate soak, 4) solvent-washed and coated with a recognition in social Hymenoptera (see review in non-nestmate soak. Soaks were obtained from in- Breed and Bennett 1988). In the special situation dividual ants immersed in hexane and were applied where a haplodiploid species is monogynous and individually to washed workers from the same cat- monoandrous, the relatedness between workers egory. Soaks were analyzed by gas chromatogra- within a colony is predicted to be 0.75. In this phy (GC) and compared by multivariate analyses. case nestmate and kin recognition are indistin- Freeze-killed workers from each category elicited guishable. In situations of polygyny and/or po- more aggressive behavior in the alien colony than lyandry, kin and nestmate recognition can be dis- in its own. By comparing GC profiles, a worker tinguished, since kin recognition would occur with- from any category can be assigned to its colony in the colony between matrilines and/or patrilines, of origin. Thus all studied worker categories are and nestmate recognition would occur between colony-specific. Solvent-washed ants did not in- colonies. If the intra-colonial relatedness between duce more aggressive behaviors in the alien colony workers is not known, as in Camponotusfloridanus, than in their own, but they induced significantly and if discrimination is measured between colo- less aggressivity in an alien colony than non- nies, then the term nestmate recognition must be treated dead ants from the same category. Washed used and no extrapolation to kin recognition is ants induced more aggressive behaviors when possible. coated with a soak from a different colony as op- The recognition mechanism is composed of two posed to a soak from the colony in which they distinct components (Beecher 1982): 1) the cues were introduced. The combination of behavioral provided by a donor animal to be recognized, re- and chemical results lead to the following conclu- ferred to as "labels" and 2) the process of the sions: 1) Information contained in soak derived recipient animal decoding these cues to recognize, from workers was sufficient to allow nestmate rec- often referred as "using a template". The onto- ognition. 2) Nestmate recognition cues, and conse- geny of nestmate recognition, with special atten- * Present address: USDA-Agricultural Research Service, P.O. tion to the template component, has been studied Box 14565, Gainesville, FL 32604, USA in several social wasp species (see review in Gam- 176 boa et al. 1986b). In ants the ontogenetical studies played by workers toward conspecific alien in- have not distinguished between the two recognition truders. The role of chemicals was tested using sol- components. In Camponotus vagus (Morel 1983) vent-washed ant dummies coated with soaks from and C.floridanus (Morel 1988), interactions with either nestmates or non-nestmates. The role of age older nestmates during the first hours of adult life was investigated by comparing the chemistry and are necessary to be completely recognized as a nest- aggressive responses displayed to three age groups: mate and to have the ability to recognize nest- newborn, 5-day old callow workers, and foragers. mates. In Camponotus again, Carlin and H611- Naive callow workers were compared to normal dobler (1986) showed that colony-specific recogni- ones of the same age to investigate the role of social tion labels are learned by workers after their eclo- experience. sion. As is known in many ant species, callow workers of C. floridanus can be successfully cross- fostered between colonies. The resulting young Methods workers are recognized as nestmates by the sisters of their foster nurses. This suggests that colony- Study animals specific recognition cues were transmitted from the Colonies of Camponotusfloridanuswere collected in the Appa- nurses to the adopted callows (Morel and Blum lachicola National Forest and in Gainesville, Florida. In the 1988). laboratory, ants were housed in Petri dish cells (135 mm diame- ter) that had a layer of moistened dental plaster (Castone| Chemical signals are the only nestmate (or kin) For each colony or group of workers, the cells were contained