DATA CATALOG ERIE for PACE CIENCE and APPLICATIO FIGHT MI ION Volume La De Criptio of Planetary and Heliocentric Pacecraft and Inve Tigation

Total Page:16

File Type:pdf, Size:1020Kb

DATA CATALOG ERIE for PACE CIENCE and APPLICATIO FIGHT MI ION Volume La De Criptio of Planetary and Heliocentric Pacecraft and Inve Tigation NASA-TM-8487719830007055 National Space Science Data Center/ 82-21 World Data Center A For Rockets and Satellites DATA CATALOG ERIE FOR PACE CIENCE AND APPLICATIO FIGHT MI ION Volume lA De criptio of Planetary and Heliocentric pacecraft and Inve tigation September 1982 lIB~ARY COpy !\ CJV 19 1982 LANGLEY RESEARCH CENTER LIBRARY, NASA H fy1 ~TONJ VIRGINIA Categories of Spacecraft Used in This Series PLANETARY AND HELIOCENTRIC This category includes probe to the various planets of the solar system and probes designed to make measurements of the characteristics of interplanetary space. Included are also the probes which will pass out of the solar system into interstellar space. METEOROLOGY AND TERRESTRIAL APPLICATIONS This category includes geocentric spacecraft whose primary mission is to make remote sensing measurements of the earth and its atmosphere. Spacecraft which carry instrumentation to make geodesy and gravimetry measurements are also included. Technology, engineering, and communi­ cations spacecraft or investigations are not included because NSSDC does not archive such data. ASTRONOMY, ASTROPHYSICS, AND SOLAR PHYSICS This category consists of scientific satellites designed to conduct investigations of the sun, stellar objects, nonstellar sources, and interstellar phenomena. These satellites are geocentric except for the selenocentric RAE-B. GEOSTATIONARY AND HIGH-ALTITUDE SCIENTIFIC This category includes those satellites designed to conduct investigations of the characteristics of near-earth space from orbits with apogees near geostationary altitude and higher. Three of the spacecraft are seleno­ centric. Communications satellites are not included because NSSDC does not archive such data. LOW- AND MEDIUM-ALTITUDE SCIENTIFIC This category includes those spacecraft whose apogees are well below geostationary altitude and whose primary purpose is to conduct investigations in the near-earth environment. NSSDC/WDC-A-R&S 82-21 DATA CATALOG SERIES FOR SPACE SCIENCE AND APPLICATIONS FLIGHT MISSIONS Volume 1A DESCRIPTIONS OF PLANETARY AND HELIOCENTRIC SPACECRAFT AND INVESTIGATIONS Edited By Winifred Sawtell Cameron Robert W. Vostreys September 1982 National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 tJ ~ 3- / 5' 3.;1 <a=ii:- PREFACE This volume, Brief Descriptions of Planetary and Heliocentric Spacecraft and Investigations, part of the Data Catalog Series for Space Science and Applications Flight ltissions, represents the work of many people. The series will describe the data sets held by NSSDC, some of the data sets held by NASA-funded investigators, and some of the data sets held by foreign investigators; and the series will serve as pointer documents for extensive data sets held and serviced by other government agencies. We would like to thank the many spacecraft and experiment personnel who over the years provided much of the information contained in this volume. The cooperation of the investigators in supplying current status information is gratefully acknowledged. Thanks also are extended to the other NSSDC personnel, employees of the on-site contractor, MIA-COM Sigma Data, Inc., who have been involved in the information handling necessary to produce this volume. Special acknowledgment is given to Mary Elsen for her extensive editorial assistance and to the File Management group, supervised by Dorothy Rosenblatt, for their special computer processing to accommodate the format of this volume. The Data Center is continually striving to increase the usefulness of its data holdings, supporting indexes, and documentation. Scientists are invited to submit their space science data and comments to NSSDC. Catalog recipients are urged to inform potential data users of its availability. Winifred Sawtell Cameron Robert W. Vostreys iii TABLE OF CONTENTS PREFACE ............................................................... iii INTRODUCTION .......................................................... 3 1 • 1 Purpose ..••...........•.......•..... ................. 3 1 • 2 Organization •...•................. ................. 5 1.3 NSSDC Purpose, Facilities and Services 7 1.4 Data Acquisition••.••.••••••.•••••••••••. 8 MERCURY ............................................................... 13 VENUS ................................................................. 21 MARS .................................................................. 41 JUPITER ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 61 SATURN ................................................................ 77 INTERPLANETARY INVESTIGATIONS BY PLANETARY PROBES ..................... 87 INTERPLANETARY INVESTIGATIONS ......................................... 97 TABLES Table 1. Status of Data Available from Planetary and Interplanetary Missions ••••••••.•••••..•••••••••••••••• 9 Table 2. Planetary Missions, by Category of Data Available at NSSDC ............................................... 11 Table 3. U.S. Lunar Mission Data . 115 APPENDIXES A. Index to Planetary Investigations with Data Available at NSSDC ...•................•.....