Structure of the Arabidopsis Thaliana DCL4 DUF283 Domain Reveals a Noncanonical Double-Stranded RNA-Binding Fold for Protein–Protein Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Structure of the Arabidopsis Thaliana DCL4 DUF283 Domain Reveals a Noncanonical Double-Stranded RNA-Binding Fold for Protein–Protein Interaction Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REPORT Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein–protein interaction HAINA QIN,1,5 FADING CHEN,1,2,5 XUELU HUAN,3,5 SATORU MACHIDA,1,2 JIANXING SONG,1,4 and Y. ADAM YUAN1,2 1Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore 2Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore 3NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore 4Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore ABSTRACT Dicer or Dicer-like (DCL) protein is a catalytic component involved in microRNA (miRNA) or small interference RNA (siRNA) processing pathway, whose fragment structures have been partially solved. However, the structure and function of the unique DUF283 domain within dicer is largely unknown. Here we report the first structure of the DUF283 domain from the Arabidopsis thaliana DCL4. The DUF283 domain adopts an a-b-b-b-a topology and resembles the structural similarity to the double- stranded RNA-binding domain. Notably, the N-terminal a helix of DUF283 runs cross over the C-terminal a helix orthogonally, therefore, N- and C-termini of DUF283 are in close proximity. Biochemical analysis shows that the DUF283 domain of DCL4 displays weak dsRNA binding affinity and specifically binds to double-stranded RNA-binding domain 1 (dsRBD1) of Arabidopsis DRB4, whereas the DUF283 domain of DCL1 specifically binds to dsRBD2 of Arabidopsis HYL1. These data suggest a potential functional role of the Arabidopsis DUF283 domain in target selection in small RNA processing. Keywords: NMR structure; Dicer DUF283; miRNA processing; double-stranded RNA-binding fold; protein–protein interaction INTRODUCTION Argonaute are essential for the initiation and effect of RNA silencing, respectively (Voinnet 2005). RNA silencing is a small regulatory RNA-controlled and Dicers not only play the catalytic role to process revolutionary conserved gene regulation mechanism com- miRNAs/siRNAs, but also load these small regulatory RNAs prising a set of sequential core reactions (Zamore and into the RISC (Lee et al. 2004; Pham et al. 2004). In Haley 2005). First, Dicer-like enzyme processes primary Arabidopsis thaliana, there are four Dicer-like proteins, miRNA transcript (pri-miRNA) or long complementary namely DCL1–4. DCL1 plays the role for miRNA proces- double-stranded RNA into 21–24 base pairs (bp) small sing, whereas DCL2–4 proteins generate siRNAs with dis- regulatory RNA (Bernstein et al. 2001). Subsequently, the tinct sizes. DCL2 processes long dsRNAs into 22 bp, small RNA is loaded into RNA-induced silencing complex whereas DCL3 and DCL4 produce 24 bp siRNA and 21 bp (RISC) to pair with target mRNA for degradation or trans- siRNA, respectively (Qi et al. 2005). Therefore the struc- lation repression (Hammond et al. 2000; Nykanen et al. tural information of Dicer could provide the insightful in- 2001; Liu et al. 2004; Meister et al. 2004; Siomi and Siomi formation to understand the molecular mechanism of 2009). RNase III enzyme Dicer and RNase H enzyme Dicer initiated RNA silencing pathway. Dicer protein is a multiple-domain protein, which con- 5These authors contributed equally to this work. tains the helicase domain, DUF283 domain, PAZ domain, Reprint requests to: Jianxing Song, Department of Biological Sciences, two tandem RNase III domains, and two tandem dsRBD do- National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; e-mail: [email protected]; fax: (65)-67792486; or Y. Adam mains from the N-terminus to C-terminus (Fig. 1A). It was Yuan, Temasek Life Sciences Laboratory, National University of Singapore, proposed that the RNase III domain harbors the catalytic 1 Research Link, Singapore 117604, Singapore; e-mail: [email protected]; residues for small RNA processing (Zhang et al. 2004). The fax: (65)-68727007. Article published online ahead of print. Article and publication date recent crystal structure of human parasite Giardia Dicer are at http://www.rnajournal.org/cgi/doi/10.1261/rna.1965310. provides the detailed molecular evidence to support the 474 RNA (2010), 16:474–481. Published by Cold Spring Harbor Laboratory Press. Copyright Ó 2010 RNA Society. Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Structure of the DCL4 DUF283 domain FIGURE 1. Overall structure of DCL4 DUF283. (A) Domain architecture of Arabidopsis thaliana DCL4. (B) Sequence alignment and secondary structure of Dicer DUF283. The aligned sequences (Swiss Protein ID) are in the order of DCL4_At, DCL1_At, DCL2_At, DCL3_At, and Dicer_Hs. The secondary structure diagram for DCL4_At is shown on top. The a-helices are colored in yellow, b-strands are colored in cyan. Conserved residues are shaded in cyan (80% similarity) and green (60% similarity), whereas essentially invariant residues are shaded in yellow. (C) Stereo view of the ensemble of eight lowest energy NMR structures of the DCL4 DUF283 domain (residues 651–752) and Ribbon representation of the DCL4 DUF283 domain. long standing hypothesis that Dicer harbors ‘‘one proces- In an effort to understand the functional role of the sing center’’ to cleave the bound pre-miRNA or long dsRNA DUF283 domain in Dicer-catalyzed RNA silencing path- into z19 bp small RNA duplex with 39-2-nucleotide (nt) way, we report here the first structure of the DUF283 overhangs (Macrae et al. 2006). Remarkably, the Giardia domain of the Arabidopsis Dicer-like 4 (DCL4) protein and Dicer structure adopts a hatchet-like architecture with the PAZ show that DUF283 adopts a double-stranded RNA-binding domain recognizing the 39-2-nt overhangs of bound dsRNAs, (dsRBD) fold for protein–protein interaction, which is in whereas the unique connecting a helix functions as a mo- contrast to bioinformatics prediction that DUF283 is lecular ruler to measure the distance from the dsRNA end a dsRBD fold for dsRNA binding (Dlakic´ 2006). We further (recognized by the PAZ domain) to the cleavage site (provided demonstrate that the DCL4 DUF283 domain selectively by the RNase III domains) (Macrae et al. 2006). Although binds to its designated partner, DRB4, whereas the DCL1 Giardia Dicer contains only the PAZ domain and two DUF283 domain selectively binds to its designated partner, RNase III domains, it displays robust dsRNA-processing HYL1, by in vitro pull-down assay, which suggest that activity (Macrae et al. 2006). By contrast, the removal of the Arabidopsis DUF283 domains probably play significant DUF283 domain, which is z100 amino acid positioning at roles for partner protein selection in small RNA processing. the N-terminus of the PAZ domain (Fig. 1A,B), from either human dicer or Drosophila DCR-1 abolished miRNA pro- RESULTS cessing activity (Lee et al. 2006; Ye et al. 2007). However, a slightly different DUF283 deletion construct in human The DUF283 domain resembles dsRNA-binding fold dicer shows little impact on pre-siRNA or pre-miRNA cleavage activity (Ma et al. 2008). Nevertheless, these data We have systematically screened z60 different Dicer DUF283 suggest that the DUF283 domain could be an essential constructs from multiple species with different fragment functional domain for Dicers from certain higher eukaryotes. lengths and tags to assess the expression levels and solubility www.rnajournal.org 475 Downloaded from rnajournal.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Qin et al. of the expressed proteins. The Arabidopsis DCL4 DUF283 aeolicus RNase III (PDBID:1RC7, Z score, 4.6, RMSD 3.7 construct (residues: 651–752) used in our experiments is A˚ ,62Ca) (Fig. 2A). The comparisons of these two proteins suitable for NMR determination because of its high ex- show structural similarity at their b-sheet and C-terminal pression level, solubility, and monomeric dispersion. a-helix regions. However, the N-terminal a-helix of DCL4-DUF283 has a highly dispersed HSQC spectrum DUF283 swings z30° back toward the C-terminal a helix, in solution characteristic of a well-folded protein. As such, hence the N- and C-termini of DUF283 are in close the NMR structure of DUF283 was successfully determined proximity, which is different from the bioinformatics by using NOE distance restraints derived from analyzing prediction (Dlakic´ 2006). 15N- and 13C-edited NOESY spectra; as well as dihedral angle restraints from TALOS prediction based on five The DUF283 domain is a noncanonical dsRBD chemical shifts. Figure 1C presents the superimposition of 10 selected DUF283 structures in solution with the lowest In addition to the different orientations of the N-terminal target functions. As detailed in Table 1, over the secondary a-helix between DUF283 and dsRBD (Fig. 2A), there are structure regions, the 10 structures are very similar, with significant structural deviations between them at the puta- RMS deviations of 1.50 A˚ for all atoms, 1.26 A˚ for heavy tive RNA-binding surfaces (Fig. 2B). All the canonical atoms and 0.57 A˚ for backbone atoms. Interestingly, it dsRBDs exampled by Xenopus laevis dsRBD2 have three appears that the C-terminal z18 residues (residues: 735– critical dsRNA-binding regions, referred to as regions 1, 2, 752) are relatively unstructured and poorly defined, having