recognition cues known in ants and bees (H611- in a plastic arena (55 x40 x 18 cm), the sides of which were dobler and Michener 1980) and certainly play a coated with Fluon| to prevent escapes. Ants were fed regularly major role in social wasp recognition (Oamboa with honey and immature insects. Water was supplied in test et al. 1986b). These chemical signals are present tubes closed with cotton wool. The following worker categories were tested: on the insect's cUticle as the result of genetically 1) Foraging workers (F) collected at the honey source in controlled production (e.g. in the ant Pseudomyr- the foraging area. mex ferruginea, Mintzer 1982) and/or adsorption 2) Normal callow workers less than 12-h old (referred to from the environment (e.g. in the ant Solenopsis as 0-day old, CO). They were defined by their pigmentation, mobility, and presence of some pupal skin, and were taken invicta, Obin 1986). In small colonies of Campono- directly from the source colony cells. tus, queen derived labels are dominant, but worker 3) Normal 5 day-old callow workers (C5) were initially col- derived labels are clearly noticeable when the lected as described for CO then maintained separately in Petri queen is removed or has a reduced fertility (Carlin dish cells (50 mm diameter) with other C5 callows and always with an equal number of nurses (1 : 1). and H611dobler 1986, 1987a, b). Both environmen- 4) Naive callow workers were artificially removed from tally derived and individually produced (by queens their cocoon with fine forceps and tested between 3 and 12 h and/or workers) chemical cues may be exchanged old (NO). among other colony members through social inter- 5) Naive callow workers artificially emerged from their co- actions. Chemical analyses of artificial groups of coon were maintained separately with other naive eallows of the same age, without nurses, in small Petri dish cells. They Manica rubida and Formica selysi (Errard and Jal- were tested at 5-days old (N5). lon 1987) or of several North American Campono- tus species (Vander Meer and Carlin unpublished) indicated that members of these groups had mixed Behavioral assays chemical profiles characteristic of the species pres- Dead workers from each of these five categories were tested ent. Therefore chemicals are shared and acquired after one of the following treatments: anaong the members of these artificial groups. A 1) Freeze-killed ants: workers were frozen until dead (ca. 3 tl) then warmed to room temperature. study of the integration mechanism of a myrmeco- 2) Washed ants: Each live individual was soaked in 150 gl philous beetle into fire ant (Solenopsis spp.) colo- of hexane for 3 h then rinsed with additional hexane and al- nies also demonstrated a transfer of cuticular com- lowed to air dry for 15 min. The ants were dead after this ponents from host to myrmecophile. This transfer procedure. The soak was transferred to a clean vial, concen- was correlated with the beetle's acceptance into trated under nitrogen to about 20 Id, and used in the two fol- lowing treatments. the ant colony (Vander Meer and Wojcik 1982). 3) Washed ants coated with a nestanate soak: A total nest- We report the results of a behavioral and chem- mate soak was applied with a capillary pipet in three equal ical analysis of the ontogeny of nestmate recogni- aliquots to the head, thorax and abdomen of a washed worker tion cues in the ant Camponotus floridanus. Such of the same category. Treated ants were allowed to air dry for 15 lrfin before testing. a combined ontogenetical study has not been re- 4) Washed ants coated with an alien soak: The above proce- ported in social insects. The criterion used for nest- dure was used to apply a soak from a non-nestmate to a washed mate recognition was the aggressive behavior dis- worker. 177 9 Two queenless groups of ca. 600 workers, each coming from 5 a different colony, were tested between the second and fourth week after they were collected from the field. Just after treat- ment (one of the four described above), individual ants were introduced into the foraging area of their own colony or into the foraging area of the alien colony.
