Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts December 5th-7th, 2019 University of Coimbra (Pólo II) CONGRESS OF MICROBIOLOGY AND BIOTECHNOLOGY 2019 BOOK OF ABSTRACTS Summary Organizing Committee……………………………………………………………..………………………3 Scientific Committee………………………………………………………………………………….……3 Executive Committee………………………………………………………………………………………4 Technical Secretariat………………………………………………………………………………………4 Plenary Presentations…………………………………………………………………………….……….5 Keynote Presentations………………………………………………………………………..…………..11 Oral Presentations…………………………………………………………………………….……..…….24 Flash & Poster Presentations……………………………………………………………………….……66 2 Organizing Committee Co-chair: Paula V. Morais (CEMMPRE, UC) Co-chair: Jorge Rocha (CIEPQPF, UC) Teresa Gonçalves (CNC, UC) Gabriela Silva (CNC, UC) Scientific Committee Ana Teresa Caldeira (HERCULES, UE) Arsénio Fialho (IST, UL) Ana Azevedo (IST, UL) Ana Cristina Dias Cabral (UBI) Artur Alves (CESAM, UA) Cecília Arraiano (ITQB, UNL) Cecília Roque (UNL) Célia Manaia (ESB, UCP) Cecília Leão (ECS, UM) Constança Pomba (UL) Eugénio Ferreira (CEB, UM) Francisco Gírio (LNEG) Gabriel Monteiro (IST, UL) Hermínia Lencastre (ITQB, UNL) Isabel Gordo (IGC) Isabel Sá Correia (IST, UL) João Queiroz (UBI) Joaquim Cabral (IST, UL) Jorge Pedrosa (ICVS, UM) José Paulo Mota (UNL) José Paulo Sampaio (UCIBIO, UNL) José Teixeira (CEB , UM) Lucília Domingues (CEB, UM) Luísa Peixe (UP) Madalena Alves (CEB, UM) Manuel A. Coimbra (CEB, UA) Manuela Pintado (ESB, UCP) Mara Freire (CICECO, UA) Margarida Casal (CBMA, UM) Maria Ascensão Reis (UNL) Miguel Prazeres (IST, UL) Miguel Teixeira (IST, UNL) Miguel Viveiros (IHMT, UNL) Milton Costa (CNC, UC) Nelson Lima (CEB, UM) Paula V. Morais (CEMMPRE, UC) Pedro Moradas Ferreira (ICBAS, UP) Raquel Aires Barros (IST, UL) Teresa Crespo (ITQB, UNL) Vitor Vasconcelos (CIIMAR, UP) 3 Executive Committee Ana Paula Chung, PhD Carina Coimbra, Msc Catarina Marques, Msc Diogo Neves Proença, PhD Joana Caldeira, Msc Mariana Almeida, PhD Pedro Farias, Msc Rita Branco, PhD Roberta Lordelo, Msc Romeu Francisco, PhD UC Department of Life Sciences undergraduate students PCO Secretariat Organideia – Organização Profissional de Congressos, Lda. Coimbra, PORTUGAL Phone: +351 239 801 007 e-Mail: [email protected] 4 Plenary Presentations 3 Plenary I Microbial diversity – a key to success in industry Michael Sauer BOKU – University of Natural Resources and Life Sciences, CD Laboratory for Biotechnology of Glycerol, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria E-mail: [email protected] In our societies pursuit to substitute petroleum as carbon and energy source, industrial microbiology is one jigsaw piece. Microbial conversion of alternative carbon sources, such as plant derived sugars or glycerol into fuels or chemicals of higher value is a promising approach. Many papers are published about a plethora of ideas, which carbon source to convert into what chemical, however very rarely we hear about success stories making it really to the market. The economic constraints for success are harsh and interestingly these constraints are directly translating into constraints for the bioprocess. Ideally, high product titers with very high yield are obtained in a very short time and the final culture broth should be appropriate for easy purification of the desired compound (proper pH value and as few contaminants as possible...) With such constraints we are moving very far from natural habitats of microorganisms, which already gives a hint, why many processes do not work as envisioned. Nevertheless, I advocate that nature already solved most of our problems and that proper understanding of nature and its incredible diversity is a helpful basis for the industrial microbiologist. Understanding includes biochemistry and physiology, but also morphology and here come the challenges: while some pet organisms are well known (but far from understood), the majority of microorganisms is not even culturable as yet. Furthermore, current university curricula and fashion driven science politics are characterized by a lack of basic skills of microbiology. In my talk I want to point out some small examples how we can exploit our knowledge and how we can apply our research to utilize the wealth of solutions which nature provides us with. I hope to convey appreciation that studying microbiology is worthwhile, understanding diversity is valuable and preserving diversity is of utmost importance. 