Recommended publications
  • The Sirna Suppressor RTL1 Is Redox-Regulated Through Glutathionylation of a Conserved Cysteine in the Double-Stranded-RNA-Bindin
    The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain Cyril Charbonnel, Adnan Niazi, Emilie Elvira-Matelot, Elżbieta Nowak, Matthias Zytnicki, Anne De bures, Edouard Jobet, Alisson Opsomer, Nahid Shamandi, Marcin Nowotny, et al. To cite this version: Cyril Charbonnel, Adnan Niazi, Emilie Elvira-Matelot, Elżbieta Nowak, Matthias Zytnicki, et al.. The siRNA suppressor RTL1 is redox-regulated through glutathionylation of a conserved cysteine in the double-stranded-RNA-binding domain. Nucleic Acids Research, Oxford University Press, 2017, 45 (20), pp.11891-11907. 10.1093/nar/gkx820. hal-02116017 HAL Id: hal-02116017 https://hal.archives-ouvertes.fr/hal-02116017 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Published online 15 September 2017 Nucleic Acids Research, 2017, Vol. 45, No. 20 11891–11907 doi: 10.1093/nar/gkx820 The siRNA suppressor RTL1 is redox-regulated
    [Show full text]
  • Posttranscriptional Regulation of Microrna Biogenesis in Animals
    Molecular Cell Review Posttranscriptional Regulation of MicroRNA Biogenesis in Animals Haruhiko Siomi1,* and Mikiko C. Siomi1,* 1Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan *Correspondence: [email protected] (H.S.), [email protected] (M.C.S.) DOI 10.1016/j.molcel.2010.03.013 MicroRNAs (miRNAs) control gene expression in animals, plants, and unicellular eukaryotes by promoting degradation or repressing translation of target mRNAs. miRNA expression is often tissue specific and devel- opmentally regulated, and regulation occurs both transcriptionally and posttranscriptionally. This regulation is crucial, as alteration of miRNA expression has been linked to human diseases, including several cancers. Here, we discuss recent studies that shed light on how multiple steps in the miRNA biogenesis pathway are regulated to modulate miRNA function in animals. Introduction miRNA turn over, recent findings have uncovered a significant The lin-4 miRNA was identified in C. elegans in 1993 (Lee et al., role for posttranscriptional mechanisms in the regulation of 1993). At the time, lin-4 was thought to be a worm-specific curi- miRNA biogenesis and activity (Carthew and Sontheimer, osity, but with the subsequent identification of the let-7 miRNA, 2009; Davis and Hata, 2009). Here, we review recent progress which is phylogenetically conserved (Pasquinelli et al., 2000; in our understanding of the posttranscriptional mechanisms of Reinhart et al., 2000), researchers took
    [Show full text]
  • Transcriptional Control and Protein Specialization Have Roles in the Functional Diversification of Two Dicer-Like Proteins in Ma
    Copyright Ó 2008 by the Genetics Society of America DOI: 10.1534/genetics.108.093922 Note Transcriptional Control and Protein Specialization Have Roles in the Functional Diversification of Two Dicer-Like Proteins in Magnaporthe oryzae Naoki Kadotani, Toshiki Murata, Nguyen Bao Quoc, Yusuke Adachi and Hitoshi Nakayashiki1 Laboratory of Plant Pathology, Kobe University, Kobe 657-8501, Japan Manuscript received July 14, 2008 Accepted for publication August 15, 2008 ABSTRACT Quantitative RT–PCR and overexpression studies of two Dicer-like proteins, MoDcl1 and MoDcl2, in Magnaporthe oryzae indicated that the functional diversification of the MoDcl1 and MoDcl2 proteins in RNA- mediated gene silencing pathways was likely to have arisen from both transcriptional control and protein specialization. ICER is a member of the RNase III superfamily of belongs to the broad category of gene silencing pathways D bidentate nucleases that process long dsRNA exemplified by RNAi, in which a specific mRNA is precursorsintoshorter units (21–30 nt)thatsubsequently targeted for degradation via an siRNA-mediated path- act as specificity determinants in various RNA-mediated way (referred to as ‘‘RNAi pathway’’ hereafter). MSUD gene silencing pathways. Genome sequencing projects silences the expression of such genes that cause un- have revealed that Dicer-like (DCL) proteins are evolu- paired DNA during meiosis in the zygote. Quelling has tionarily conserved in a widerange of eukaryotic genomes been shown to be mediated by qde-1 (RdRP) (Cogoni although the number of DCL proteins in the genome and Macino 1999), qde-2 (Argonaute) (Cogoni and varies among different organisms. Mammals have only Macino 2000), and two redundantly functioning Dicer one DCL protein, which participates in at least two dif- proteins, dcl-1/sms-3 and dcl-2 (Galagan et al.