Recommended publications
  • Larvae of the Green Lacewing Mallada Desjardinsi (Neuroptera: Chrysopidae) Protect Themselves Against Aphid-Tending Ants by Carrying Dead Aphids on Their Backs
    Appl Entomol Zool (2011) 46:407–413 DOI 10.1007/s13355-011-0053-y ORIGINAL RESEARCH PAPER Larvae of the green lacewing Mallada desjardinsi (Neuroptera: Chrysopidae) protect themselves against aphid-tending ants by carrying dead aphids on their backs Masayuki Hayashi • Masashi Nomura Received: 6 March 2011 / Accepted: 11 May 2011 / Published online: 28 May 2011 Ó The Japanese Society of Applied Entomology and Zoology 2011 Abstract Larvae of the green lacewing Mallada desj- Introduction ardinsi Navas are known to place dead aphids on their backs. To clarify the protective role of the carried dead Many ants tend myrmecophilous homopterans such as aphids against ants and the advantages of carrying them for aphids and scale insects, and utilize the secreted honeydew lacewing larvae on ant-tended aphid colonies, we carried as a sugar resource; in return, the homopterans receive out some laboratory experiments. In experiments that beneficial services from the tending ants (Way 1963; Breton exposed lacewing larvae to ants, approximately 40% of the and Addicott 1992; Nielsen et al. 2010). These mutualistic larvae without dead aphids were killed by ants, whereas no interactions between ants and homopterans reduce the larvae carrying dead aphids were killed. The presence of survival and abundance of other arthropods, including the dead aphids did not affect the attack frequency of the non-honeydew-producing herbivores and other predators ants. When we introduced the lacewing larvae onto plants (Bristow 1984; Buckley 1987; Suzuki et al. 2004; Kaplan colonized by ant-tended aphids, larvae with dead aphids and Eubanks 2005), because the tending ants become more stayed for longer on the plants and preyed on more aphids aggressive and attack arthropods that they encounter on than larvae without dead aphids.
    [Show full text]
  • Nest Site Selection During Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera Villosa (Hymenoptera: Formicidae)
    insects Article Nest Site Selection during Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera villosa (Hymenoptera: Formicidae) Franklin H. Rocha 1, Jean-Paul Lachaud 1,2, Yann Hénaut 1, Carmen Pozo 1 and Gabriela Pérez-Lachaud 1,* 1 El Colegio de la Frontera Sur, Conservación de la Biodiversidad, Avenida Centenario km 5.5, Chetumal 77014, Quintana Roo, Mexico; [email protected] (F.H.R.); [email protected] (J.-P.L.); [email protected] (Y.H.); [email protected] (C.P.) 2 Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 31062 Toulouse, France * Correspondence: [email protected]; Tel.: +52-98-3835-0440 Received: 15 January 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: In the Yucatan Peninsula, the ponerine ant Neoponera villosa nests almost exclusively in tank bromeliads, Aechmea bracteata. In this study, we aimed to determine the factors influencing nest site selection during nest relocation which is regularly promoted by hurricanes in this area. Using ants with and without previous experience of Ae. bracteata, we tested their preference for refuges consisting of Ae. bracteata leaves over two other bromeliads, Ae. bromeliifolia and Ananas comosus. We further evaluated bromeliad-associated traits that could influence nest site selection (form and size). Workers with and without previous contact with Ae. bracteata significantly preferred this species over others, suggesting the existence of an innate attraction to this bromeliad. However, preference was not influenced by previous contact with Ae. bracteata. Workers easily discriminated between shelters of Ae. bracteata and A.