••••. A-1 B. Index to Interplanetary Investigations (From Planetary Missions) with Data Available at NSSDC ••••••••••••••••••••• B-1 C. Index to Interplanetary Missions with Data Available at NSSDC ................................................... C-1 D. Definitions . D-1 v Introduction 1.1 PURPOSE The National Space Science Data Center (NSSDC) was established by the National Aeronautics and Space Administration (NASA) to provide data and information from space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. This volume is one of a series of eleven that will describe (1) the holdings of all spacecraft flight investigations for which NSSDC possesses data or can direct people to the data source, (2) all data sets held by NSSDC, (3) some of the data sets held and serviced by NASA-funded investigators, and (4) some of the data sets held and serviced by foreign investigators; and the series will serve as pointer documents for extensive data sets held and serviced by other government agencies, particularly the National Oceanographic and Atmospheric Administration (NOAA). There is one major omission from this series: the extensive set of data obtained from the lunar missions conducted by NASA, supplemented by a few small photographic data sets from Soviet missions. These are described in the Catalog of Lunar Mission Data (NSSDC/WDC-A-R&S 77-02) and will not be repeated in this series, except for a few cases. The data from IMP-E, Apollo 15 subsatellite, and Apollo 16 subsatellite are included in the series, since these data are important to disciplines other than those connected with lunar studies. Some of the experiments of the Apollo ALSEP missions also yielded useful data for magnetospheric and interplanetary physics, but these are not included in the series, since the instruments were confined to the surface of the moon. Readers should consult the Catalog of Lunar Mission Data if they are interested in such data sets. The series consists of (1) five volumes that describe the spacecraft and their associated investigations (experiments) separated, mainly, into various orbit categories, (2) five corresponding volumes that describe the various orbital information and investigation data sets, and (3) a master index volume. In some cases certain data sets appear in more than one data set volume, since they are important to a discipline not normally related to most of the investigations on a given spacecraft. The five categories of spacecraft are (i) Planetary and Heliocentric, which include planetary flybys and probes, (ii) Meteorology and Terrestrial Applications, (iii) Astronomy, Astrophysics, and Solar Physics, which are all geocentric except the selenocentric RAE-B, (iv) Geostationary and High-Altitude Scientific, and (v) Low- and Medium-Altitude Scientific. It is impossible to provide an organization of categories that separates the investigations cleanly into scientific disciplines, since many missions were multidisciplinary. Each volume is organized in a way that is believed to be most useful to the user and is described for each such volume in the Organization Section. For standard types of orbital information, i.e., predicted, refined, and definitive, the information is given in a tabular form to avoid repeating the same brief description an inordinate number of times. The standard description of a data set from an investigation is a free text brief description, since the wide variety of instruments precludes using a tabular format in most cases. 3 This catalog series has been prepared following a two-year survey and follow-up activity by NSSDC personnel to obtain information about the completeness of the NSSDC holdings and to solicit the description of data sets that will be serviced by individual investigators; these latter data sets are referred to as directory data sets. This survey was conducted only for NASA missions launched after December 31, 1962, but it includes the majority of NSSDC holdings. Unfortunately, of the 100 investigators surveyed, representing 346 inactive (no longer associated with an active science working team or equivalent) experiments, a small percentage failed to respond in 17 months of concerted solicitation of information. Consequently, there are now
Recommended publications
  • Railway Employee Records for Colorado Volume Iii
    RAILWAY EMPLOYEE RECORDS FOR COLORADO VOLUME III By Gerald E. Sherard (2005) When Denver’s Union Station opened in 1881, it saw 88 trains a day during its gold-rush peak. When passenger trains were a popular way to travel, Union Station regularly saw sixty to eighty daily arrivals and departures and as many as a million passengers a year. Many freight trains also passed through the area. In the early 1900s, there were 2.25 million railroad workers in America. After World War II the popularity and frequency of train travel began to wane. The first railroad line to be completed in Colorado was in 1871 and was the Denver and Rio Grande Railroad line between Denver and Colorado Springs. A question we often hear is: “My father used to work for the railroad. How can I get information on Him?” Most railroad historical societies have no records on employees. Most employment records are owned today by the surviving railroad companies and the Railroad Retirement Board. For example, most such records for the Union Pacific Railroad are in storage in Hutchinson, Kansas salt mines, off limits to all but the lawyers. The Union Pacific currently declines to help with former employee genealogy requests. However, if you are looking for railroad employee records for early Colorado railroads, you may have some success. The Colorado Railroad Museum Library currently has 11,368 employee personnel records. These Colorado employee records are primarily for the following railroads which are not longer operating. Atchison, Topeka & Santa Fe Railroad (AT&SF) Atchison, Topeka and Santa Fe Railroad employee records of employment are recorded in a bound ledger book (record number 736) and box numbers 766 and 1287 for the years 1883 through 1939 for the joint line from Denver to Pueblo.