4 Plenary II SABANA project: demonstrating the application of microalgae in agriculture and aquaculture Acién Fernández F. G. Department of Chemical Engineering, University of Almería, Almería, Spain E-mail: [email protected] Although microalgae have been proposed for multiple applications, today only direct human related applications are commercial, mainly due to the high production cost and low scale of microalgae production facilities. Market analysis demonstrates that to apply microalgae in other fields such as agriculture and aquaculture large facilities capable to produce low cost biomass are required, for that the coupling with wastewater treatment is mandatory. Thus, SABANA project aims to develop a complete biorefinery obtaining microalgae related products for agriculture and aquaculture reusing nutrients from effluents at scale up to 5 ha. After two years two complete R&D (0.5 ha) and PRODUCTION (1.5 ha) facilities have been completed. The reliability of large scale low-cost raceway reactors has been validated, the reactors being operated in full recirculation mode to save water and nutrients. Harvesting of the biomass has been optimized by combining a pre-concentration and dewatering step using ultrafiltration membrane and nozzle separator. Concerning cell disruption, it has been confirmed that the utilization of high pressure homogenizers allows to obtain enough cell disruption for further extraction processes, minimizing energy consumption. Extracts obtained from the biomass sludge demonstrate relevant effects both as biostimulant and biopesticide. Concerning biostimulant effect both Auxin-like and Cytokinin-like activities were found, in some cases increases in the plant growth performance larger than 200% being measured. Concerning biopesticides, results demonstrate the inhibition of growth of five of the most relevant fungal pathogens, up to 60%. These effects have been demonstrated at small scale, in experiments performed at laboratory, but they have been also confirmed at real field conditions. Concerning aquaculture, although the biochemical composition of the microalgae biomass is highly valuable, the digestibility of the biomass is largely dependent of the strain. To improve the digestibility of the biomass it is recommendable to perform a previous cell disruption, also by high pressure homogenization. Fish trials performed demonstrate that the major advantage of incorporating microalgae biomass is not related with the improvement of growth but with the enhancement of health of fishes as probiotic. First end products are being evaluated, prior to market evaluation by companies. Thus, SABANA is expected to conclude with real commercial processes demonstrated at commercial level. 5 Plenary III Exploration of Microbial Diversity: from the microbiome to the global Virome Nikos Kyripides DOE Joint Genome Institute, California, USA E-mail: [email protected] 6 Plenary IV Fungal-based biorefinery Mohammad J Taherzadeh University of Borås, Borås, Sweden E-mail: [email protected] Filamentous fungi have an inevitable role in nature, and without them the world look different. The fungi can assimilate a variety of materials including carbohydrates, lignin, fat etc. and produce a variety of enzymes and metabolites such as carboxylic acids and alcohols, while the fungal biomass can also be used as feed or food. Therefore, these fungi can be used to develop biorefineries, in order to consume residuals and wastes (food wastes, industrial organic wastes, forestry wastes or agricultural residuals) and develop food, feed, metabolites, enzymes and/or biopolymers. Our research group is working with filamentous fungi since 1999 and are developing fungal-based biorefineries. In this presentation, the role of fungi in assimilating a variety of wastes and residuals and producing ethanol, enzymes, bioplastics, fish feed, and even human food will be explained. The fungal used were mainly from Ascomycetes and Zygomycetes classes. 