    [Show full text]
  • Bee Viruses: Routes of Infection in Hymenoptera
    fmicb-11-00943 May 27, 2020 Time: 14:39 # 1 REVIEW published: 28 May 2020 doi: 10.3389/fmicb.2020.00943 Bee Viruses: Routes of Infection in Hymenoptera Orlando Yañez1,2*, Niels Piot3, Anne Dalmon4, Joachim R. de Miranda5, Panuwan Chantawannakul6,7, Delphine Panziera8,9, Esmaeil Amiri10,11, Guy Smagghe3, Declan Schroeder12,13 and Nor Chejanovsky14* 1 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Agroscope, Swiss Bee Research Centre, Bern, Switzerland, 3 Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 4 INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France, 5 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 6 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 7 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 8 General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany, 9 Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany, 10 Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States, 11 Department Edited by: of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States, 12 Department of Veterinary Akio Adachi, Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States,
    [Show full text]
  • Studying Animal Languages Without Translation: an Insight from Ants Studying Animal Languages Without Translation: an Insight from Ants Zhanna Reznikova
    Zhanna Reznikova Studying Animal Languages Without Translation: An Insight from Ants Studying Animal Languages Without Translation: An Insight from Ants Zhanna Reznikova Studying Animal Languages Without Translation: An Insight from Ants Zhanna Reznikova Institute of Systematics and Ecology of Animals of SB RAS Novosibirsk State University Novosibirsk Russia ISBN 978-3-319-44916-6 ISBN 978-3-319-44918-0 (eBook) DOI 10.1007/978-3-319-44918-0 Library of Congress Control Number: 2016959596 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect
    [Show full text]
  • Nestmate Recognition in Ants Is Possible Without Tactile Interaction
    Nestmate recognition in ants is possible without tactile interaction Andreas Simon Brandstaetter & Annett Endler & Christoph Johannes Kleineidam Abstract Ants of the genus Camponotus are able to dis- Keywords Communication . Social insects . criminate recognition cues of colony members (nestmates) Cuticular hydrocarbons . Close range detection . from recognition cues of workers of a different colony Camponotus floridanus . Ants (non-nestmates) from a distance of 1 cm. Free moving, individual Camponotus floridanus workers encountered differently treated dummies on a T-bar and their behavior Introduction was recorded. Aggressive behavior was scored as mandibu- lar threat towards dummies. Dummies were treated with Ants recognize colony members (nestmates) or members of hexane extracts of postpharyngeal glands (PPGs) from other colonies (non-nestmates) by means of chemical cues nestmates or non-nestmates which contain long-chain (Hölldobler and Wilson 1990). Nestmate recognition is hydrocarbons in ratios comparable to what is found on the important for colony fitness, since it allows workers to cuticle. The cuticular hydrocarbon profile bears cues which restrict altruistic behavior to nestmates and to avoid or are essential for nestmate recognition. Although workers attack rivals. The major nestmate recognition cues in ants, were prevented from antennating the dummies, they showed honeybees, and wasps have been found in lipids of the significantly less aggressive behavior towards dummies insect cuticle (Howard and Blomquist 2005). These lipids treated with nestmate PPG extracts than towards dummies originally served as protection against desiccation (Lockey treated with non-nestmate PPG extracts. In an additional 1988; Buckner 1993). In ants, the lipids essential for experiment, we show that cis-9-tricosene, an alkene natu- nestmate recognition are long-chain hydrocarbons (Singer rally not found in C.
    [Show full text]
  • Genus Camponotus Mayr, 1861 (Hymenoptera: Formicidae) in Romania: Distribution and Identification Key to the Worker Caste
    Entomologica romanica 14: 29-41, 2009 ISSN 1224-2594 Genus Camponotus MAYR, 1861 (Hymenoptera: Formicidae) in Romania: distribution and identification key to the worker caste Bálint MARKÓ*, Armin IONESCU-HIRSCH*, Annamária SZÁSZ-LEN Summary: The genus Camponotus is one of the largest ant genera in Romania, with 11 species distributed across the entire country. In the framework of this study we present the distribution data of eleven Camponotus species in Romania: C. herculeanus, C. ligni- perda, C. vagus, C. truncatus, C. atricolor, C. dalmaticus, C. fallax, C. lateralis, C. piceus, C. tergestinus, C. aethiops. The occur- rence of C. sylvaticus in Romania is questionable, since the only published data are from the 19th century and the species could easily have been misidentified due to the lack of appropriate keys at that time. In addition to these data a key is provided to the worker caste of these species, including species with likely occurrence in Romania. Rezumat: Genul Camponotus este unul dintre cele mai mari genuri de furnici din România conţinând 11 specii distribuite pe tot cu- prinsul ţării. În cadrul acestui studiu prezentăm datele de distribuţie a celor 11 specii de Camponotus: C. herculeanus, C. ligniperda, C. vagus, C. truncatus, C. atricolor, C. dalmaticus, C. fallax, C. lateralis, C. piceus, C. tergestinus, C. aethiops. Prezenţa speciei C. sylvaticus în România este nesigură, deoarece singurele date despre această specie au fost publicate în secolul al XIX-lea, iar la acea vreme datorită lipsei cheilor moderne de determinare specia respectivă putea fi confundată cu uşurinţă cu alte specii din acelaşi gen. Pe lângă datele şi hărţile de distribuţie articolul oferă şi o cheie de determinare pentru lucrătoarele acestui gen incluzând şi specii cu posibilă prezenţă pe teritoriul ţării.
