Mutational Profile of KIT and PDGFRA Genes in Gastrointestinal Stromal Tumors in Peruvian Samples

Total Page:16

File Type:pdf, Size:1020Kb

Mutational Profile of KIT and PDGFRA Genes in Gastrointestinal Stromal Tumors in Peruvian Samples 1130-0108/2015/107/2/72-78 REVISTA ESPAÑOLA DE ENFERMEDADES DIGESTIVAS REV ESP ENFERM DIG (Madrid COPYRIGHT © 2015 ARÁN EDICIONES, S. L. Vol. 107, N.º 2, pp. 72-78, 2015 ORIGINAL PAPERS Mutational profile of KIT and PDGFRA genes in gastrointestinal stromal tumors in Peruvian samples José Buleje1, Óscar Acosta1, María Guevara-Fujita1, Yanina Enriquez2, Luis Taxa2,3, Enrique Machicado4, Frank Lizaraso-Caparó1 and Ricardo Fujita1 1Centro de Genética y Biología Molecular. Facultad de Medicina Humana.Universidad de San Martín de Porres. Lima, Perú. 2Laboratorio de Patología. Facultad de Medicina Humana. Universidad de San Martín de Porres. Lima, Perú. 3Departamento de Patología. Instituto Nacional de Enfermedades Neoplásicas- INEN. Lima, Perú. 4Department of General and Digestive Surgery. Hospital A. Loayza. Lima, Perú ABSTRACT INTRODUCTION Introduction: Gastrointestinal stromal tumors (GISTs) are Gastrointestinal stromal tumors (GIST) are the most mesenchymal neoplasms usually caused by somatic mutations in the genes KIT (c-kit) or PDGFRA. Mutation characterization has become common mesenchymal tumors of the gastrointestinal an important exam for GIST patients because it is useful in predicting tract (1). The estimated incidence of GIST is 15 cases per the response to the inhibitors of receptor tyrosine kinase (RTK). million in the general population, and the median age at Objectives: The aim of this study was to determine the presentation is 60 years (2). The most common sites of frequency of KIT and PDGFRA mutations in 25 GIST samples origin for GIST are the stomach (39-70 %) and small intes- collected over two years at two national reference hospitals in Peru. There were 21 samples collected from the Instituto Nacional tine (31-45 %), but GISTs may appear anywhere along the de Enfermedades Neoplásicas (INEN, national cancer center) and gastrointestinal tract or within the abdomen as extra-gas- 4 samples collected from Hospital A. Loayza. trointestinal tumors (3). Methods and materials: In this retrospective study, we Approximately 95 % of GIST tumors express the tyro- performed polymerase chain reaction (PCR) amplification and deoxyribonucleic acid (DNA) sequencing of KIT (exons 9, 11, sine kinase KIT receptor, also called CD117, which is 13, and 17) and PDGFRA (exons 12 and 18) genes in 20 FFPE now accepted as the most specific immunohistochemical (formalin-fixed, paraffin-embedded) and 5 frozen GIST samples. marker for GIST (4,5). Other markers, such as CD34 and Results: We report 21 mutations, including deletions, Desmin that show variable expression (70 % and 5 %, duplications, and missense, no mutations in 2 samples, and 2 respectively) are also used to confirm the diagnosis of samples with no useful DNA for further analysis. Eighty-six percent of these mutations were located in exon 11 of KIT, and 14 % were GIST tumors (6-8). located in exon 18 of PDGFRA. In recent years, it has been established that 75 % to Conclusions: Our study identified mutations in 21 out of 80 % of GISTs harbor mutations in the KIT gene (c-kit). 25 GIST samples from 2 referential national hospitals in Peru, Activating mutations of the KIT gene in GIST occur in and the mutation proportion follows a global tendency observed exons 9, 11, 13, and 17 corresponding to the juxtamem- from previous studies (i.e., the majority of samples presented KIT mutations followed by a minor percentage of PDGFRA mutations). brane (JM) intracellular regulatory domain, the extram- This study presents the first mutation data of the KIT and PDGFRA embrane domain, and the two intracytoplasmic tyrosine genes from Peruvian individuals with GIST. kinase domains, respectively (9). Mutations in the JM domain affect its autoregulatory function and promote Key words: KIT. PDGFRA. Gastrointestinal stromal tumors. spontaneous kinase activation (10). The location of KIT Mutational analysis. Received: 31-07-2013 Accepted: 10-11-2014 Correspondence: José Luis Buleje Sono. Centro de Genética y Biología Buleje J, Acosta Ó, Guevara-Fujita M, Enriquez Y, Taxa L, Molecular. Facultad de Medicina Humana. Universidad de San Martín de Machicado E, Lizaraso-Caparó F, Fujita R. Mutational profile Porres. Av. Alameda del Corregidor 1531. Urb Los Sirius, Las Viñas. La of KIT and PDGFRA genes in gastrointestinal stromal tumors in Molina, Lima 12. Perú Peruvian samples. Rev Esp Enferm Dig 2015;107:72-78. e-mail: [email protected] Vol. 107, N.º 2, 2015 MUTATIONAL PROFILE OF KIT AND PDGFRA GENES IN GASTROINTESTINAL STROMAL TUMORS IN PERUVIAN SAMPLES 73 mutations is important for pharmacological treatment; for Human Subjects Committee policy of the National Health example, it is well known that a mutation in exon 11 of the Institute of Peru. KIT gene is associated with a better response to treatment with the inhibitor imatinib (Gleevec®), the potent inhib- itor of receptor tyrosine kinase (RTK), and a decreasing Deoxyribonucleic acid (DNA) extraction response for mutations in exons 9, 13, 17, and wild-type tumors (9). Genomic DNA was extracted using the High Pure PCR Another member of the RTK family of genes, PDG- template Preparation Kit (ROCHE) following the manu- FRA, is also associated with the pathogenesis of GIST, facturer’s protocol. A QubitTM fluorometer (InvitrogenTM) and the mutations in KIT are mutually exclusive with was used to quantify the DNA. In 23 samples in which the those in PDGFRA (11). Mutations in the PDGFRA gene quality and the quantity of DNA were appropriate, the target are observed in 7-12 % of cases (12), and the most fre- exons were amplified. In two of the FFPE tissue samples, the quent mutations are observed in exons 12 (regulatory amplification was not successful due to poor DNA quality. juxtamembrane domain) and 18 (second tyrosine kinase The DNA was resuspended in a TE10:1 buffer, coded, and domain). kept at 4 °C until use. The presence, nature, and location of the KIT/PDG- FRA oncogenic mutations may translate into differenc- es in tumor aggressiveness and influence the likelihood Mutational analysis of a clinical response to imatinib, a selective tyrosine kinase inhibitor able to interfere with the activation of Amplification of target exons and mutational analysis KIT and PDGFR receptors by competing with ATP in of KIT and PDGFRA genes the ATP-binding pocket (13,14). Generally, patients with tumors carrying KIT exon 11 mutations respond much The coding sequence and intron-exon boundaries for better to treatment in comparison with tumors carrying exons 9, 11, 13, and 17 of the KIT gene and exons 12 and exon 9 mutations (15). However, GISTs with mutations 18 of the PDGFRA gene were amplified by PCR using in exon 11 could develop resistance to imatinib treatment primers and the conditions that were optimized in others if subsequent secondary point mutations appear, which studies (26,38). The PCRs were performed in a 25 μl total suggests an important escape mechanism for tumor cells reaction volume consisting of 50 ng of the DNA template. with a KIT-dependent proliferation mechanism temporar- The PCR mix contained 10 pmol of each primer, 0.5 U of ily inhibited by imatinib (15). Taq polymerase (Thermo Scientific®), buffer 1X, 0.2 mM In this retrospective study, we attempted to determine of each dNTP, and 1.5 mM of MgCl2. The cycling condi- the frequency of KIT and PDGFRA mutations in GIST tions for the PCR amplification were 95 °C for 5 minutes, samples collected from two national referential hospitals 35 cycles of 95 °C for 45 seconds, annealing temperatures in Peru (INEN and A. Loayza Hospital). This is the first of 55 °C to 57 °C