7 Plenary V Science and Society: From Flint Michigan to Washington DC Michele Swanson ASM President, University of Michigan Medical School Ann Arbor, Michigan, USA E-mail: [email protected] Once a booming industrial city, in 2014, a bankrupt Flint, Michigan reduced expenses by switching its water source from Lake Huron to the Flint River. Omission of anti-corrosive chemicals by the local water utility was soon followed by reports of red, foul water, lead contamination, and outbreaks of Legionnaires’ disease. In 2016, the Michigan Department of Health & Human Services recruited an interdisciplinary research team to investigate whether changes in the municipal water system increased risk of this water-associated infection. Our research findings on the 2014- 15 Legionnaires’ disease outbreaks will be discussed in the context of the social, political, and legal upheaval of the Flint Water Crisis. Responses by the media, the Michigan electorate, and the National Academies of Sciences, Engineering, and Medicine will also be highlighted. The Flint public health crisis also draws attention to the role of scientists
Recommended publications
  • COMBINED LIST of Particularly Hazardous Substances
    COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane
    [Show full text]
  • 2011 APS-IPPC Joint Meeting Abstracts of Presentations
    2011 APS-IPPC Joint Meeting Abstracts of Presentations Abstracts submitted for presentation at the APS-IPPC 2011 Joint Meeting in Honolulu, Hawaii, August 6–10, 2011 (including abstracts submitted for presentation at the 2011 APS Pacific Division Meeting). The abstracts are arranged alphabetically by the first author’s name. Prioritizing cover crops for improving root health and yield of vegetables ability of non-aflatoxigenic strains to prevent aflatoxin production by in the Northeast subsequent challenge with toxigenic A. flavus strains was assessed in 4 G. S. ABAWI (1), C. H. Petzoldt (1), B. K. Gugino (2), J. A. LaMondia (3) experiments. Non-aflatoxigenic strain K49 effectively prevented toxin (1) Cornell University, Geneva, NY, U.S.A.; (2) The Pennsylvania State production at various inoculation levels in 3 experiments. K49 also was University, University Park, PA, U.S.A.; (3) CT Agric. Exp. Station, Windsor, evaluated alongside the widely used biocontrol strains NRRL 21882 (Afla- CT, U.S.A. Guard®) and AF36 for prevention of aflatoxin and CPA production by strains Phytopathology 101:S1 K54 and F3W4. K49 and NRRL 21882 were superior to AF36 in reducing aflatoxins. K49 and NRRL 21882 produced no CPA, and reduced CPA and Cover crops are used increasingly by growers to improve soil quality, prevent aflatoxin production in a subsequent challenge with F3W4 and K54 by 84– erosion, increase organic matter, and suppress root pathogens and pests. 97% and 83–98%, respectively. In contrast, AF36 inoculation and subsequent However, limited information is available on their use for suppressing challenge with F3W4 reduced aflatoxins by 20% and 93% with K54, but pathogens (Rhizoctonia, Pythium, Fusarium, Thieloviopsis, Pratylenchus, and showed no CPA reduction with F3W4 and only 62% CPA reduction with Meloidogyne) of vegetables grown in the Northeast.
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Ginger and Turmeric Expressed Sequence Tags Identify Signature
    Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids Koo et al. Koo et al. BMC Plant Biology 2013, 13:27 http://www.biomedcentral.com/1471-2229/13/27 Koo et al. BMC Plant Biology 2013, 13:27 http://www.biomedcentral.com/1471-2229/13/27 RESEARCH ARTICLE Open Access Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids Hyun Jo Koo1,6†, Eric T McDowell1†, Xiaoqiang Ma1,7†, Kevin A Greer2,8, Jeremy Kapteyn1, Zhengzhi Xie1,3,9, Anne Descour2, HyeRan Kim1,4,10, Yeisoo Yu1,4, David Kudrna1,4, Rod A Wing1,4, Carol A Soderlund2 and David R Gang1,5,11* Abstract Background: Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric. Results: In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications of auxin and ethylene.
