Arcticnet Annual Scientific Meeting 2012

Total Page:16

File Type:pdf, Size:1020Kb

Arcticnet Annual Scientific Meeting 2012 ARCTICNET ANNUAL SCIENTIFIC MEETING 2012 TOPICAL SESSIONS AT A GLANCE WEDNESDAY, 12 DECEMBER Arctic Security - A Changing Geostrategic Reality Arctic Lakes, Rivers and Estuaries (Part I) Arctic Marine Ecosystems (Part I) Arctic Contaminants Arctic Marine Mammals (Part I) Room: Grand Ballroom ABC Room: Grand Ballroom D Room: Mackenzie Room: Seymour Room: Marine Chair: Rob Huebert Chair: Milla Rautio Chair: Alexandre Forest Chair: Feiyue Wang Chair: Yvan Simard Tracing the terrigenous sources of POC and DOC Integrating marine ecological processes of the The offshore diet of the Eastern Beaufort sea beluga The Harper government and its plans for Arctic Role of multiyear sea ice in the biogeochemical cycling 10:30 Lackenbauer Godin in the Arctic rivers of the Hudson Bay using lignin Forest Canadian Arctic environment within a community-based Beattie Choy population and the energetic effects of climate security of mercury in the Arctic Ocean biomarkers, δ13C and Δ14C modeling framework change Avian-driven alterations in seasonal carbon Validation of adipose lipid content as a body Protecting canadian sovereignty in the Heat loss from the Atlantic water layer in the St. Anna Mercury biomagnification in marine zooplankton food 10:45 Lalonde MacDonald cycling of an arctic tundra pond in Wapusk Dmitrenko Foster McKinney condition metric in southern Beaufort Sea polar Northwest Passage Trough (northern Kara Seas): Causes and consequences webs in Hudson Bay National Park (Manitoba, Canada) bears Quantifying contaminant loadings, water quality and An assessment of killer whale Orcinus orca rake mark Canada and the Arctic Council: Entering the Carbon pools and transformations in subarctic Sensitivity study of ocean mixing under sea ice using multi- climate change impacts in the world's largest lake 11:00 Funston Rautio Jin St.Louis Reinhart occurrence in the Eastern Canada-West Greenland chairmanship thaw ponds between summer and winter column ocean grid in climate model north of 74°N latitude (Lake Hazen, Quttinirpaaq bowhead whale Balaena mysticetus population National Park, Northern Ellesmere Island, Nunavut) Spatial and temporal patterns of net ecosystem Global warming effects on Arctic and subarctic The arrival of the asian tigers into the Arctic: exchange of carbon dioxide and ecosystem The Oceanographic dynamics of a subarctic Fjord - Lake Total and methylated mercury in the Beaufort Sea: The 11:15 Manicom Scott deYoung Wang Simard underwater soundscapes and marine mammal New challenges respiration at the Cape Bounty Arctic Watershed Melville: Avativut, Kanuittailinnivut role of local and recent organic remineralization frequentation from an acoustic observatory Observatory, Melville Island, Nunavut Seasonal changes of chromophoric dissolved Low visibility event climatology and synoptic drivers, Food insecurity is compounded by increased mercury 11:30 Huebert Arctic security - A changing geostrategic reality Walker organic matter (cdom) quality: A comparison of Atkinson Fillion Bering Strait region and lead exposure among Inuit in the Canadian Arctic large arctic rivers The estuarine mixing behaviour of terrestrially derived dissolved organic carbon and its 11:45 Panel session discussions Gueguen relationship to colored dissolved organic matter in two Hudson Bay estuaries Arctic tundra and vegetation (Part I) Arctic Lakes, Rivers and Estuaries (Part II) Ocean mapping, Coastal & Shelf Processes Arctic Remote Sensing Arctic Monitoring, Modeling and Data Management Education and Outreach Room: Grand Ballroom ABC Room: Grand Ballroom D Room: Mackenzie Room: Seymour Room: Marine Room: Stanley Park Ballroom Chair: Greg Henry Chair: Fred Wrona Chair: Steve Blasco Chair: Monique Bernier Chair: Jill Watkins Chair: Thierry Rodon Migration potential of tundra plant species in a Temporal variations in the structure of the subarctic warming Arctic: Responses of southern Hydro-ecological responses of Arctic upland Distribution of seabed ice scour caused by grounded Identifying indicators for monitoring Arctic marine Local people’s accounts of climate change: To 15:30 Bjorkman Wrona Bennett Bernier snowpack and its effects on SAR satellite imagery at X- Watkins Berkes ecotypes of three species to experimental lakes to a changing cryosphere icebergs on the Canadian Baffin shelf biodiversity in Canada what extent are they influenced by the media? and