for 45 seconds (Table I), and 72 °C study of this type conducted in Peru, and the aim is to for 1 minute followed by a final elongation step at 72 °C encourage a clinical approach on the molecular aspects for 10 minutes. The PCR products were then subjected to of GISTs in order to provide adequate treatment for lon- electrophoresis on 2 % agarose gels and observed under an ger survival and a better quality of life for patients with ultraviolet light after ethidium bromide staining. these tumors. DNA sequencing MATERIAL AND METHODS PCR amplicons were purified using a QIAquick PCR Samples Purification Kit (QIAGEN) and sequenced in both directions using the BigDye Terminator version 3.1 Cycle sequencing A total of 25 GIST samples collected over a two-year kit and the 3500 Genetic Analyzer (Applied Biosystems). The period were used for this retrospective study. All samples generated DNA sequences were analyzed with a Sequencing were determined by immunohistochemistry as CD117 pos- Analysis software 5.1 (Applied Biosystems) and then aligned itive. Five samples were obtained from frozen tissue, and using the Basic Local Alignment Search Tool (BLAST) twenty were derived from formalin-fixed, paraffin-embed- (http://blast.ncbi.nlm.nih.gov/Blast.cgi). All mutations were ded (FFPE) blocks. Coded tumor samples were obtained identified based on the National Center for Biotechnology from two different national reference hospitals (21 from Information database of genetic variation. The reference INEN and 4 from A. Loayza Hospital). This study was sequences used to describe the mutations were NM_000222 conducted with an ethical clearance of IRBs of partici- and NM_0062056 for the KIT and PDGFRA genes, respec- pating hospitals and according to the guidelines of surgi- tively. The numbering of specific mutations and SNPs was cal procedures for tumor removal from the Research on referenced from http://www.ensembl.org as of February 2014. REV ESP ENFERM
Recommended publications
  • Platelet-Derived Growth Factor Receptor Expression and Amplification in Choroid Plexus Carcinomas
    Modern Pathology (2008) 21, 265–270 & 2008 USCAP, Inc All rights reserved 0893-3952/08 $30.00 www.modernpathology.org Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas Nina N Nupponen1,*, Janna Paulsson2,*, Astrid Jeibmann3, Brigitte Wrede4, Minna Tanner5, Johannes EA Wolff 6, Werner Paulus3, Arne O¨ stman2 and Martin Hasselblatt3 1Molecular Cancer Biology Program, University of Helsinki, Helsinki, Finland; 2Department of Oncology–Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden; 3Institute of Neuropathology, University Hospital Mu¨nster, Mu¨nster, Germany; 4Department of Pediatric Oncology, University of Regensburg, Regensburg, Germany; 5Department of Oncology, Tampere University Hospital, Tampere, Finland and 6Children’s Cancer Hospital, MD Anderson Cancer Center, Houston, TX, USA Platelet-derived growth factor (PDGF) receptor signaling has been implicated in the development of glial tumors, but not yet been examined in choroid plexus carcinomas, pediatric tumors with dismal prognosis for which novel treatment options would be desirable. Therefore, protein expression of PDGF receptors a and b as well as amplification status of the respective genes, PDGFRA and PDGFRB, were examined in a series of 22 patients harboring choroid plexus carcinoma using immunohistochemistry and chromogenic in situ hybridization (CISH). The majority of choroid plexus carcinomas expressed PDGF receptors with 6 cases (27%) displaying high staining scores for PDGF receptor a and 13 cases (59%) showing high staining scores for PDGF receptor b. Correspondingly, copy-number gains of PDGFRA were observed in 8 cases out of 12 cases available for CISH and 1 case displayed amplification (six or more signals per nucleus). The proportion of choroid plexus carcinomas with amplification of PDGFRB was even higher (5/12 cases).