    [Show full text]
  • Discovering the Environmental Factors Affecting the Distribution of Terfezia Claveryi Chatin in the Northwest of the Region of Murcia
    Discovering the environmental factors affecting the distribution of Terfezia claveryi Chatin in the Northwest of the Region of Murcia Motaz Abdelaziz st 21 September 2018 Supervised by: Prof. Asuncion Morte (The University of Murcia) Prof. Jose-Antonio Bonet (The University of Lleida) Dr. Alfonso Navarro (The University of Murcia) 1 University of Lleida School of Agrifood and Forestry Science and Engineering Master thesis: Discovering the environmental factors affecting the distribution of Terfezia claveryi Chatin in the Northwest of the Region of Murcia Presented by: Motaz Abdelaziz Supervised by: Prof. Asuncio Morte Prof. Jose-Antonio Bonet Dr. Alfonoso Navarro 2 Table of Contents ABSTRACT: ..................................................................................................................................................... 4 1. INTRODUCTION .................................................................................................................................... 5 1.1. Importance of fungi in Europe ................................................................................................... 5 1.2. What is a desert truffle? ............................................................................................................ 5 1.3. Tefezia claveryi distribution. ..................................................................................................... 7 1.4. T. claveryi economical value .....................................................................................................
    [Show full text]
  • Pocket Guide to Clinical Microbiology
    4TH EDITION Pocket Guide to Clinical Microbiology Christopher D. Doern 4TH EDITION POCKET GUIDE TO Clinical Microbiology 4TH EDITION POCKET GUIDE TO Clinical Microbiology Christopher D. Doern, PhD, D(ABMM) Assistant Professor, Pathology Director of Clinical Microbiology Virginia Commonwealth University Health System Medical College of Virginia Campus Washington, DC Copyright © 2018 Amer i can Society for Microbiology. All rights re served. No part of this publi ca tion may be re pro duced or trans mit ted in whole or in part or re used in any form or by any means, elec tronic or me chan i cal, in clud ing pho to copy ing and re cord ing, or by any in for ma tion stor age and re trieval sys tem, with out per mis sion in writ ing from the pub lish er. Disclaimer: To the best of the pub lish er’s knowl edge, this pub li ca tion pro­ vi des in for ma tion con cern ing the sub ject mat ter cov ered that is ac cu rate as of the date of pub li ca tion. The pub lisher is not pro vid ing le gal, med i cal, or other pro fes sional ser vices. Any ref er ence herein to any spe cific com mer cial prod ucts, pro ce dures, or ser vices by trade name, trade mark, man u fac turer, or oth er wise does not con sti tute or im ply en dorse ment, rec om men da tion, or fa vored sta tus by the Ameri can Society for Microbiology (ASM).
    [Show full text]
  • Epigenetic Associations in Relation to Cardiovascular Prevention and Therapeutics Susanne Voelter-Mahlknecht
    Voelter-Mahlknecht Clinical Epigenetics (2016) 8:4 DOI 10.1186/s13148-016-0170-0 REVIEW Open Access Epigenetic associations in relation to cardiovascular prevention and therapeutics Susanne Voelter-Mahlknecht Abstract Cardiovascular diseases (CVD) increasingly burden societies with vast financial and health care problems. Therefore, the importance of improving preventive and therapeutic measures against cardiovascular diseases is continually growing. To accomplish such improvements, research must focus particularly on understanding the underlying mechanisms of such diseases, as in the field of epigenetics, and pay more attention to strengthening primary prevention. To date, preliminary research has found a connection between DNA methylation, histone modifications, RNA-based mechanisms and the development of CVD like atherosclerosis, cardiac hypertrophy, myocardial infarction, and heart failure. Several therapeutic agents based on the findings of such research projects are currently being tested for use in clinical practice. Although these tests have produced promising data so far, no epigenetically active agents or drugs targeting histone acetylation and/or methylation have actually entered clinical trials for CVDs, nor have they been approved by the FDA. To ensure the most effective prevention and treatment possible, further studies are required to understand the complex relationship between epigenetic regulation and the development of CVD. Similarly, several classes of RNA therapeutics are currently under development. The use of miRNAs and their targets as diagnostic or prognostic markers for CVDs is promising, but has not yet been realized. Further studies are necessary to improve our understanding of the involvement of lncRNA in regulating gene expression changes underlying heart failure. Through the data obtained from such studies, specific therapeutic strategies to avoid heart failure based on interference with incRNA pathways could be developed.