    [Show full text]
  • Mary and Ryan Whisenant Family
    Laurence Morel Laurence Morel, Ph.D. Female US citizen Current Position: Mary and Ryan Whisenant Family Professor of Pathology, Department of Pathology, Immunology, and Laboratory Medicine University of Florida Director of the Division of Experimental Pathology, Department of Pathology, Immunology, and Laboratory Medicine University of Florida Business Address: Department of Pathology, Immunology, and Laboratory Medicine University of Florida 1600 Archer Rd Gainesville, Fl, 32610-0275 Tel: (352) 372-3790 Mobile: (352) 213-3752 Fax: (352) 372-3053 e-mail: [email protected] EDUCATION: Universite Aix-Marseille II: DEUG in Biology, 1978 Universite Aix-Marseille I: Master degree in Animal Biology, 1980 Universite Aix-Marseille II: PhD in Neuroscience/ Behavioral Sciences, 1983 APPOINTMENTS: Foreign Research Visitor, Department of Entomology, University of Georgia, 1985-1986. Post-doctoral Assistant, Department of Pathology and Laboratory Medicine, College of Medicine, University of Florida, 1991-1992. Visiting Assistant IN, The postdoctoral program of the Department of Pathology and Laboratory Medicine, College of Medicine, University of Florida, 1993-1996. Assistant Scientist, Department of Pathology and Laboratory Medicine, College of Medicine, University of Florida, 1996-1998. Member of the Center for Mammalian Genetics, 1996-2005. Assistant Professor, Departments of Medicine, and Pathology, Immunology, and Laboratory Medicine University of Florida, January 1999-2004. Graduate Faculty member, Inter Disciplinary Graduate Program, College of Medicine, University of Florida, June 1999-date. Member of the Genetics Institute, 2000-date. Co-Director of the Immunology and Microbiology Inter Disciplinary Program Advanced Concentration, 2002-2009. Associate Professor, Department of Pathology, Immunology, and Laboratory Medicine University of Florida, January 2004-2007. Associate Director of the Division of Experimental Pathology, Department of Pathology, Immunology, and Laboratory Medicine, 2005-2007.
    [Show full text]
  • 57 Small-Scale Foraging by Camponotus Vagus and Formica
    Entomologica romanica 16, 2011 ISSN 1224-2594 Abstract* Small-scale foraging by Camponotus vagus and Formica fusca (preliminary results) Orsolya KANIZSAI1, Balázs KAHOLEK2 & László GALLÉ3 The role of competition in structuring ant assemblages has been extensively studied (e.g. SAVOLAINEN and VEPSÄILÄINEN 1988, SANDERS and GORDON 2003, CZECHOWSKI and MARKÓ 2005, ANDERSEN 2008, LESSARD et al. 2009). The main assembly rules are due to competition in ant communities. In spite of this, there are many examples that several ant species of similar requirements are able to coexist in the same habitat. The main question is that, which factors make possible the coexistence of similar species within local communities (ANDERSEN 2008). Colonies of Camponotus vagus (SCOPOLI, 1763) and Formica fusca (LINNAEUS, 1758) co-occur in the same forest habitats, occupying similar nesting sites and utilizing similar food sources in the forest-step regions of Hungary. In some cases, the two species’ nests are situated close to each other, the smallest measured distance is shorter than 1 m, or in some cases we found F. fusca nest under the same trunk ruled by C. vagus. The main addressed question of this study was, whether the two species have different strategies in space utilization which makes possible the submissive Formica fusca to coexist with the more aggressive and larger Camponotus vagus. We studied the colonies of the two species both in laboratory and in natural conditions. We performed laboratory experiments about food type dependency, small-scale distance dependency and we tested the competition between the two species’ colonies. We reared the experimental colonies in plastic nest boxes (38 litre) at a temperature of 22 ± 3 ºC with 12/12 photoperiod.