    [Show full text]
  • Trastuzumab and Pertuzumab in Circulating Tumor DNA ERBB2-Amplified HER2-Positive Refractory Cholangiocarcinoma
    www.nature.com/npjprecisiononcology CASE REPORT OPEN Trastuzumab and pertuzumab in circulating tumor DNA ERBB2-amplified HER2-positive refractory cholangiocarcinoma Bhavya Yarlagadda 1, Vaishnavi Kamatham1, Ashton Ritter1, Faisal Shahjehan1 and Pashtoon M. Kasi2 Cholangiocarcinoma is a heterogeneous and target-rich disease with differences in actionable targets. Intrahepatic and extrahepatic types of cholangiocarcinoma differ significantly in clinical presentation and underlying genetic aberrations. Research has shown that extrahepatic cholangiocarcinoma is more likely to be associated with ERBB2 (HER2) genetic aberrations. Various anti-HER2 clinical trials, case reports and other molecular studies show that HER2 is a real target in cholangiocarcinoma; however, anti-HER2 agents are still not approved for routine administration. Here, we show in a metastatic cholangiocarcinoma with ERBB2 amplification identified on liquid biopsy (circulating tumor DNA (ctDNA) testing), a dramatic response to now over 12 months of dual-anti-HER2 therapy. We also summarize the current literature on anti-HER2 therapy for cholangiocarcinoma. This would likely become another treatment option for this target-rich disease. npj Precision Oncology (2019) 3:19 ; https://doi.org/10.1038/s41698-019-0091-4 INTRODUCTION We present a 71-year-old female diagnosed with metastatic Cholangiocarcinoma (CCA) is a lethal tumor arising from the CCA with ERBB2 (HER2) 3+ amplification determined by circulating epithelium of the bile ducts that most often presents at an tumor DNA (ctDNA)
    [Show full text]
  • Original Article ERBB3, IGF1R, and TGFBR2 Expression Correlate With
    Am J Cancer Res 2018;8(5):792-809 www.ajcr.us /ISSN:2156-6976/ajcr0077452 Original Article ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells Kang Song1,2*, Ye Yuan1,2*, Yong Lin1,2, Yan-Xia Wang1,2, Jie Zhou1,2, Qu-Jing Gai1,2, Lin Zhang1,2, Min Mao1,2, Xiao-Xue Yao1,2, Yan Qin1,2, Hui-Min Lu1,2, Xiang Zhang1,2, You-Hong Cui1,2, Xiu-Wu Bian1,2, Xia Zhang1,2, Yan Wang1,2 1Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; 2Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400038, China. *Equal contributors. Received April 6, 2018; Accepted April 9, 2018; Epub May 1, 2018; Published May 15, 2018 Abstract: Glioma, the most prevalent malignancy in brain, is classified into four grades (I, II, III, and IV), and grade IV glioma is also known as glioblastoma multiforme (GBM). Aberrant activation of receptor tyrosine kinases (RTKs), including platelet-derived growth factor receptor (PDGFR), are frequently observed in glioma. Accumulating evi- dence suggests that PDGFR plays critical roles during glioma development and progression and is a promising drug target for GBM therapy. However, PDGFR inhibitor (PDGFRi) has failed in clinical trials, at least partially, due to the activation of other RTKs, which compensates for PDGFR inhibition and renders tumor cells resistance to PDGFRi. Therefore, identifying the RTKs responsible for PDGFRi resistance might provide new therapeutic targets to syner- getically enhance the efficacy of PDGFRi.
    [Show full text]
  • PDGFRA Gene Rearrangements Are Frequent Genetic Events in PDGFRA-Amplified Glioblastomas
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas Tatsuya Ozawa,1,2 Cameron W. Brennan,2,3,12 Lu Wang,4 Massimo Squatrito,1,2 Takashi Sasayama,5 Mitsutoshi Nakada,6 Jason T. Huse,4 Alicia Pedraza,3 Satoshi Utsuki,7 Yoshie Yasui,7 Adesh Tandon,8 Elena I. Fomchenko,1,2 Hidehiro Oka,7 Ross L. Levine,9 Kiyotaka Fujii,7 Marc Ladanyi,4 and Eric C. Holland1,2,10,11 1Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 2Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 3Department of Neurosurgery and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 4Department of Pathology and Human Oncology, Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 5Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan; 6Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan; 7Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan; 8Department of Neurosurgery, The Albert Einstein College of Medicine, Bronx, New York 10467, USA; 9Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 10Department of Surgery, Neurosurgery, and Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA Gene rearrangement in the form of an intragenic deletion is the primary mechanism of oncogenic mutation of the epidermal growth factor receptor (EGFR) gene in gliomas.