    [Show full text]
  • The Diversity of Terfezia Desert Truffles: New Species and a Highly Variable Species Complex with Intrasporocarpic Nrdna ITS Heterogeneity
    Mycologia, 103(4), 2011, pp. 841–853. DOI: 10.3852/10-312 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 The diversity of Terfezia desert truffles: new species and a highly variable species complex with intrasporocarpic nrDNA ITS heterogeneity Ga´bor M. Kova´cs1 INTRODUCTION Tı´mea K. Bala´zs Desert truffles are hypogeous ascomycetes living on Department of Plant Anatomy, Institute of Biology, Eo¨tvo¨s Lora´nd University, Pa´zma´ny Pe´ter se´ta´ny 1/C, several continents (Dı´ez et al. 2002, Ferdman et al. H-1117 Budapest, Hungary 2005, Trappe et al. 2010a) where they play important roles as mycorrhizal partners of plants and their fruit Francisco D. Calonge bodies are a potentially important food source Marı´a P. Martı´n (Trappe et al. 2008a, b). A study revealed that fungi Departamento de Micologı´a, Real Jardı´n Bota´nico, adapted to deserts evolved in several lineages of the CSIC, Plaza de Murillo 2, 28014 Madrid, Spain Pezizaceae (Trappe et al. 2010a). Among the genera in these lineages Terfezia represents the best known and probably most frequently collected desert truffles Abstract: Desert truffles belonging to Terfezia are (Dı´ez et al. 2002, Læssøe and Hansen 2007). well known mycorrhizal members of the mycota of the Although several members of the genus were de- Mediterranean region and the Middle East. We aimed scribed from different continents, recent molecular- to test (i) whether the morphological criteria of taxonomic studies revealed that probably only the Terfezia species regularly collected in Spain enable species from the Mediterranean region and the their separation and (ii) whether the previously Middle East belong in Terfezia s.
    [Show full text]
  • Genetic Diversity of the Genus Terfezia (Pezizaceae, Pezizales): New Species and New Record from North Africa
    Phytotaxa 334 (2): 183–194 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.334.2.7 Genetic diversity of the genus Terfezia (Pezizaceae, Pezizales): New species and new record from North Africa FATIMA EL-HOUARIA ZITOUNI-HAOUAR1*, JUAN RAMÓN CARLAVILLA2, GABRIEL MORENO2, JOSÉ LUIS MANJÓN2 & ZOHRA FORTAS1 1 Laboratoire de Biologie des Microorganismes et de Biotechnologie, Département de Biotechnologie, Faculté des Sciences de la nature et de la vie, Université d’Oran 1 Ahmed Ben Bella, Algeria 2 Departamento Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain * Corresponding author: [email protected] Abstract Morphological and phylogenetic analyses of large ribosomal subunit (28S rDNA) and internal transcribed spacer (ITS rDNA) of Terfezia samples collected from several bioclimatic zones in Algeria and Spain revealed the presence of six dis- tinct Terfezia species: T. arenaria, T. boudieri, T. claveryi; T. eliocrocae (reported here for the first time from North Africa), T. olbiensis, and a new species, T. crassiverrucosa sp. nov., proposed and described here, characterized by its phylogenetic position and unique combination of morphological characters. A discussion on the unresolved problems in the taxonomy of the spiny-spored Terfezia species is conducted after the present results. Key words: desert truffles, Pezizaceae, phylogeny, taxonomy Introduction The genus Terfezia (Tul. & C.Tul.) Tul. & C. Tul. produce edible hypogeous ascomata growing mostly in arid and semi-arid ecosystems, although they can be found also in a wide range of habitats, such as temperate deciduous forests, conifer forests, prairies, or even heath lands (Moreno et al.
    [Show full text]
  • Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity
    Journal of Fungi Article Categorization of Orthologous Gene Clusters in 92 Ascomycota Genomes Reveals Functions Important for Phytopathogenicity Daniel Peterson 1, Tang Li 2, Ana M. Calvo 1,* and Yanbin Yin 2,* 1 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; [email protected] 2 Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA; [email protected] * Correspondence: [email protected] (A.M.C.); [email protected] (Y.Y.); Tel.: +1-(815)-753-0451 (A.M.C.); +1-(402)-472-4303 (Y.Y.) Abstract: Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest Citation: Peterson, D.; Li, T.; Calvo, occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are A.M.; Yin, Y. Categorization of Orthologous Gene Clusters in 92 also identified to have higher significance and occurrence in group-specific orthogroups.