    [Show full text]
  • Quantifying Aggression Elicited by Chemical Cues in Ants
    1109 The Journal of Experimental Biology 211, 1109-1113 Published by The Company of Biologists 2008 doi:10.1242/jeb.008508 The mandible opening response: quantifying aggression elicited by chemical cues in ants Fernando J. Guerrieri* and Patrizia dʼEttorre Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark *Author for correspondence (e-mail: [email protected]) Accepted 31 December 2007 SUMMARY Social insects have evolved efficient recognition systems guaranteeing social cohesion and protection from enemies. To defend their territories and threaten non-nestmate intruders, ants open their mandibles as a first aggressive display. Albeit chemical cues play a major role in discrimination between nestmates and non-nestmates, classical bioassays based on aggressive behaviour were not particularly effective in disentangling chemical perception and behavioural components of nestmate recognition by means of categorical variables. We therefore developed a novel bioassay that accurately isolates chemical perception from other cues. We studied four ant species: Camponotus herculeanus, C. vagus, Formica rufibarbis and F. cunicularia. Chemical analyses of cuticular extracts of workers of these four species showed that they varied in the number and identity of compounds and that species of the same genus have more similar profiles. The antennae of harnessed ants were touched with a glass rod coated with the cuticular extract of (a) nestmates, (b) non-nestmates of the same species, (c) another species of the same genus and (d) a species of a different genus. The mandible opening response (MOR) was recorded as the aggressive response. In all assayed species, MOR significantly differed among stimuli, being weakest towards nestmate odour and strongest towards odours originating from ants of a different genus.
    [Show full text]
  • Appendix A. List of Ant Records from Caves, Record Source, and Record Author-Assigned Ecological Group
    Appendix A. List of ant records from caves, record source, and record author-assigned ecological group. AUTHOR- ASSIGNED SPECIES CAVE LOCATION COUNTRY RECORD SOURCE ECOLOGICAL GROUP AMBLYOPONINAE Amblyopone australis (Erichson, 1842) Jenolan Caves New South Wales Australia Wheeler 1927 None Amblyopone sp. Bayliss Cave Queensland Australia Clarke 2010 None PONERINAE Anochetus mayri (Emery, 1884) Cueva Tuna Cabo Rojo Puerto Rico Peck 1981b Troglophile Reddell & Cokendolpher Anochetus sp. Actun Xpukil Yucatan Mexico Accidental 2001 Brachyponera (Pachycondyla) christmasi Caves Christmas Island Australia Framenau & Thomas 2008 None (Donisthorpe, 1935) Brachyponera (Pachycondyla) obscurans (Walker, 1859) Davao Cave 1 & 2 Mindanao Philippines Figueras & Nuneza 2013 None Mawlamyine (Moulmein, Hypoponera confinis (Roger, 1860) Farm Caves Myanmar Annandale et al., 1913 None Burma) Tanzania and Alluaud & Jeannel 1914 (in Hypoponera (Ponera) dulcis (Forel, 1907) Caves Tanga and Shimoni None Kenya Wilson 1962) Hypoponera eduardi (Forel, 1894) Caves Iberian Peninsula Europe Espadaler 1983 Accidental Hypoponera (Ponera) ergatandria (Forel, 1893) San Bulha Cenote Motul, Yucatan Mexico Wheeler 1938 None Hypoponera inexorata (Wheeler, 1903) Hold Me Back Cave Bexar Co., Texas USA Cokendolpher et al., 2009 Accidental Hypoponera opaciceps (Mayr, 1887) Oxford Cave Manchester Jamaica Peck 1992 Troglophile Reddell & Cokendolpher Hypoponera opaciceps (Mayr, 1887) Stealth Cave Bexar Co., Texas USA Accidental 2001 Reddell & Cokendolpher Hypoponera opaciceps (Mayr,
    [Show full text]
  • The Possible Role of the Different Foraging Behaviour of Formica Fusca and Camponotus Vagus (Hymenoptera: Formicidae) in Promoting Their Plesiobiotic Associations