    [Show full text]
  • Intratumoral Heterogeneity of Receptor Tyrosine Kinases EGFR and PDGFRA Amplification in Glioblastoma Defines Subpopulations with Distinct Growth Factor Response
    Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response Nicholas J. Szerlipa, Alicia Pedrazab, Debyani Chakravartyb, Mohammad Azimc, Jeremy McGuirec, Yuqiang Fangd, Tatsuya Ozawae, Eric C. Hollande,f,g,h, Jason T. Hused,h, Suresh Jhanward, Margaret A. Levershac, Tom Mikkelseni, and Cameron W. Brennanb,f,h,1 aDepartment of Neurosurgery, Wayne State University Medical School, Detroit, MI 48201; bHuman Oncology and Pathogenesis Program, cMolecular Cytogenetic Core Laboratory, dDepartment of Pathology, eCancer Biology and Genetics Program, fDepartment of Neurosurgery, gDepartment of Surgery, and hBrain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and iDepartments of Neurology and Neurosurgery, Henry Ford Health System, Detroit, MI 48202 Edited by Webster K. Cavenee, Ludwig Institute, University of California at San Diego, La Jolla, CA, and approved December 29, 2011 (received for review August 29, 2011) Glioblastoma (GBM) is distinguished by a high degree of intra- demonstrated in GBM and has been shown to mediate resistance tumoral heterogeneity, which extends to the pattern of expression to single-RTK inhibition through “RTK switching” in cell lines and amplification of receptor tyrosine kinases (RTKs). Although (11). Although such RTK coactivation has been measured at the most GBMs harbor RTK amplifications, clinical trials of small-mole- protein level, its significance in maintaining tumor cell sub- cule inhibitors targeting individual RTKs have been disappointing to populations has not been established. date. Activation of multiple RTKs within individual GBMs provides We have previously reported prominent PDGFR activation by a theoretical mechanism of resistance; however, the spectrum of platelet-derived growth factor beta (PDGFB) ligand in GBMs EGFR MET fi functional RTK dependence among tumor cell subpopulations in with or ampli cation (12).
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Unveiling the Molecular Mechanisms Regulating the Activation of the Erbb Family Receptors at Atomic Resolution Through Molecular Modeling and Simulations
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2011 Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Andrew Shih University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biophysics Commons, Other Biomedical Engineering and Bioengineering Commons, and the Structural Biology Commons Recommended Citation Shih, Andrew, "Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations" (2011). Publicly Accessible Penn Dissertations. 302. https://repository.upenn.edu/edissertations/302 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/302 For more information, please contact [email protected]. Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Abstract The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signaling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of the four members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2)
    [Show full text]
  • Platelet-Derived Growth Factor Isoform Expression in Carbon Tetrachloride
    Laboratory Investigation (2008) 88, 1090–1100 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury Erawan Borkham-Kamphorst1, Evgenia Kovalenko1, Claudia RC van Roeyen2, Nikolaus Gassler3, Michael Bomble1, Tammo Ostendorf 2,Ju¨rgen Floege2, Axel M Gressner1 and Ralf Weiskirchen1 Platelet-derived growth factor (PDGF) has an essential role in liver fibrogenesis, as PDGF-B and -D both act as potent mitogens on culture-activated hepatic stellate cells (HSCs). Induction of PDGF receptor type-b (PDGFRb) in HSC is well documented in single-dose carbon tetrachloride (CCl4)-induced acute liver injury. Of the newly discovered isoforms PDGF- C and -D, only PDGF-D shows significant upregulation in bile duct ligation (BDL) models. We have now investigated the expression of PDGF isoforms and receptors in chronic liver injury in vivo after long-term CCl4 treatment and demonstrated that isolated hepatocytes have the requisite PDGF signaling pathways, both in the naive state and when isolated from CCl4-treated rats. In vivo, PDGF gene expression showed upregulation of all PDGF isoforms and receptors, with values peaking at 4 weeks and decreasing to near basal levels by 8 and 12 weeks. Interestingly, PDGF-C increased significantly when compared to BDL-models. PDGF-A, PDGF-C and PDGF receptor type-a (PDGFRa) correlated closely with in- flammation and steatosis. Immunohistochemistry revealed expression of PDGF-B, -C and -D in areas corresponding to centrilobular necrosis, inflammation and fibrosis, whereas PDGF-A localized in regenerative hepatocytes. PDGFRb was identified along the fibrotic septa, whereas PDGFRa showed positive staining in fibrotic septa and regenerative hepa- tocytes.