    [Show full text]
  • Epigallocatechin-3-Gallate, a Histone Acetyltransferase Inhibitor, Inhibits EBV-Induced B Lymphocyte Transformation Via Suppression of Rela Acetylation
    Research Article Epigallocatechin-3-Gallate, a Histone Acetyltransferase Inhibitor, Inhibits EBV-Induced B Lymphocyte Transformation via Suppression of RelA Acetylation Kyung-Chul Choi,1,2 Myung Gu Jung,1,2 Yoo-Hyun Lee,5 Joo Chun Yoon,3 Seung Hyun Kwon,3 Hee-Bum Kang,1,2 Mi-Jeong Kim,1,2 Jeong-Heon Cha,4 Young Jun Kim,6 Woo Jin Jun,7 Jae Myun Lee,2,3 and Ho-Geun Yoon1,2 1Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, 2Brain Korea 21 Project for Medical Sciences, and 3Department of Microbiology, Yonsei University College of Medicine; 4Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea; 5Department of Food and Nutrition, The University of Suwon, Suwon, Korea; 6Department of Food and Biotechnology, Korea University, Chungnam, Korea; and 7Department of Food and Nutrition, Chonnam National University, Gwangju, Korea Abstract eukaryotic DNA into chromatin plays an active role in transcrip- tional regulation by interfering with the accessibility to the Because the p300/CBP-mediated hyperacetylation of RelA transcription factors (2). Acetylation of specific lysine residues (p65) is critical for nuclear factor-KB (NF-KB) activation, the within the NH -terminal tails of nucleosomal histones is generally attenuation of p65 acetylation is a potential molecular target 2 linked to chromatin disruption and transcriptional activation of for the prevention of chronic inflammation. During our genes (3). Consistent with their role in altering chromatin ongoing screening study to identify natural compounds with structure, many transcriptional coactivators, including hGCN5, histone acetyltransferase inhibitor (HATi) activity, we identi- p300/CBP, PCAF, and SRC-1, possess intrinsic acetyltransferase fied epigallocatechin-3-gallate (EGCG) as a novel HATi with activity that is critical for their function (4, 5).
    [Show full text]
  • Identification and Characterization of Multiple Curcumin Synthases From
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS Letters 583 (2009) 2799–2803 journal homepage: www.FEBSLetters.org Identification and characterization of multiple curcumin synthases from the herb Curcuma longa Yohei Katsuyama a, Tomoko Kita b, Sueharu Horinouchi a,* a Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan b Somatech Center, House Foods Corporation, 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan article info abstract Article history: Curcuminoids are pharmaceutically important compounds isolated from the herb Curcuma longa. Received 21 June 2009 Two additional type III polyketide synthases, named CURS2 and CURS3, that are capable of curcumi- Revised 15 July 2009 noid synthesis were identified and characterized. In vitro analysis revealed that CURS2 preferred Accepted 16 July 2009 feruloyl-CoA as a starter substrate and CURS3 preferred both feruloyl-CoA and p-coumaroyl-CoA. Available online 19 July 2009 These results suggested that CURS2 synthesizes curcumin or demethoxycurcumin and CURS3 syn- Edited by Ulf-Ingo Flügge thesizes curcumin, bisdemethoxycurcumin and demethoxycurcumin. The availability of the sub- strates and the expression levels of the three different enzymes capable of curcuminoid synthesis with different substrate specificities might influence the composition of curcuminoids in the tur- Keywords: Polyketide synthase meric and in different cultivars. Curcumin Ó 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Demethoxycurcumin Bisdemethoxycurcumin Curcuma longa 1. Introduction cules of malonyl-CoA, which is called an extender substrate, and subsequent cyclization of the resultant polyketide chain [7].We Curcuminoids, natural products isolated from the rhizome of have recently found that curcuminoids in the herb C.
    [Show full text]