    [Show full text]
  • Recurring Slope Lineae: Evidence of Liquid Water on Mars Today?
    Recurring Slope Lineae: Evidence of liquid water on Mars today? The High Resolution Imaging Science Experiment (HiRISE) on Mars Reconnaissance Orbiter (MRO) has monitored surface feature changes over several Mars years. One of the more intriguing observations has been of the seasonal occurrence of numerous (multi-thousand) dark streak features advancing down equator-facing slopes in several mid-latitude and equatorial regions of the southern hemisphere. Termed Recurring Slope Lineae (RSL), the streak behavior resembles that of a fluid mobilized by increasing surface temperatures – initiating in spring, incrementally extending downslope through summer, and then fading in the fall and winter seasons. The phenomenon is then seen to repeat the following spring. RSLs are narrow in width (meter-scale), requiring our best resolution imaging to see them, but may extend down-slope for hundreds of meters before terminating. Science teams involved in the discovery of RSL have been cautious in concluding a water-based origin since most of the RSL locations are found in environments well outside the pressure-temperature stability field for liquid water. However, the presence of salts such as perchlorate can depress freezing points by tens of degrees. MRO Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) observations of multiple RSL locations show hydrated mineral absorption signals most consistent with magnesium perchlorate, magnesium chlorate and sodium perchlorate. That raises the possibility of a Mg-, Na-, Cl-rich brine that would also leave these minerals as a kind of evaporite deposit. However, the amount of water, if present, has been constrained at one location by independent Thermal Emission Imaging System (THEMIS; Mars Odyssey) data analysis and a numerical heat transfer model to 0 wt.%, and up to 3 wt.% given observational uncertainties, unlikely to support a sustained flow.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Non-Collider Searches for Stable Massive Particles
    Non-collider searches for stable massive particles S. Burdina, M. Fairbairnb, P. Mermodc,, D. Milsteadd, J. Pinfolde, T. Sloanf, W. Taylorg aDepartment of Physics, University of Liverpool, Liverpool L69 7ZE, UK bDepartment of Physics, King's College London, London WC2R 2LS, UK cParticle Physics department, University of Geneva, 1211 Geneva 4, Switzerland dDepartment of Physics, Stockholm University, 106 91 Stockholm, Sweden ePhysics Department, University of Alberta, Edmonton, Alberta, Canada T6G 0V1 fDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK gDepartment of Physics and Astronomy, York University, Toronto, ON, Canada M3J 1P3 Abstract The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be suffi- ciently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive such that they are typically beyond the reach of any conceiv- able accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter and the unifi- cation of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs in cosmic rays and bound in mat- ter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given. Contents 1 Introduction 4 2 Theory and cosmology of various kinds of SMPs 4 2.1 New particle states (elementary or composite) .
