A Complete Bibliography of Publications in the Journal of Mathematical Physics: 2000–2004
Total Page:16
File Type:pdf, Size:1020Kb
A Complete Bibliography of Publications in the Journal of Mathematical Physics: 2000{2004 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 27 March 2021 Version 2.11 Title word cross-reference (1 + 1) [278, 1699, 1816, 365]. (2 + 1) [271, 507, 33, 487, 1110, 1492]. (2m; 2n) 4 [1307]. (2N) [1932]. (3=2) [591]. (5) [777]. (: φ :)2 [1788]. 2 2 2 4 4 (d X=dx )+λ X = 0 [1031]. (λ/4!)(φ1 + φ2)d [813]. (M + N) [1110]. (n) [518]. (N + 1) [1932]. (n ≥ 2) [413]. (p; q) [1744]. (q; h) [573]. 1 + 1 [1100, 759]. 1=2 [699, 642]. 1=N [152]. 1=r [1160]. 1: 1: 2 [1943]. 2 [936, 1777, 1669, 1733, 1636]. 2 + 1 [714, 902, 1290, 906, 381, 759, 926, 795, 124, 1269, 564]. 27 ⊗ 27 [277]. 2N [1317]. 3 [1786]. 3 + 1 [297]. 3nj [1094]. 5 [1091, 1278, 1717]. 78 ⊗ 78 [479]. −− [1169]. 2 [255]. 2F1(a; b; c; x) [827, 611]. N [889]. q [97, 1300, 388]. A (1) q [676, 985]. AM [509]. An [1118]. A4 [1020]. A1 [1858]. An−1 [1753, 1657]. (1) × 3 An−1 [1898]. AB [83]. ADE [1482]. AdS3 [677]. AdS3 S [679]. (2) ¯ AdS7=4=CFT6=3 [680]. Bq;λ(A2 ) [1821]. @ [37, 1093, 365]. bc [148, 770]. BCn [476, 792]. β [1537]. BF [240]. c = 1 [1637]. C∗ [1387, 143, 1806]. Cn C2 4 2 d [189, 405]. C2 [1233]. Cn [476, 792]. [455]. : φ4:[58].CP [1063]. CP +1 [490]. CPN [1275, 1301, 1420]. CPN−1 [1454]. D [894, 669, 1291, 1664, 1035, 1479, 589, 272, 545, 469, 386, 1390, 1180, 676, 1829, 490]. D + 1 [1516, 425]. 1 2 D<2 [613]. d = 2 + 1 [1378]. D = 4 [685]. D = 5 [389]. d2 = 0 [1771]. d3 =0 [1771]. D4 [1547]. δ [1844, 16, 104, 496, 791, 1235, 1255, 1231]. ∆ = −1=2 0 3 [1113]. δ [103, 496]. d ≥ 4 [316]. E(1; 1) [1813]. E [1901]. E6 [277, 479]. E7 (1) [1020]. E8 [1336]. Eκ(2) [195]. Eq(2) [98]. [82]. η [3, 637]. F [258, 1183]. F1 [1339]. F2 [1339]. F3 [1339]. F4 [1443]. G [1752, 1406, 452, 1529]. G2 [136, 1758]. Gr;s [145]. gcN [1654]. gl [383]. GL(2) ⊗ GL(1) [831]. GLh(1j1) [575]. h(1) ⊕ su(2) [989]. H2 [891, 1384]. J [937, 338, 444, 962, 830]. K [1565, 982, 621]. k = −1 [514]. K0(4) [525]. κ [1404]. l [1026]. L2 [341, 34]. Lp [935]. lp [943]. λ [1874]. λl [1645]. ≤ 4 [1918]. LS [844]. M n [1613, 691, 1893, 317, 1428]. M + 1 [1893]. M4 × X2 [353]. CP [1049]. R 2d 3 4 n 4 d [1785]. R [1361]. R [1594, 1785]. R [1519].R Rp [34]. T =Z2 [659]. Z C2 F 1 − p 1 1 1 e−η d N [1696, 82]. [554]. p(η)= = ( + ) 0 [ =( + )] [605]. [759, 1072, 1367]. N = 4 [1156]. P(φ)2 [59]. Uq(A2n−∞) [138]. W1 [1217]. b(1) [1619]. SU(1; 1) [999]. SU(N ) [988]. osp(2=2) [140]. SL(2; R)[22]. sl(n; C) [208]. SO(2n) [286, 327]. SO(3) [384]. Sp(2n; R) [286]. Sp(2n; R) [327]. SU (1; 1)[41].SU (2) [256, 24, 384, 404]. SU (3) [8, 384]. SU (N ) [19]. Uq [sl(2^j)] [304]. GLp;q(1j1) [408]. SL(2; c) [44]. SL(2; c)=GL(1; c) [44]. SL(3; C) [280]. SUµ(2) [195]. U(1) [262]. U(1) [71]. Upq[gl(2=2)] [380]. N =1 [669]. N = 4 [674]. PT [627]. PT [648]. GLp;q(2) [1360]. o(6; C) [1253]. osp(1j2) [782, 1367]. osp(N;M) [769]. sl(2; R) [984]. sl(4; C) [1253]. so(M) [802]. SO(N) [1046]. SO(N;1) [1256]. SOq(3) [963]. Sp(6;R) [1413]. su(1; 1) [1094]. SU(2) [997, 1491]. SU(N) [977]. su(n + 1) [1069]. UOSp(k1=2k2) [1506]. U0(so4) [829]. N [1335, 970, 888, 31, 1343, 691, 1645, 1300, 1606, 450, 675, 942, 1421, 1818, 1, 1256, 1250, 1369, 214, 1042, 701, 1193, 571, 820, 1234, 1425, 751, 1046, 949, 668, 511, 1217, 1781, 601, 1535, 1450, 658, 1094, 786, 1065, 947, 1553, 713, 1229, 789, 388, 1069]. N = 2 [42, 710, 255, 352, 256, 127]. N =2; 3; 4 [547]. N = 3 [1250, 1369]. nj [190]. O(4) [954]. o(4; C) [1764]. o(5; C) [729]. O∗ [1059]. ! [1864]. osp(1j2) [1295]. OSp(3; 1j2) [250]. ? OSph(2=1) [1724]. P [1874, 10, 371, 40, 835]. p1 [316]. p2 [316]. PN [64]. 4 4 [609]. φ [243]. φ [497]. φ2 [1632]. PT [877, 1029, 1102, 1314, 1906]. q [640, 626, 449, 1861, 829, 578, 1902, 46, 801, 431, 333]. QED4 [693]. R [1272, 634, 663, 1579, 35, 140, 1296, 129]. R8 [1063]. S [1026]. S(g) [1788]. 1 + 2 2 S × R [153]. S [1460, 891, 1384]. S −→ Gr(2;N) [977]. S3 [676]. 2 Sf ⊃ Sf−1 [1248]. sech [1779]. sl [449]. sl(2) [923]. SL(2; R) [1744, 1636]. SL(2;R) [677, 676]. sl(m=n) [48, 289, 832]. sl(n + 1) [1095]. sl(n; C) [932, 13]. sl2 [626]. sln [1568]. so(2; 1) [1795, 1947]. SO(2; 2) [526, 1704]. SO(3) [694, 1223, 1799]. so(4) [661]. SO(5) [1799]. SO(8) [1443]. SO(9) [1443]. SO(N) [949]. SO(N;1) [1]. SOo(2p; 2) [47]. sp(4; C) [729]. ? [972]. SU(1; 1) [1701]. SU(1j3) [1610]. SU(2) [556, 1811, 430, 570, 1639, 636, 444, 962]. SU(2n) [1708]. SU(3) [73, 1189, 1190, 556, 1811, 750, 636, 1410, 1837]. SU(3j1) [1610]. SU(4) [1231]. SU(N) [9, 49, 841, 563, 644, 1759]. SUq(2) 2 4 [1698]. T [1482, 434, 338]. T =Z4 [1688]. T [1650].p ~ [243]. U(SU(2)) [1262]. res U(n) [1814]. U (sl2) [801]. Uq [1568, 449, 1026, 383]. uq(2) [444, 962]. 3 ^ 0 Uq(Cn(1)) [1935]. Uq(sln) [247]. Uq(sl n+1 ;tor) [413]. Uq(sl2;tor) [634]. Uq(so3) [522]. Uq[gl(mjn)] [1274]. Uq[sl(N^ j1)] [338]. Uq[gl(2^j2)] [149]. Uq[gl(N^jN)] (1) [149]. Uq[sl(n +1jm)] [967]. Uqsl(2j2) [1579]. Uq!0(sl(2)) [331]. Uqso(5) 2 2 [1305]. UOSp(k1=2k2) [1852]. V [514]. V (rij )=g(rij ) [1818]. W [133]. W [1912]. W1 [1388]. XXZ [1475, 247]. Y (osp(mj2n)) [1272]. Y (sln) [1648]. ζ [693]. z ! (αz + β)=(γz + δ) [1902]. -adic [1874]. -algebra [1864]. -algebras [133, 1059, 1217]. -Bernoulli [82]. -body [970, 888, 1606, 214]. -boson [1421, 942, 1818]. -branes [243, 10, 371, 40, 835, 317, 669]. -bundles [1455]. -categories [143, 1858]. -channel [1893]. -coefficients [1094]. -component [1450, 31, 1110]. -conformal [1861]. -constraint [982]. -cosymplectic [621]. -deformation [1902]. -deformations [573]. -deformed [626, 829, 333]. -dimensional [507, 425, 936, 1180, 33, 658, 