C-band warming in the High Arctic Populations’ dynamic and growth pattern of Complex thermal storage and mixing of High The overlooked importance of communication Boulanger- Outer shelf and upper slope seabed dynamics, Biophysical modeling and monitoring in the Canadian Developing a circumpolar monitoring framework for 15:45 the Arctic willow in High Arctic Canada and Bonnaventure Arctic lakes: Transitioning to seasonal ice cover Blasco Collingwood Culp Reinfort processes in disseminating contaminants research Lapointe Canadian Beaufort Sea based on geological data High Arctic with RADARSAT-2 Arctic freshwater biodiversity Greenland and a longer ice-free period to Inuvialuit Organic matter sources and cycling in soils, Examining the effect of catchment disturbance 21st century methods to derive and deliver coastal High school student-led research examining A potential role for CHARS in Arctic monitoring and 16:00 Carrie sediments, peats and coal: A comparative Medeiros on nutrients and biological communities of Hughes Clarke A new inshore seabed mapping capability in Nunavut Duffe information: Improved emergency preparedness in McLennan Rudin peatland vegetation-permafrost relationships in reporting in Canada review using Rock-Eval analyses Arctic lakes (Seward peninsula, Alaska) Canada’s Arctic the Hudson Bay lowlands, Manitoba, Canada CSI Husky Lakes: Evaluation of hydro-climatic Does enhanced winter snow accumulation Vertical land motion, sea-level fingerprinting, and Processing of high resolution polarimetric sar data to A necessary voice: The importance of engaging drivers of contaminant transfer in aquatic food Preliminary study of NEMO and its use in the Arctic Petrasek 16:15 Christiansen affect tundra carbon and nutrient dynamics Gantner James projections of relative sea-level change in Northern Roth support mapping and monitoring of Arctic Liu and including Inuit youth in Northern research and webs in the Husky Lakes watershed, Northwest IRIS process MacDonald during the growing season? Canada environments policy Territories, Canada Phototrophic and heterotrophic respiration Late glacial and Holocene vegetation and Organic carbon release from coastal erosion on ice-rich Satellite change detection techniques and object- A Transition from CMIP3 to CMIP5 for climate Schools on Board - from ship to shore; authentic associated with cryptoendolithic 16:30 Fritz climate history from easternmost Beringia Omelon Lantuit permafrost coasts: A comparison of the Southern Laptev Rudy based analysis to identify permafrost slope disturbances Markovic information providers: the case of surface Watts and simulated Arctic science research experiences microorganisms, Ellesmere Island, Canadian high (Northern Yukon Territory, Canada) Sea and the Southern Beaufort Sea at Cape Bounty, Melville Island, Nunavut temperature over eastern North America for high school students and teachers Arctic Research in action: Improving access to university A network of millennial tree ring chronologies The effects of warming and nutrient enrichment Glacial isostatic adjustment in Northern Canada: Land cover characterization of Arctic environments by Przytulska- The future of citizen science and social media in polar education in the Canadian Arctic, learning from 16:45 Gennaretti for climate reconstructions from the margin of on bloom-forming cyanobacteria in subarctic Simon Improving innuitian and laurentide ice sheet Ullmann means of polarimetric synthetic aperture radar (SAR) LeDrew Rodon Bartosiewicz data management past experiences, listening to the Inuit students the Eastern Canadian Arctic lakes reconstructions using relative sea-level and GPS data and digital elevation model (DEM) data and developing tools and policies Annual variations in growing season length in a Lake Melville: Avativut, Kanuittailinnivut (our High spatial resolution remote sensing models for 17:00 Henry warming Arctic: Changes at Alexandra Fiord, Bell Atkinson environment, our health) landscape-scale CO exchange Ellesmere Island, Nunavut 2 TOPICAL SESSIONS AT A GLANCE THURSDAY, 13 DECEMBER Future Directions in Inuit Education Research: Arctic Marine Mammals (Part II) Arctic Marine Ecosystems (Part II) Arctic Glaciers. Ice Shelves and Ice Islands Indigenous Knowlege & Community Adaptation A Roundtable Discussion Room: Grand Ballroom ABC Room: Grand Ballroom D Room: Mackenzie Room: Seymour Room: Marine Chair: Mike Hammill Chair: Scot Nickels Chair: C.J. Mundy Chair: Christian Haas Chair: Jennie Knopp Graphical models of co-management Particulate absorption in the bottom layer of first-year Doniol- frameworks: Applying a bayesian decision Thickness of sea ice, ice islands, and ice shelves in the The ARCTIConnexion program: Bridging northern 10:30 Mundy sea ice in the Canadian Arctic: Characterization and Haas L'Hérault Valcroze network to the subsistence hunt of Eastern High Canadian Arctic communities and Arctic research seasonal trends Hudson Bay beluga Enhancing understandings in marine mammal Dissolved organic matter input from sea-ice melt Breton- Changes to the Petersen Ice Shelf and epishelf lake, Life on permafrost in Nunavik: Community planning