    [Show full text]
  • Obituary 1967
    OBITUARY INDEX 1967 You can search by clicking on the binoculars on the adobe toolbar or by Pressing Shift-Control-F Request Form LAST NAME FIRST NAME DATE PAGE # Abbate Barbara F. 6/6/1967 p.1 Abbott William W. 9/22/1967 p.30 Abel Dean 11/27/1967 p.24 Abel Francis E. 9/25/1967 p.24 Abel Francis E. 9/27/1967 p.10 Abel Frederick B. 11/11/1967 p.26 Abel John Hawk 12/7/1967 p.42 Abel John Hawk 12/11/1967 p.26 Abel William E. 7/10/1967 p.28 Abel William E. 7/12/1967 p.12 Aber George W. 3/14/1967 p.24 Abert Esther F. 7/26/1967 p.14 Abrams Laura R. Hoffman 8/14/1967 p.28 Abrams Laura R. Hoffman 8/17/1967 p.28 Abrams Pearl E. 10/19/1967 p.28 Abrams Pearl E. 10/20/1967 p.10 Achenbach Helen S. 11/6/1967 p.36 Achenbach Helen S. 11/8/1967 p.15 Ackerman Calvin 5/22/1967 p.34 Ackerman Calvin 5/25/1967 p.38 Ackerman Fritz 11/27/1967 p.24 Ackerman Harold 10/27/1967 p.26 Ackerman Harold 10/28/1967 p.26 Ackerman Hattie Mann 4/14/1967 p.21 Ackerman Hattie Mann 4/19/1967 p.14 Adamczyk Bennie 5/3/1967 p.14 Adamo Margaret M. 3/15/1967 p.15 Adamo Margaret M. 3/20/1967 p.28 Adams Anna 6/17/1967 p.22 Adams Anna 6/20/1967 p.17 Adams Harriet C.
    [Show full text]
  • Philadelphia, Pennsylvania (2)” of the Sheila Weidenfeld Files at the Gerald R
    The original documents are located in Box 14, folder “5/12/75 - Philadelphia, Pennsylvania (2)” of the Sheila Weidenfeld Files at the Gerald R. Ford Presidential Library. Copyright Notice The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Gerald Ford donated to the United States of America his copyrights in all of his unpublished writings in National Archives collections. Works prepared by U.S. Government employees as part of their official duties are in the public domain. The copyrights to materials written by other individuals or organizations are presumed to remain with them. If you think any of the information displayed in the PDF is subject to a valid copyright claim, please contact the Gerald R. Ford Presidential Library. Some items in this folder were not digitized because it contains copyrighted materials. Please contact the Gerald R. Ford Presidential Library for access to these materials. Digitized from Box 14 of the Sheila Weidenfeld Files at the Gerald R. Ford Presidential Library Vol. 21 Feb.-March 1975 PUBLISHED BI-MONTHLY BY PARC, THE PHILADELPHIA ASSOCIATION FOR RETARDED CITIZENS FIRST LADY TO BE HONORED Mrs. Gerald R. Ford will be citizens are invited to attend the "guest of honor at PARC's Silver dinner. The cost of attending is Anniversary Dinner to be held at $25 per person. More details the Bellevue Stratford Hotel, about making reservations may be Monday, May 12. She will be the obtained by calling Mrs. Eleanor recipient of " The PARC Marritz at PARC's office, LO.
    [Show full text]
  • Cover No Spine
    2006 VOL 44, NO. 4 Special Issue: The Hans Christian Andersen Awards 2006 The Journal of IBBY,the International Board on Books for Young People Editors: Valerie Coghlan and Siobhán Parkinson Address for submissions and other editorial correspondence: [email protected] and [email protected] Bookbird’s editorial office is supported by the Church of Ireland College of Education, Dublin, Ireland. Editorial Review Board: Sandra Beckett (Canada), Nina Christensen (Denmark), Penni Cotton (UK), Hans-Heino Ewers (Germany), Jeffrey Garrett (USA), Elwyn Jenkins (South Africa),Ariko Kawabata (Japan), Kerry Mallan (Australia), Maria Nikolajeva (Sweden), Jean Perrot (France), Kimberley Reynolds (UK), Mary Shine Thompson (Ireland), Victor Watson (UK), Jochen Weber (Germany) Board of Bookbird, Inc.: Joan Glazer (USA), President; Ellis Vance (USA),Treasurer;Alida Cutts (USA), Secretary;Ann Lazim (UK); Elda Nogueira (Brazil) Cover image:The cover illustration is from Frau Meier, Die Amsel by Wolf Erlbruch, published by Peter Hammer Verlag,Wuppertal 1995 (see page 11) Production: Design and layout by Oldtown Design, Dublin ([email protected]) Proofread by Antoinette Walker Printed in Canada by Transcontinental Bookbird:A Journal of International Children’s Literature (ISSN 0006-7377) is a refereed journal published quarterly by IBBY,the International Board on Books for Young People, Nonnenweg 12 Postfach, CH-4003 Basel, Switzerland tel. +4161 272 29 17 fax: +4161 272 27 57 email: [email protected] <www.ibby.org>. Copyright © 2006 by Bookbird, Inc., an Indiana not-for-profit corporation. Reproduction of articles in Bookbird requires permission in writing from the editor. Items from Focus IBBY may be reprinted freely to disseminate the work of IBBY.