124, 487, 1110, 297, 1065, 1816, 1829, 1492, 1229, 365, 564, 1932, 1291, 571, 469, 386]. -dimensions [1269]. -distributed [1565]. -dressing [1093, 365]. -extended [820]. -Fock [801, 333]. -fold [490, 789, 450, 1072]. -function [791, 1231, 1613]. -generalized [452]. -geometries [1669, 1786]. -Hahn [46]. -Hamiltonian [511]. -harmonic [578]. -hypergeometric [449]. -invariant [1529, 262]. -invariants [3, 637]. -Jacobi [1537]. -Laplace [578]. -manifolds [1091, 1278]. -mapping [243]. -matrices [140, 1579]. -matrix [1272, 35, 1296, 129, 937, 434]. -model [1874]. -modules [1387]. -operators [663]. -order [609]. -oscillators [640]. -particle [1234]. -percolation [83]. -piece [1317]. -plane [1861]. -point [1335, 1367]. -potential [1160]. -product [972]. -quantum [1632]. -qubit [1781]. -sphere [1256, 103, 104, 1235, 1255, 1]. -symmetric [627, 954, 648]. -symmetry [1029, 1102, 1906]. -symplectic [786, 1752]. -system [770]. -systems [148]. -theory [497, 691, 240, 1428]. -torus [1553, 1069]. -type [496]. -wave [713, 589, 759]. 1/2 [1294]. 12- [962]. 1D [1352]. 2-dimensional [567]. 28 [1256]. 2D [1271, 57]. 33 [492]. 35 [637]. 36 [1580]. 38 [1810]. 39 [207, 73, 293]. 3d [1207]. 40 [49, 737, 835, 738, 208, 209]. 41 [552, 491, 459, 339, 340, 1254, 774, 553, 638, 554, 664, 1729, 493, 206]. 42 [1811, 936, 739, 1400]. 43 [1757, 1756, 1096, 1676, 1542, 1421, 1948, 1369, 1278, 1066, 1310, 1340, 1954, 1945, 1067]. 44 [1951, 1420, 1399, 1944, 1950, 1444]. 45 [1755, 1952, 1955, 1953, 1949, 1946, 1947]. 5D [814, 1010]. 4 9- [830]. = [1390, 1535, 1597, 1425]. Abelian [420, 672, 240, 1033, 1647, 675, 667, 1287]. Ablowitz [1521, 1926]. Abrikosov [793]. Absence [79, 164, 983]. Absolute [348, 742, 414]. absolutely [1712, 468]. absorption [482]. according [1718]. account [1415]. accurate [1426]. acoustic [1366, 1212]. Acoustics [544]. across [1281, 1195]. acting [1154]. action [693, 316, 1411, 696, 344, 1825]. actions [625, 819, 671]. Addendum [1340, 1887, 1444]. Adding [959, 82]. Additional [1451]. additive [1186, 1187, 1677]. Additivity [1147, 1127, 1129, 1128]. Adiabatic [1751, 1068, 866, 1208, 1474, 246]. adic [1874]. Adjoint [438, 1318, 174, 1738, 1511, 485, 515, 335]. adjointness [658, 768]. admit [1079]. AdS [1634, 675]. AdS/CFT [675]. AdS3 [678]. advection [1327]. affine [626, 1471, 1276, 1935, 373, 1210, 472, 1346]. Aharonov [612, 1511, 993, 557, 1626, 298, 562, 1433]. AKNS [1048, 1489, 1110, 1524, 511]. AKS [1805]. algebra [989, 587, 42, 1806, 723, 1390, 824, 1544, 1205, 1233, 1598, 522, 829, 10, 835, 138, 728, 1864, 1935, 1619, 633, 661, 1673, 413, 634, 1637, 786, 1547, 525, 1829, 662, 1067, 880, 1236, 290, 950, 1795, 1947, 769, 1115]. Algebraic [1059, 266, 481, 778, 34, 284, 1807, 1510, 507, 895, 1106, 52, 1412, 426, 343, 377, 1922, 1335, 1702, 966, 22, 1674, 1439, 1695, 1808, 803, 1296, 1410, 586, 1528, 1703].