    [Show full text]
  • Original Article C-Kit and PDGFRA Gene Mutations in Triple Negative Breast Cancer
    Int J Clin Exp Pathol 2014;7(7):4280-4285 www.ijcep.com /ISSN:1936-2625/IJCEP0000901 Original Article C-kit and PDGFRA gene mutations in triple negative breast cancer Yun Zhu1, Yan Wang3, Bing Guan1, Qiu Rao1, Jiandong Wang1, Henghui Ma1, Zhihong Zhang2, Xiaojun Zhou1 1Department of Pathology, Clinical School of Medical College of Nanjing University Nanjing Jinling Hospital, Nan- jing 210002, China; 2Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; 3Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China Received May 26, 2014; Accepted June 20, 2014; Epub June 15, 2014; Published July 1, 2014 Abstract: In this study, we evaluated C-kit immunohistochemical expression and C-kit and platelet derived growth factor receptor A (PDGFRA) gene mutations in triple negative breast cancer. 171 cases were analyzed by immunohis- tochemical staining for the expression of C-kit and 45 cases, including 10 C-kit negative cases and 35 C-kit positive cases, were performed for C-kit gene mutations in exons 9, 11, 13 and 17 and PDGFRA gene mutations in exons 12 and 18. C-kit expression was detected in 42.1% of triple negative breast cancers. Only 1 activating mutation was de- tected in exon 11 of C-kit gene in 1 case. No activating mutations were found in the other 44 cases. C-kit expression is a frequent finding in triple negative breast cancers; 1 activating mutation which was also found in gastrointestinal stromal tumors was detected; a few cases might benefit from imatinib.
    [Show full text]
  • Chondroitin Sulfate Synthase 1 Enhances Proliferation Of
    Liao et al. Oncogenesis (2020) 9:9 https://doi.org/10.1038/s41389-020-0197-0 Oncogenesis ARTICLE Open Access Chondroitin sulfate synthase 1 enhances proliferation of glioblastoma by modulating PDGFRA stability Wen-Chieh Liao1,2,Chih-KaiLiao1,2,To-JungTseng1,2,Ying-JuiHo3, Ying-Ru Chen1,Kuan-HungLin1, Te-Jen Lai4,5, Chyn-Tair Lan1,2,Kuo-ChenWei6,7 and Chiung-Hui Liu1,2 Abstract Chondroitin sulfate synthases, a family of enzyme involved in chondroitin sulfate (CS) polymerization, are dysregulated in various human malignancies, but their roles in glioma remain unclear. We performed database analysis and immunohistochemistry on human glioma tissue, to demonstrate that the expression of CHSY1 was frequently upregulated in glioma, and that it was associated with adverse clinicopathologic features, including high tumor grade and poor survival. Using a chondroitin sulfate-specific antibody, we showed that the expression of CHSY1 was significantly associated with CS formation in glioma tissue and cells. In addition, overexpression of CHSY1 in glioma cells enhanced cell viability and orthotopic tumor growth, whereas CHSY1 silencing suppressed malignant growth. Mechanistic investigations revealed that CHSY1 selectively regulates PDGFRA activation and PDGF-induced signaling in glioma cells by stabilizing PDGFRA protein levels. Inhibiting PDGFR activity with crenolanib decreased CHSY1- induced malignant characteristics of GL261 cells and prolonged survival in an orthotopic mouse model of glioma, which underlines the critical role of PDGFRA in mediating the effects of CHSY1. Taken together, these results provide fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; information on CHSY1 expression and its role in glioma progression, and highlight novel insights into the signi cance of CHSY1 in PDGFRA signaling.