    [Show full text]
  • Jjmonl 1710.Pmd
    alactic Observer John J. McCarthy Observatory G Volume 10, No. 10 October 2017 The Last Waltz Cassini’s final mission and dance of death with Saturn more on page 4 and 20 The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue INTERNATIONAL OBSERVE THE MOON NIGHT ...................... 4 SOLAR ACTIVITY ........................................................... 19 MONTE APENNINES AND APOLLO 15 .................................. 5 COMMONLY USED TERMS ............................................... 19 FAREWELL TO RING WORLD ............................................ 5 FRONT PAGE ...............................................................
    [Show full text]
  • RSL), Described in the 5 August 2011 Science Report “Seasonal Flows on Warm Martian Slopes”
    Animated GIFs to illustrate activity of Recurring Slope Lineae (RSL), described in the 5 August 2011 Science report “Seasonal Flows on Warm Martian Slopes”. All of these animated GIF files consist of a series of orthorectified HiRISE images over locations with RSL activity. Orthorectification corrects oblique images to show how the scene would appear from directly overhead. We perform this using HiRISE Digital Terrain Models (DTMs) at a scale of 1 m/posting. The orthorectified images are all at 0.25 m/pixel scale (or 0.5 m/pixel in cases noted below), so features smaller than 1-2 m diameter cannot be correctly rectified; the result is that small-scale features like boulders appear to wag back and forth. Each GIF is timed to dwell 2 seconds on the first and last frames and 1 second on intermediate frames, but network or computer performance may cause this to vary. The legend on each image gives the exact HiRISE image identifier; see http://uahirise.org/{image identified} for more information about each image. The legend also marks the year and seasonal identifier (Ls) for each image. The Mars years begin with the first years of Mars exploration by robot spacecraft. Ls stands for areocentric longitude of the sun, dividing the year into 360 degrees to mark the seasons. Ls = 180 is the beginning of southern spring, Ls = 270 is the beginning of southern summer, and Ls = 360 (or 0) is the beginning of southern autumn. Well-preserved crater on floor of Newton Crater Each of the gifs below are enhanced color sequences from different section of this crater slope, starting with faded RSL in MY29 (except one in which the color data was largely missing), then showing a sequence of RSL forming and fading in MY30.
    [Show full text]
  • Impact Melt Emplacement on Mercury
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon.
    [Show full text]
  • SM a R T M U S E U M O F a R T U N Iv E R S It Y O F C H IC a G O B U L L E T in 2 0 0 6 – 20
    http://smartmuseum.uchicago.edu Chicago, Illinois 60637 5550 South Greenwood Avenue SMART SMART M U S EUM OF A RT UN I VER SI TY OFCH ICAG O RT RT A OF EUM S U M SMART 2008 – 2006 N I ET BULL O ICAG H C OF TY SI VER I N U SMART MUSEUM OF ART UNIVERSITY OF CHICAGO BULLETIN 2006– 2008 SMART MUSEUM OF ART UNIVERSITY OF CHICAGO BULLETIN 2006–2008 MissiON STATEMENT / 1 SMART MUSEUM BOARD OF GOVERNORS / 3 REPORTS FROM THE CHAIRMAN AND DiRECTOR / 4 ACQUisiTIOns / 10 LOANS / 34 EXHIBITIOns / 44 EDUCATION PROGRAMS / 68 SOURCES OF SUPPORT / 88 SMART STAFF / 108 STATEMENT OF OPERATIOns / 112 MissiON STATEMENT As the ar t museum of the Universit y of Chicago, the David and Alfred Smar t Museum of Ar t promotes the understanding of the visual arts and their importance to cultural and intellectual history through direct experiences with original works of art and through an interdisciplinary approach to its collections, exhibitions, publications, and programs. These activities support life-long learning among a range of audiences including the University and the broader community. SMART MUSEUM BOARD OF GOVERNORS Robert Feitler, Chair Lorna C. Ferguson, Vice Chair Elizabeth Helsinger, Vice Chair Richard Gray, Chairman Emeritus Marilynn B. Alsdorf Isaac Goldman Larry Norman* Mrs. Edwin A. Bergman Jack Halpern Brien O’Brien Russell Bowman Neil Harris Brenda Shapiro* Gay-Young Cho Mary J. Harvey* Raymond Smart Susan O’Connor Davis Anthony Hirschel* Joel M. Snyder Robert G. Donnelley Randy L. Holgate John N. Stern Richard Elden William M. Landes Isabel C.
    [Show full text]