    Kanizsai, O. The possible role of the different foraging behaviour of Formica fusca and Camponotus vagus (Hymenoptera: Formicidae) in promoting their plesiobiotic associations Orsolya Kanizsai Department of Ecology, University of Szeged 6726 Szeged, 52 Közép fasor, Hungary. [email protected] Abstract A plesiobiotic relationship was revealed in recent studies between Formica fusca and Camponotus vagus on the basis of their regular neighbouring nesting and the biological (especially in morphology and in behaviour) dis- similarities between them. Owing to the nesting in close proximity of each other, the plesiobiotically associated colonies share not only the same mi- crohabitat, but also the foraging area. Thereby, the main addressed ques- tion of this study was, which features of foraging strategies of the studied species contribute to their plesiobiotic associations. I was interested in if they have different space utilization, which may promote the optimal shar- ing of foraging area between the associated colonies. Laboratory experiments were performed to test the foraging range in small scale (0-1.8 m). Differences were revealed between the studied spe- cies both in their foraging behaviour and in their space utilization. Foraging of F. fusca was influenced by the distance of baits even in the tested small- scale, while the distance had no impact on the foraging of C. vagus, neither in starved nor in fed condition. These differences between F. fusca and C. vagus may be due to the different level of cooperation and communication among the foragers of both species’ colonies, which can result in a different distance dependency. Thus, a different space utilisation in small-scale can contribute to the maintenance of plesiobiotic associations, due to the op- timal sharing of foraging area between plesiobiotically associated colonies.
    [Show full text]
  • Behaviours Indicating Cannibalistic Necrophagy in Ants Are Modulated
    www.nature.com/scientificreports OPEN Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level István Maák1,6*, Eszter Tóth2,3, Magdalena Lenda4,5, Gábor Lőrinczi6, Anett Kiss6, Orsolya Juhász6,7, Wojciech Czechowski1 & Attila Torma6,8 Cannibalistic necrophagy is rarely observed in social hymenopterans, although a lack of food could easily favour such behaviour. One of the main supposed reasons for the rarity of necrophagy is that eating of nestmate corpses carries the risk of rapid spread of pathogens or parasites. Here we present an experimental laboratory study on behaviour indicating consumption of nestmate corpses in the ant Formica polyctena. We examined whether starvation and the fungal infection level of the corpses afects the occurrence of cannibalistic necrophagy. Our results showed that the ants distinguished between corpses of diferent types and with diferent levels of infection risk, adjusting their behaviour accordingly. The frequency of behaviours indicating cannibalistic necrophagy increased during starvation, although these behaviours seem to be fairly common in F. polyctena even in the presence of other food sources. The occurrence and signifcance of cannibalistic necrophagy deserve further research because, in addition to providing additional food, it may be part of the hygienic behaviour repertoire. The ability to detect infections and handle pathogens are important behavioural adaptations for social insects, crucial for the ftness of both individual workers and the entire colony. Cannibalism is a taxonomically widespread phenomenon in the animal kingdom but is uncommon in most species1–4. It can be divided into two distinct behaviours: killing and eating individuals of the same species or genera (cannibalistic predation), and eating already-dead taxonomically (and even genetically) related individu- als (cannibalistic necrophagy); both behaviours have been described in humans 5.
    [Show full text]