Recommended publications
  • Beaufort Sea Monitoring Program
    Outer Continental Shelf Environmental Assessment Program Beaufort Sea Monitoring Program: Proceedings of a Workshop and Sampling Design Recommendations Beaufort Sea Monitoring Program: Proceedings of a Workshop (September 1983) and Sampling Design Recommendations ; Prepared for the Outer Continental Shelf Environmental Assessment Program Juneau, Alaska by J. P. Houghton Dames & Moore 155 N.E. lOOth Street Seattle, WA 98125 with D. A Segar J. E. Zeh SEAM Ocean Inc. Department of Statistics Po. Box 1627 University of Washington Wheaton, MD 20902 Seattle, WA 98195 April 1984 UNITED STATES UNITED STATES DEPARTMENT OF COMMERCE DEPARTMENT OF THE INTERIOR Malcolm Baldridge, Secretary William P Clark, Secretary NATIONAL OCEANIC AND MINERALS MANAGEMENT SERVICE ATMOSPHERIC ADMINISTRATION William D. Bettenberg, Director John V. Byrne, Administrator r. NOTICES i? I This report has been reviewed by the US. Department of Commerce, National Oceanic and Atmospheric Administration's Outer Continental Shelf Environmental Assessment Program office, and approved for publication. The interpretation of data and opinions expressed in this document are those of the authors and workshop participants. Approval does not necessarily signify that the contents reflect the views and policies of the Department of Commerce or those of the Department of the Interior. The National Oceanic and Atmospheric Administration (NOAA) does not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publica­ tion. No reference shall be made to NOAA or to this publication in any advertising or sales promotion which would indicate or imply that NOAA approves, recommends, or endorses any proprietary'product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchas'ed because of this publication.
    [Show full text]
  • Naalakkersuisoq Karl-Kristian Kruses Tale Nordatlantisk
    Naalakkersuisoq Karl-Kristian Kruses tale Nordatlantisk Fiskeriministerkonference i Shediac 29. august 2017 Dear friends and colleagues I would like to thank our hosts for this chance to visit beautiful New Brunswick and appreciate the hospitality we have been greeted with here. For Greenland, Canada is our closest neighbour and especially with Nunavut, we share a strong sense of culture. We experience similar challenges. We have strong partnerships on many issues as we share a like-minded approach to a safe and sustainable Arctic development with respect for local culture and traditional ways of life. Together Greenland and Nunavut communicate the cultural and social values of the indigenous peoples of the Arctic. Through cooperation we are able to promote greater understanding of the issues that are important to the people of the Arctic. Therefore, it is indeed a pleasure for us to meet with our friends and colleagues here in New Brunswick to talk about measures to protect our Arctic and North Atlantic Oceans. Intro The protection of the marine environment in Greenland falls under the remit of different ministries. The Ministry of Nature and Environment is responsible for the international agreements and conventions regarding biodiversity and overall nature conservation in Greenland, including protection of the marine environment. The Ministry of Fisheries and Hunting is responsible for the management of all living resources. It is therefore essential, when we talk about ocean governance, that we have close cooperation across sectors. It is also essential that we work across borders as we share marine ecosystems and resources among us. What we have done to protect the marine environment We have in Greenland almost 5 % marine protected areas according to IUCN standards.
    [Show full text]
  • Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
    Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473.