    [Show full text]
  • Pdgfra) Is Deleted in the Mouse Patch (Ph) Mutation (Development/Dominant Spotting/Linkage Analysis/Human Homolog) DENNIS A
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 6-10, January 1991 Genetics Platelet-derived growth factor receptor a-subunit gene (Pdgfra) is deleted in the mouse patch (Ph) mutation (development/dominant spotting/linkage analysis/human homolog) DENNIS A. STEPHENSON*, MARK MERCOLAt, ELIZABETH ANDERSON*, CHIAYENG WANGt, CHARLES D. STILESt, DANIEL F. BOWEN-POPEt, AND VERNE M. CHAPMAN*§ *Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263; tDivision of Cellular and Molecular Biology, Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and :Department of Pathology, University of Washington, Seattle, WA 98195 Communicated by M. F. Lyon, October 1, 1990 (receivedfor review July 30, 1990) ABSTRACT Platelet-derived growth factor receptors are Presumptive homozygotes, produced in crosses between composed of two subunits (a and (3) that associate with one heterozygotes, display gross anatomical abnormalities and another to form three functionally active dimeric receptor die midway through gestation (7). The Ph locus was shown to species. The two subunits are encoded by separate loci in be distinct from the W locus by both complementation and humans and other species. In this study, we used conventional recombinational linkage analysis (7). When Ph heterozygotes interspecific backcross mapping and an analysis ofa deletional were crossed to viable dominant spotting (W") heterozy- mutation to establish close linkage between the a-subunit gene gotes, no offspring with the characteristic black-eyed phe- (Pdgfra) and the dominant spotting (W) locus on mouse chro- notype were observed that might have suggested allelism. mosome 5.
    [Show full text]
  • Novel Somatic Genetic Variants As Predictors of Resistance to EGFR-Targeted Therapies in Metastatic Colorectal Cancer Patients
    cancers Article Novel Somatic Genetic Variants as Predictors of Resistance to EGFR-Targeted Therapies in Metastatic Colorectal Cancer Patients Pau Riera 1,2,3,4,5,* , Benjamín Rodríguez-Santiago 1,4,5, Adriana Lasa 1,4,5, Lidia Gonzalez-Quereda 1,4,5 , Berta Martín 6, Juliana Salazar 7 , Ana Sebio 6, Anna C. Virgili 6, Jordi Minguillón 1,4,5,8, Cristina Camps 1,3,4, Jordi Surrallés 1,4,5,8 and David Páez 5,6,* 1 Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; [email protected] (B.R.-S.); [email protected] (A.L.); [email protected] (L.G.-Q.); [email protected] (J.M.); [email protected] (C.C.); [email protected] (J.S.) 2 Pharmacy Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain 3 Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain 4 Join Research Unit on Genomic Medicine UAB-IR Sant Pau, Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain 5 U705 and U745, ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), 08041 Barcelona, Spain 6 Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; [email protected] (B.M.); [email protected] (A.S.); [email protected] (A.C.V.) 7 Translational Medical Oncology Laboratory, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; [email protected] 8 Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain * Correspondence: [email protected] (P.R.); [email protected] (D.P.); Tel.: +34-935537464 (P.R.); +34-935535638 (D.P.); Fax: +34-935537287 (P.R.); +34-935535769 (D.P.) Received: 18 June 2020; Accepted: 6 August 2020; Published: 11 August 2020 Abstract: Background: About 40% of RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients undergoing anti-EGFR-based therapy have poor outcomes.
    [Show full text]