    [Show full text]
  • Plant 24-Nt Reproductive Phasirnas from Intramolecular Duplex Mrnas in Diverse Monocots
    Downloaded from genome.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots Atul Kakrana1,2, Sandra M. Mathioni3, Kun Huang2, Reza Hammond1,2, Lee Vandivier4, Parth Patel1,2, Siwaret Arikit5, Olga Shevchenko2, Alex E. Harkess3, Bruce Kingham2, Brian D. Gregory4, James H. Leebens-Mack6, Blake C. Meyers3,7* 1 Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19714, USA 2 Delaware Biotechnology Institute, University of Delaware, Newark, DE 19714, USA 3 Donald Danforth Plant Science Center, St. Louis, MO 63132, USA 4 Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA 5 Department of Agronomy, Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom 73140, Thailand 6 Department of Plant Biology, University of Georgia, Athens, GA 30602, USA 7 Division of Plant Sciences, University of Missouri – Columbia, MO 65211, USA *Corresponding author: [email protected]; Keywords: Asparagus, Lilium, daylily, monocots, miRNAs, small RNAs, phasiRNAs, Dicer, Argonaute Downloaded from genome.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract In grasses, two pathways generate diverse and numerous 21-nt (pre-meiotic) and 24-nt (meiotic) phased siRNAs highly enriched in anthers, the male reproductive organs. These “phasiRNAs” are analogous to mammalian piRNAs, yet their functions and evolutionary origins remain largely unknown. The 24-nt meiotic phasiRNAs have only been described in grasses, wherein their biogenesis is dependent on a specialized Dicer (DCL5). To assess how evolution gave rise to this pathway, we examined reproductive phasiRNA pathways in non-grass monocots: garden asparagus, daylily and lily.
    [Show full text]
  • Functional Specialization of Monocot DCL3 and DCL5 Proteins Through the Evolution of the PAZ Domain
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.02.454693; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Functional specialization of monocot DCL3 and DCL5 proteins through the 2 evolution of the PAZ domain 3 4 Shirui Chen1,2, Wei Liu1,2, Masahiro Naganuma1,3, Yukihide Tomari1,2,*, Hiro-oki 5 Iwakawa1,* 6 7 1 Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113- 8 0032, Japan 9 2 Department of Computational Biology and Medical Sciences, Graduate School of 10 Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan 11 3 Present address, RIKEN Center for Biosystems Dynamics Research, Yokohama, 12 Kanagawa, 230-0045, Japan 13 *Correspondence: [email protected] (Y.T.), [email protected] (H.-o.I.) 14 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.02.454693; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 Abstract 16 Monocot DICER-LIKE3 (DCL3) and DCL5 produce distinct 24-nt heterochromatic 17 small interfering RNAs (hc-siRNAs) and phased secondary siRNAs (phasiRNAs).