    [Show full text]
  • Archaeology Resources
    Archaeology Resources Page Intentionally Left Blank Archaeological Resources Background Archaeological Resources are defined as “any prehistoric or historic district, site, building, structure, or object [including shipwrecks]…Such term includes artifacts, records, and remains which are related to such a district, site, building, structure, or object” (National Historic Preservation Act, Sec. 301 (5) as amended, 16 USC 470w(5)). Archaeological resources are either historic or prehistoric and generally include properties that are 50 years old or older and are any of the following: • Associated with events that have made a significant contribution to the broad patterns of our history • Associated with the lives of persons significant in the past • Embody the distinctive characteristics of a type, period, or method of construction • Represent the work of a master • Possess high artistic values • Present a significant and distinguishable entity whose components may lack individual distinction • Have yielded, or may be likely to yield, information important in history These resources represent the material culture of past generations of a region’s prehistoric and historic inhabitants, and are basic to our understanding of the knowledge, beliefs, art, customs, property systems, and other aspects of the nonmaterial culture. Further, they are subject to National Historic Preservation Act (NHPA) review if they are historic properties, meaning those that are on, or eligible for placement on, the National Register of Historic Places (NRHP). These sites are referred to as historic properties. Section 106 requires agencies to make a reasonable and good faith efforts to identify historic properties. Archaeological resources may be found in the Proposed Project Area both offshore and onshore.
    [Show full text]
  • Beaufort Sea
    160°W 159°W 158°W 157°W 156°W 155°W 154°W 153°W 152°W 151°W 150°W 149°W 148°W 147°W 146°W 145°W 144°W 143°W 142°W 141°W 140°W Beaufort Sea !Barrow N ° N 1 ° 14 7 1 7 15 13 12 !Wainwright 16 11 Prudhoe 17 Bay 10 Camden N 9 ° N Bay Kaktovik 0 ° 8 7 !Kaktovik Nuiqsut 7 0 ! 7 6 5 4 3 2 1 N ational P e C troleum Reserv e - Alaska a U n a . S d . a N - ° N - 9 ° A 6 9 s s Y 6 n e d e r l W i l a u s k k o a Index Map 1 of 3 n U.S./Canada Border to Wainwright ife Refuge Final Designation ic National Wildl of Critical Barrier Islands and Arct Denning Habitat Maps N ° N 8 ° 6 8 6 0 10 20 30 40 50 60 70 80 90 100 miles 0 10 20 30 40 50 60 70 80 90 100 km Map N ° N 7 ° Area 6 7 Pacific Ocean 6 158°W 157°W 156°W 155°W 154°W 153°W 152°W 151°W 150°W 149°W 148°W 147°W 146°W 145°W 144°W 143°W 142°W 99-0136 142°20'W 142°10'W 142°W 141°50'W 141°40'W 141°30'W 141°20'W 141°10'W 141°W Beaufort Sea N N ' ' 0 0 5 5 ° ° 9 9 6 6 r e v i R k a sr ak Eg N N ' ' 0 0 4 r Demarcation 4 ° ° 9 e 9 6 v 6 i Bay R t u k a g n o K N N ' ' 0 0 3 3 ° ° 9 9 6 6 C U a n .
    [Show full text]
  • Natural Variability of the Arctic Ocean Sea Ice During the Present Interglacial
    Natural variability of the Arctic Ocean sea ice during the present interglacial Anne de Vernala,1, Claude Hillaire-Marcela, Cynthia Le Duca, Philippe Robergea, Camille Bricea, Jens Matthiessenb, Robert F. Spielhagenc, and Ruediger Steinb,d aGeotop-Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; bGeosciences/Marine Geology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany; cOcean Circulation and Climate Dynamics Division, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany; and dMARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, 28334 Bremen, Germany Edited by Thomas M. Cronin, U.S. Geological Survey, Reston, VA, and accepted by Editorial Board Member Jean Jouzel August 26, 2020 (received for review May 6, 2020) The impact of the ongoing anthropogenic warming on the Arctic such an extrapolation. Moreover, the past 1,400 y only encom- Ocean sea ice is ascertained and closely monitored. However, its pass a small fraction of the climate variations that occurred long-term fate remains an open question as its natural variability during the Cenozoic (7, 8), even during the present interglacial, on centennial to millennial timescales is not well documented. i.e., the Holocene (9), which began ∼11,700 y ago. To assess Here, we use marine sedimentary records to reconstruct Arctic Arctic sea-ice instabilities further back in time, the analyses of sea-ice fluctuations. Cores collected along the Lomonosov Ridge sedimentary archives is required but represents a challenge (10, that extends across the Arctic Ocean from northern Greenland to 11). Suitable sedimentary sequences with a reliable chronology the Laptev Sea were radiocarbon dated and analyzed for their and biogenic content allowing oceanographical reconstructions micropaleontological and palynological contents, both bearing in- can be recovered from Arctic Ocean shelves, but they rarely formation on the past sea-ice cover.
    [Show full text]
  • Beaufort Seas Coastal and Ocean Zones Strategic
    166° 164° 162° 160° 158° 156° 154° 152° 150° 148° 146° 144° 142° 140° 138° LEGEND North Slope Planning Area Conservation System Unit (Offset for display) Barrow B Trans-Alaska Pipeline ea !. eau hi S fort kc Se 1 Chuc a Subsistence Resource Use (Top Frame) Caribou C h i Wainwright er p Non Salmon Fish Species !. Riv p 70° e R Mead r i Topagoruk River e v v e i r R k u Teshekpuk Lake p Moose ik p !. k Atqasuk I Kaktovik !. Seals and Sea Lions 70° !. Nuiqsut !. Prudhoe Bay 1 r Subsistence Resource Use (Bottom Frame) e iv R k u Brown Bear r a p Point Lay !. Sagavanirktok River u K r e Birds and Eggs v i R g n i n n a C Whales NOTES er iv 1(Bering, Chukchi, and Beaufort Seas Coastal and Ocean Zones Strategic e R ll A lvi Assessment: Data Atlas, National Oceanic and Atmospheric Administration, Co n a November 1988) k It t k u il v l ik u k R R i v i e v r e r 68° er iv R r le d n a h Arctic Village C !. 68° 164° 162° 160° 158° 156° 154° 152° 150° 148° 146° 144° 142° 140° 166° 164° 162° 160° 158° 156° 154° 152° 150° 148° 146° 144° 142° 140° 138° Barrow .! Be Sea au DISCLAIMER hi for This atlas is a graphical representation of digital data from multiple sources. Not ckc t Sea all features indicated on this map have been constructed or physically located.
    [Show full text]
  • Submission of Scientific Information to Describe Areas Meeting Scientific Criteria for Ecologically Or Biologically Significant Marine Areas
    Submission of Scientific Information to Describe Areas Meeting Scientific Criteria for Ecologically or Biologically Significant Marine Areas Title/Name of the areas: Canadian Archipelago including Baffin Bay Presented by Michael Jasny Natural Resources Defense Council Marine Mammal Protection Project Director [email protected] +001 310 560-5536 cell Abstract The region within the Canadian Archipelago, extending from Baffin Bay and Davis Strait to the North Water (encompassing the North Water Polynya), and then West around Devon Island and Somerset Island, including Jones Sound, Lancaster Sound and bordering Ellesmere Island and Prince of Whales Island, should be set aside as a protected area for both ice-dependent and ice-associated species inhabiting the area such as the Narwhals (Monodon monoceros), Polar bears (Ursus maritumus), and Belugas (Delphinapterus leucus). The Canadian Archipelago overall has showed slower rates of sea ice loss relative to other regions within the Arctic with areas such as Baffin Bay and Davis Strait even experiencing increasing sea ice trends (Laidre et al. 2005b). Because of the low adaptive qualities of the above mentioned mammals as well as the importance as wintering and summering grounds, this region is invaluable for the future survival of the Narwhal, Beluga, and Polar Bear. Introduction The area includes the Canadian Archipelago, extending from Baffin Bay and Davis Strait to the North Water (encompassing the North Water Polynya), and then West around Devon Island and Somerset Island, including Jones Sound, Lancaster Sound and bordering Ellesmere Island and Prince of Whales Island. Significant scientific literature exists to support the conclusion that preservation of this region would support the continued survival of several ice-dependent and ice-associated species.