    [Show full text]
  • First Line of Title
    DEEP SEQUENCING FROM hen1 MUTANTS TO IDENTIFY SMALL RNA 3’ MODIFICATIONS by Jixian Zhai A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics and Computational Biology Spring 2013 © 2013 Jixian Zhai All Rights Reserved DEEP SEQUENCING FROM hen1 MUTANTS TO IDENTIFY SMALL RNA 3’ MODIFICATIONS by Jixian Zhai Approved: __________________________________________________________ Blake C. Meyers, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Errol Lloyd, Ph.D. Chair of the Department of Computer and Information Sciences Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Interim Dean of College of Engineering Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I wish to thank my adviser, Dr. Meyers, and my committee members Dr. Liao Li and Dr. Adam Marsh for their continuous advice, guidance, and academic support during my master study. I would also like to thank Dr. Cathy Wu and Katie Lakofsky in the Bioinformatics program for their great work in carrying out this master program. I must also thank my friends Katie Bi, Yuanlong Tian, Jia Ren and Qili Fei who have supported and helped me throughout my master education. This manuscript is dedicated to my parents, Faqing Zhai and Yulan Zhao
    [Show full text]
  • Genetic Insight Into the Domain Structure and Functions of Dicer-Type Ribonucleases
    International Journal of Molecular Sciences Review Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases Kinga Ciechanowska, Maria Pokornowska and Anna Kurzy ´nska-Kokorniak* Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; [email protected] (K.C.); [email protected] (M.P.) * Correspondence: [email protected]; Tel.: +48-61-852-85-03 (ext. 1264) Abstract: Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
    [Show full text]
  • Cross-Kingdom Small Rnas Among Animals, Plants and Microbes
    cells Review Cross-Kingdom Small RNAs among Animals, Plants and Microbes Jun Zeng 1,2 , Vijai Kumar Gupta 3 , Yueming Jiang 4,5 , Bao Yang 4,5, Liang Gong 4,5,* and Hong Zhu 1,5,* 1 Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; [email protected] 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia; [email protected] 4 Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; [email protected] (Y.J.); [email protected] (B.Y.) 5 Key Laboratory of Post-Harvest Handling of fruits, Ministry of Agriculture, Guangzhou 510650, China * Correspondence: [email protected] (L.G.); [email protected] (H.Z.) Received: 22 March 2019; Accepted: 20 April 2019; Published: 23 April 2019 Abstract: Small RNAs (sRNAs), a class of regulatory non-coding RNAs around 20~30-nt long, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are critical regulators of gene expression. Recently, accumulating evidence indicates that sRNAs can be transferred not only within cells and tissues of individual organisms, but also across different eukaryotic species, serving as a bond connecting the animal, plant, and microbial worlds. In this review, we summarize the results from recent studies on cross-kingdom sRNA communication. We not only review the horizontal transfer of sRNAs among animals, plants and microbes, but also discuss the mechanism of RNA interference (RNAi) signal transmission via cross-kingdom sRNAs.
    [Show full text]
  • Direct Detection of Circulating Microrna-122 Using Dynamic Chemical Labelling with Single Molecule Detection Overcomes Stability
    bioRxiv preprint doi: https://doi.org/10.1101/777458; this version posted September 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Direct detection of circulating microRNA-122 using dynamic chemical labelling with single molecule detection overcomes stability and isomiR challenges for biomarker qualification Authors: Barbara López-Longarela1*, Emma E. Morrison2*, John D. Tranter2, Lianne Chahman-Vos2, Jean-François Léonard3, Jean-Charles Gautier3, Sébastien Laurent4, AuDe Lartigau3, Eric Boitier3, Lucile Sautier4, PeDro Carmona-Saez5, Jordi Martorell-Marugan5, Richard J. Mellanby6, Salvatore Pernagallo1, Hugh Ilyine1, David M. Rissin7, David C. Duffy7, James W. Dear2♯ & Juan J. Díaz-Mochón1,5♯. * co-first author ♯ co-corresponding author Affiliations: 1. DestiNA Genomics LtD., EDinburgh, UniteD KingDom; DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), AveniDa De la Innovación 1, EDificio BIC, Armilla, Granada, Spain. 2. Pharmacology, Therapeutics anD Toxicology, Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. 3. Sanofi R&D, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France. 4. Sanofi R&D, 371 Rue du Pr. J. Blayac, 34184 Montpellier, France. 5. Bioinformatics Unit, Centre for Genomics anD Oncological Research: Pfizer/University of GranaDa/AnDalusian Regional Government, PTS, GranaDa, Spain. 6. The Royal (Dick) School of Veterinary Studies and the Roslin Institute, The Hospital for Small Animals, University of EDinburgh, UK.