    [Show full text]
  • Canadian Beaufort Sea 2000: the Environmental and Social Setting G
    ARCTIC VOL. 55, SUPP. 1 (2002) P. 4–17 Canadian Beaufort Sea 2000: The Environmental and Social Setting G. BURTON AYLES1 and NORMAN B. SNOW2 (Received 1 March 2001; accepted in revised form 2 January 2002) ABSTRACT. The Beaufort Sea Conference 2000 brought together a diverse group of scientists and residents of the Canadian Beaufort Sea region to review the current state of the region’s renewable resources and to discuss the future management of those resources. In this paper, we briefly describe the physical environment, the social context, and the resource management processes of the Canadian Beaufort Sea region. The Canadian Beaufort Sea land area extends from the Alaska-Canada border east to Amundsen Gulf and includes the northwest of Victoria Island and Banks Island. The area is defined by its geology, landforms, sources of freshwater, ice and snow cover, and climate. The social context of the Canadian Beaufort Sea region has been set by prehistoric Inuit and Gwich’in, European influence, more recent land-claim agreements, and current management regimes for the renewable resources of the Beaufort Sea. Key words: Beaufort Sea, Inuvialuit, geography, environment, ethnography, communities RÉSUMÉ. La Conférence de l’an 2000 sur la mer de Beaufort a attiré un groupe hétérogène de scientifiques et de résidents de la région de la mer de Beaufort en vue d’examiner le statut actuel des ressources renouvelables de cette zone et de discuter de leur gestion future. Dans cet article, on décrit brièvement l’environnement physique, le contexte social et les processus de gestion des ressources de la zone canadienne de la mer de Beaufort.
    [Show full text]
  • Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
    Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities.
    [Show full text]
  • Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice
    Distribution and Abundance of Select Trace Metals in Chukchi and Beaufort Sea Ice Principal Investigators Robert Rember1 Ana M. Aguilar-Islas2 Graduate Student Vincent Domena2 1International Arctic Research Center, University of Alaska Fairbanks 2College of Fisheries and Ocean Sciences, University of Alaska Fairbanks FINAL REPORT December 2016 OCS Study BOEM 2016-079 Contact Information: email: [email protected] phone: 907.474.6782 fax: 907.474.7204 Coastal Marine Institute College of Fisheries and Ocean Sciences University of Alaska Fairbanks P. O. Box 757220 Fairbanks, AK 99775-7220 This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management (BOEM) through Cooperative Agreement M13AC00002 between BOEM, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks. This report, OCS Study BOEM 2016-079, is available through the Coastal Marine Institute, select federal depository libraries and can be accessed electronically at http://www.boem.gov/Alaska-Scientific-Publications. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................................... iii LIST OF TABLES ......................................................................................................................................
    [Show full text]
  • Changes in Snow, Ice and Permafrost Across Canada
    CHAPTER 5 Changes in Snow, Ice, and Permafrost Across Canada CANADA’S CHANGING CLIMATE REPORT CANADA’S CHANGING CLIMATE REPORT 195 Authors Chris Derksen, Environment and Climate Change Canada David Burgess, Natural Resources Canada Claude Duguay, University of Waterloo Stephen Howell, Environment and Climate Change Canada Lawrence Mudryk, Environment and Climate Change Canada Sharon Smith, Natural Resources Canada Chad Thackeray, University of California at Los Angeles Megan Kirchmeier-Young, Environment and Climate Change Canada Acknowledgements Recommended citation: Derksen, C., Burgess, D., Duguay, C., Howell, S., Mudryk, L., Smith, S., Thackeray, C. and Kirchmeier-Young, M. (2019): Changes in snow, ice, and permafrost across Canada; Chapter 5 in Can- ada’s Changing Climate Report, (ed.) E. Bush and D.S. Lemmen; Govern- ment of Canada, Ottawa, Ontario, p.194–260. CANADA’S CHANGING CLIMATE REPORT 196 Chapter Table Of Contents DEFINITIONS CHAPTER KEY MESSAGES (BY SECTION) SUMMARY 5.1: Introduction 5.2: Snow cover 5.2.1: Observed changes in snow cover 5.2.2: Projected changes in snow cover 5.3: Sea ice 5.3.1: Observed changes in sea ice Box 5.1: The influence of human-induced climate change on extreme low Arctic sea ice extent in 2012 5.3.2: Projected changes in sea ice FAQ 5.1: Where will the last sea ice area be in the Arctic? 5.4: Glaciers and ice caps 5.4.1: Observed changes in glaciers and ice caps 5.4.2: Projected changes in glaciers and ice caps 5.5: Lake and river ice 5.5.1: Observed changes in lake and river ice 5.5.2: Projected changes in lake and river ice 5.6: Permafrost 5.6.1: Observed changes in permafrost 5.6.2: Projected changes in permafrost 5.7: Discussion This chapter presents evidence that snow, ice, and permafrost are changing across Canada because of increasing temperatures and changes in precipitation.
    [Show full text]