    [Show full text]
  • A Role for the RNA-Binding Protein MOS2 in Microrna Maturation in Arabidopsis
    Cell Research (2013) 23:645-657. © 2013 IBCB, SIBS, CAS All rights reserved 1001-0602/13 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis Xueying Wu1, 2, Yupeng Shi2, 5, Jingrui Li2, 6, Le Xu4, Yuda Fang7, Xin Li8, Yijun Qi3, 4 1College of Life Sciences, Beijing Normal University, Beijing 100875, China; 2National Institute of Biological Sciences, Zhong- guancun Life Science Park, Beijing 102206, China; 3Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; 4School of Life Sciences, Tsinghua University, Beijing 100084, China; 5Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; 6College of Biological Sciences, China Agricultural University, Beijing 100193, China; 7Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; 8Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 microRNAs (miRNAs) play important roles in the regulation of gene expression. In Arabidopsis, mature miRNAs are processed from primary miRNA transcripts (pri-miRNAs) by nuclear HYL1/SE/DCL1 complexes that form Dicing bodies (D-bodies). Here we report that an RNA-binding protein MOS2 binds to pri-miRNAs and is involved in efficient processing of pri-miRNAs. MOS2 does not interact with HYL1, SE, and DCL1 and is not localized in D- bodies. Interestingly, in the absence of MOS2, the recruitment of pri-miRNAs by HYL1 is greatly reduced and the localization of HYL1 in D-bodies is compromised. These data suggest that MOS2 promotes pri-miRNA processing through facilitating the recruitment of pri-miRNAs by the Dicing complexes.
    [Show full text]
  • DCL and Associated Proteins of Arabidopsis Thaliana
    International Letters of Natural Sciences Submitted: 2016-10-30 ISSN: 2300-9675, Vol. 61, pp 85-94 Revised: 2016-12-18 doi:10.18052/www.scipress.com/ILNS.61.85 Accepted: 2016-12-19 CC BY 4.0. Published by SciPress Ltd, Switzerland, 2017 Online: 2017-01-10 DCL and Associated Proteins of Arabidopsis thaliana - An Interaction Study Paushali Roy1* and Abhijit Datta2 1Department of Botany, Vidyasagar College, Kolkata, West Bengal, India 2Department of Botany, Jhargram Raj College, Jhargram, West Bengal, India *E-mail address: [email protected] Keywords: RNA interference, Dicer-like protein, DCL- associated proteins, domain-domain interactions. Abstract. During RNA interference in plants, Dicer-like/DCL proteins process longer double- stranded RNA (dsRNA) precursors into small RNA molecules. In Arabidopsis thaliana there are four DCLs (DCL1, DCL2, DCL3, and DCL4) that interact with various associated proteins to carry out this processing. The lack of complete structural-functional information and characterization of DCLs and their associated proteins leads to this study where we have generated the structures by modelling, analysed the structures and studied the interactions of Arabidopsis thaliana DCLs with their associated proteins with the homology-derived models to screen the interacting residues. Structural analyses indicate existence of significant conserved domains that may play imperative roles during protein-protein interactions. The interaction study shows some key domain-domain (including multi-domains and inter-residue interactions) interfaces and specific residue biases (like arginine and leucine) that may help in augmenting the protein expression level during stress responses. Results point towards plausible stable associations to carry out RNA processing in a synchronised pattern by elucidating the structural properties and protein-protein interactions of DCLs that may hold significance for RNAi researchers.
    [Show full text]
  • In Silico Study Predicts a Key Role of RNA-Binding Domains 3 and 4 in Nucleolin-Mirna Interactions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447752; this version posted June 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In silico study predicts a key role of RNA-binding domains 3 and 4 in nucleolin- miRNA interactions. Authors: Avdar San 1,2, Dario Palmieri 3, Anjana Saxena 1,2,4 and Shaneen Singh * 1,2,4 Affiliation: 1Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York 11210 2The Biochemistry PhD program, The Graduate Center of the City University of New York, New York, New York 10016; 3Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, 432104 ; The Biology PhD program, The Graduate Center of the City University of New York, New York, New York 10016 *Correspondence: Corresponding author: Dr. Shaneen Singh, [email protected] http://orcid.org/0000-0002-4003-5756 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447752; this version posted June 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for post-transcriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs).
    [Show full text]